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Abstract
Research on extreme convective precipitation events (ECPEs) is crucial to avoid
damage and to better understand the climate system, but a lack of area-covering
long-term measurements of the short-lived and localized storms hamper climato-
logical analyses.
This thesis explores uncertainties associated with ECPEs in the Austrian south-
eastern Alpine forelands using sub-daily rain and stream gauge observations as
well as damage data. Additional variables are used to define weather types and
socioeconomic vulnerabilities. Different analytic and statistical methods are ap-
plied to quantify sampling biases and temperature sensitivities as well as damage
contributions from ECPEs.
Using a novel technique to systematically thin out the 1.4 km × 1.4 km WegenerNet
Feldbach region climate station network (WegenerNet), it is demonstrated that
conventional rain gauge networks lead to severe underestimation of extreme area
rainfall in convective storms. The rate of underestimation follows a power law
with exponent -0.5 over inter-station distances from 1 km to 30 km. It is shown
that damage reported to the Austrian disaster fund under convective weather
types is systematically less correlated with precipitation extremes, as compared
to stratiform weather systems. These findings are particularly relevant, as higher
daily mean temperature has been shown to robustly correlate with an increase in
precipitation extremes. This indicates that ECPEs might become more intense
with climate warming, however, temporal trends and the role of dynamic processes
need further research.
The thesis underlines the need for high resolution observations and strategies to
implement sampling uncertainties into model evaluation and risk reduction strate-
gies, as ECPEs significantly contribute to total damage and the risk from such
events will likely increase.
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Zusammenfassung
Um das Klimasystem besser zu verstehen und Unwetterschäden zu begrenzen, ist
die Erforschung kleinräumiger konvektiver Starkniederschlagsereignisse (KSNE)
essenziell. Ein Mangel flächendeckender und lange zurückreichender Aufzeichnun-
gen erschwert die Analyse dieser räumlich wie zeitlich hoch variablen Ereignisse.
Diese Dissertation erforscht KSNE im südöstlichen Alpenvorraum Österreichs
und mit ihnen verbundene Unsicherheiten. Hierzu werden unter-tägliche Nieder-
schlagsmessungen, Schadensmeldungen und Daten zur Bestimmung von Wetter-
lagen und sozioökonomischen Vulnerabilitäten mittels verschiedener analytischer
und statistischer Methoden ausgewertet.
Ein innovativer Ansatz dünnt das Klimastationsnetzwerk WegenerNet system-
atisch aus und kann so nachweisen, dass konventionelle Messnetze eine Unter-
schätzung der maximalen Flächenniederschläge von KSNE erheblich begünstigen.
Darüber hinaus wird gezeigt, dass Schäden, die während konvektiver Wetterlagen
gemeldet werden, systematisch seltener mit extremen Niederschlagsmessungen in
Zusammenhang gebracht werden können, als Schäden, die bei Wetterlagen mit
flächigem Niederschlag auftreten. Die Ergebnisse sind besonders relevant, weil
unter-stündliche bis unter-tägliche Niederschlagsextreme robust und stark posi-
tiv mit der Lufttemperatur in Zusammenhang stehen. KSNE könnten daher mit
fortschreitendem Klimawandel und einhergehender Erwärmung intensiver werden,
wobei zeitliche Trends und die Rolle dynamischer Prozesse weiterhin von vielen
Unsicherheiten geprägt sind.
Insgesamt zeigen die Ergebnisse dieser Dissertation, wie wichtig hochaufgelöste
Beobachtungsdaten sind, um Strategien zu entwickeln, mithilfe derer Messun-
sicherheiten bei der Modellevaluierung und in der Naturgefahrenprävention besser
berücksichtigt werden können. Vor dem Hintergrund steigender Durchschnittstem-
peraturen und einer wahrscheinlichen Zunahme der Intensität von KSNE ist dies
besonders relevant.
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1 Introduction

somebody tell me the truth / and
the rain came down / it rains on
everyone

John Maus

Towering cumulonimbus clouds banking up in summer skies presage extreme
convective precipitation events (ECPEs). Convective cells are often not larger
than a few kilometers in diameter and last for less than a couple of hours, yet
such storms harbor substantial damage potential. The sudden onset and difficult
prediction of such events make it a particular delicate hazard with little time for
exposed communities to prepare. Flood patterns and impacts of such events differ
from large scale flooding. Demolished roads and settlements flooded by water
and mud, and numerous fatalities demonstrate the disastrous consequences from
ECPEs. Unfortunately, such extreme events regularly occur in the eastern Alpine
region. Localized flash flooding and debris flows triggered by intense precipitation
can disrupt life until long after the event has passed, for example as in Braunsbach,
Germany in 2016 (Bronstert et al., 2018; Laudan et al., 2017), or in Oberwölz,
Austria in 2011 (hydroConsult GmbH , 2011).

With rapid climate change the global hydrological cycle intensifies, as rates
of evaporation and atmospheric water vapor content rise with increasing global
mean temperatures (Duethmann and Blöschl, 2018; Huntington, 2006; O’Gorman,
2015; Trenberth et al., 2003). Results from observations and model studies re-
assert the physics-based theoretical expectation that extreme precipitation in-
creases as a consequence of warming (Fischer and Knutti, 2016). While society
may adapt to a change in mean temperature, the potential increase in extreme
hydro-meteorological events will issue significant challenges. Not only scientists,
but also engineers and local decision makers thus have great interest in knowing
when and where extreme events are likely to occur. Therefore, it is important to
understand not only how potentially catastrophic events will change on the global
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1 Introduction

scale, but even more so how these changes will manifest on the regional to local
level, where prevention has to be actuated and impacts have to be dealt with.

Systematic research on localized ECPEs is complicated due to their high
natural variability. Large uncertainties have to be taken into account even when
the focus is set on present and near future challenges, and these uncertainties
grow for long-term assessments. Because extreme events are rare by definition,
it is technically and financially difficult to collect consistent observations, which
hampers long-term analyses. As a consequence, the character and consequences
of localized, sub-daily extreme convective precipitation have long been dominated
by forecast- and warning-oriented research (Allen, 2018). Automatic weather
stations and fast data transmission, ever improving remote sensing technology, and
rapidly evolving computer power increasingly facilitate studies from a climatological
perspective. It is, however, crucial to identify the sources of uncertainty inherent
to the data used and to understand how they may affect study results.

This thesis addresses some of the uncertainties related to ECPEs in the south-
eastern Alpine forelands. As the sources of uncertainty are plentiful, the focus is
narrowed to taking an integrative perspective on three aspects: gauge observations,
damage potential, and temperature sensitivity of ECPEs. This is because it is
generally acknowledged that ECPEs are misrepresented in rain gauge observations,
but the extent to which this is the case is largely not quantified. Furthermore, it is
not well explored how much ECPEs contribute to the socioeconomic cost caused
by natural hazard impacts. Detecting damage patterns under convective and non-
convective conditions, while also considering regional factors of vulnerability and
exposure, can help to understand the risk and allocate funds accordingly. Through
exploring how extreme precipitation intensities scale with temperature, patterns of
variability on the regional-to-local level can be identified and valuable conclusions
be drawn with regard to both present and potential future developments.

Studying a confined region in the Austrian southeastern Alpine forelands
allows the advantage of using various sources of data that are available at high
quality and resolution. Historical data of the recent decades are explored to
understand patterns of ECPEs, but also identify pitfalls in observations. Insights
gained on the small scale can then provide valuable reference and recommendation
to issues and applications on larger scales. The core data sources used are sub-
hourly precipitation observations from a comparably dense regular rain gauge
network with approximately 7 km inter-station distance and from a very high-
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density research rain gauge network with inter-station distances of about 1.4 km.
In addition, data on natural hazard damage and a suite of environmental and
socioeconomic data is used. Using a weather typing and event scale approach, all
data is used to statistically and analytically analyze the character and consequences
of ECPEs. The results provide empirically derived points of reference useful to
a broad range of applications such as high-resolution climate models or natural
hazard risk assessments.

This thesis is structured as follows: Chapter 2 opens with an introductory
discussion of the literature in extreme precipitation research and embeds the re-
search questions of this thesis in the context of recent developments. Choices of
data and methods are explained in Chapter 3.
The research articles that constitute this thesis, Research Article 1 Strong de-
pendence of extreme convective precipitation intensities on gauge network density,
Research Article 2 Quantifying damage contributions from convective and strat-
iform weather types: How well do precipitation and discharge data indicate the
risk?, and Research Article 3 Sensitivity of extreme precipitation to temperature:
the variability of scaling factors from a regional to local perspective are included in
Chapter 4. Chapter 5 discusses the overarching findings of the research and closes
with concluding remarks.
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2 Research challenges of
convective precipitation
extremes

Extreme weather events and induced natural hazards can severely impair the
functioning of human-environmental systems. Consequential damages are felt even
long after the actual event has passed. To avert losses, societies and individuals
around the world strive to better cope with the risk from extreme weather, which
will likely be exacerbated by climate change (Easterling et al., 2000).
This thesis takes an integrative perspective on the character of and impact from
extreme convective precipitation events (ECPEs). Extreme weather in the form
of convective precipitation events occurs regularly but such storms are hard to
predict (Allen, 2018) and often lead to catastrophic outcomes. Concentrated water
masses in extreme convective events can trigger destructive flash flooding and
debris flows with very short lead times. This chapter summarizes general advances
and challenges in the research of extreme convective precipitation in the first part
and embeds this thesis’ research questions more specifically in the second part.

2.1 Across scales: Localized extreme precipitation from a
climatological perspective

As Earth’s climate is changing at unprecedented pace, we face likely shifts in
the magnitude and frequency of extreme events, yet the details of how these
shifts manifest on the regional-to-local scale are very uncertain (IPCC , 2013,
ch.10). One reason for this is that current assessments of changes and robust
trends in observations and climate model projections are based primarily on means.
Changes in extreme weather and climate events with global warming have long
been theoretically and conceptually discussed (e.g., Fischer and Knutti, 2016). A
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2 Research challenges of convective precipitation
extremes

common way to approach a climate variable is through visualizing its probability
distribution. A change in the mean, i.e., the location parameter of its probability
distribution function (PDF), is only one of the moments that govern the probability
of weather outcomes in a given climate state. Changes in the variability and shape
of the distributions, i.e., shape and scale parameters also determine the form of
PDF and are decisive for exceedance probabilities of extreme events located at
the tails of a distribution (Alexander and Tebaldi, 2012). While there is high
confidence in the signals of changing means with climate change, robust findings
are only emerging on the variability and changes of extremes.

Research on extremes must operate in the marginal space of rare high mag-
nitude / low probability events. The climate system is naturally variable and
oscillates on scales from seconds to millennia. In order to detect changes that go
beyond the expected variability, it is necessary to robustly distinguish signal from
noise. Short data series will naturally exhibit a low signal-to-noise ratio, and the
same is valid if the spatial and temporal scales of interest are small.
General Circulation Models, also Global Climate Models (GCM) allow analyzing
longer, simulated, time series from an idealized model framework. For the CMIP21

generation of GCM, Allen and Ingram (2002) find that the uncertainty in changes
of global mean precipitation is much higher than the inter-model spread. As differ-
ent GCM were not designed as an ensemble to represent natural variability, groups
increasingly initiate large ensemble runs of one specific model in order to better
understand the role of natural variability (e.g., Aalbers et al., 2018; Dittus et al.,
2018; McKinnon and Deser , 2018; Pendergrass et al., 2017).

In its fifth assessment report on global climate change, the Intergovernmental
Panel on Climate Change (IPCC) concludes with high confidence that extreme
precipitation is increasing (IPCC , 2013), with more regions worldwide exhibiting
significant positive trends than negative. Most global studies analyze the annual
maximum daily precipitation amount (RX1D)2, for which reliable observational
records exist on scales of several decades, with some data series reaching back to
the 19th century (Becker et al., 2013). However, the global coverage of qualitative

1The Coupled Model Intercomparison Project CMIP was started 1995 to facilitate running
common GCM experiments and further to coordinate, compare, and share results among
different modelling groups as well as to disseminate model output to research groups who do
not have own models. CMIP Phase 2 GCM are from around the year 2000. CMIP is currently
in Phase 6. (World Climate Research Program, 2018)

2RX1D is one of several climate indices defined in order to streamline international monitoring
of climate extremes (Zhang et al., 2012)
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2.1 Across scales: Localized extreme precipitation from
a climatological perspective

rain gauge observations is still very heterogeneous. The limited availability of
precipitation data causes GCM to be less constrained by observations, and so
directly influences the level of confidence we can have in their outputs (Allen and
Ingram, 2002).
On the sub-daily scale, observations to derive precipitation indices are generally
sparse and far from homogeneous, and so do not yet allow for a global assessment
of changes (Alexander , 2016; Allen, 2018). With the spreading of automated
weather stations, sub-daily to sub-hourly sampling has become more frequent, and
major efforts are now underway to collect and convert data from other sources,
to document and analyze sub-daily precipitation measurements on a global scale
(Blenkinsop et al., 2018).

Research on the climatological scale of severe convective weather3 has in-
creased significantly in the past decade. This is because major hurdles such as the
lack of systematic observational data are ameliorating, but also because climate
models’ resolution, which had long been too coarse to study convective phenom-
ena, has increased. With rapidly evolving computer power, Convection Permitting
Climate Models (CPM) allow researching patterns and processes of extreme pre-
cipitation on scales from 12 km to 1 km where convection no longer needs to be
fully parameterized (Chan et al., 2018; Prein et al., 2017a).
Advances of CPM brought improvements from Regional Climate Models (RCM) in
better representing summertime precipitation, and in particular the diurnal cycle
of precipitation (Ban et al., 2014; Prein et al., 2015). Despite these leaps, current
CPM simulations are restricted to single realizations and simulating discontinuous
periods of time (e.g., one historical and one future decade (Ban et al., 2015)). Nev-
ertheless, CPM will continue to advance our understanding of small scale extreme
events as simulations on climatological time scales are evolving (Wang et al., 2018).

As fundamental and so-called ground-truth reference to our theory and indis-
pensable to model validation, observational data are at the core of weather and
climate science. With advancing CPM it becomes ever more important to acquire
reliable reference data to scrutinize the output of simulations at unprecedent-
edly high resolution. However, significant uncertainties also exist in observational
datasets. Large discrepancies among different datasets have been identified (Zittis,

3The term severe convective storms (SCS) includes hazards from atmospheric convective systems,
which are tornadoes, large hail, thunderstorms, and excessive rain (Allen, 2018). This thesis
focuses on extreme convective precipitation, although it is possible that hail occurred in the
analyzed storms.
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2017). Prein and Gobiet (2017) show that available gridded precipitation datasets
spread in ranges comparable to the spread of precipitation in an ensemble of cli-
mate model runs. This demonstrates that observational uncertainties need better
quantification.
In addition to understanding the uncertainties on the data itself, it is equally im-
portant to understand the processes they represent. Only time and close-meshed
observation will increase the sample size of real-world extreme events and sub-
sequently the robustness of statistical analysis and trend detection, particularly
at sub-daily and regional-to-local scales. It is even more important, therefore, to
advance our knowledge of small-scale extreme events through understanding the
involved processes and to leverage all information available to research today.

Another reason climatological perspectives on convective extremes are lacking
is not related to data. As Allen (2018) notes with regard to research on SCS
under climate change, “[t]he challenge of the interdisciplinary nature of this area of
research is the tendency for researchers to be focused in their training predominantly
either on the mesoscale (<400km, <1 day) or on the synoptic to climate scale
(>400km and on periods of days to decades)”. In this sense, also research on ECPEs
is situated between two different paradigms. On the one hand, climatologists seek
to understand how larger-scale patterns interact with local phenomena, and the
kind of hazards we have to expect on longer time scales. On the other hand is
the scale of chaotic regional-to-local weather, where “[e]ven on a day-to-day basis,
severe-weather forecasters struggle to identify where and when thunderstorms may
initiate, and if they do, whether they will be long-lived and severe” (Allen, 2018).

Both perspectives provide relevant hazard information to society. On the one
end, forecasts and warnings assist people in taking immediate action. On the other
end, the long-term perspective is essential to guide prevention, such as norms (e.g.,
building codes (Garsaball and Markov, 2017)), measures (e.g., structural flood
protection), as well as to educate and facilitate adaptive behavior (Kreibich et al.,
2017). Long-term perspectives are also required to allocate funds and calculate
insurance premiums (Unterberger , 2018; Unterberger et al., 2019).
This listing of measures taken by societies already shows that the level of how
severely societies are impacted by extreme weather events is only partly governed
by the hazard. Socioeconomic development is a major driving force behind observed
and projected increases in losses from extreme climate and weather events (e.g.,
Perez-Morales et al., 2018; Strader et al., 2017a,b). The level to which societies
can reduce their vulnerability and exposure through adapting to variability and
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change largely determines the consequences from extreme events. The concept of
risk allows taking into account the different factors and processes that eventually
put lives and assets in jeopardy (Morss et al., 2011). Although exact definitions of
terms such as vulnerability, hazard, and exposure vary across groups and disciplines
(Jurgilevich et al., 2017), they share a common concept of risk as the intersection
of hazard and vulnerability, which describes in the broadest sense the space (not
necessarily restricted to physical space) where susceptible life and property are
exposed to a hazardous process.

This thesis is not only interested in the atmospheric process of ECPEs, but also
in its societal relevance in terms of their damage potential. Figure 2.1 illustrates
how the framework of risk is understood in the context of this thesis. ECPEs are
governed by atmospheric processes and are located on the hazard side. ECPEs can
trigger hydrological and geomorphological hazards, given conditions at the Earth’s
surface are favorable (e.g., steep topography, high sediment supply, high antecedent
soil moisture). The processes can occur in different areas of the study region and
may follow distinct patterns. At locations where, and times when, people and
assets are both exposed and susceptible to these hazards, the risk materializes.
Vulnerability here is understood as the intersection of exposure and susceptibility,
acknowledging that other interpretations exist (Jurgilevich et al., 2017). All risk
factors are subject to spatial and temporal variability on different scales, making
the risk analysis inherently complex.
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Figure 2.1: Risk framework in the context of processes and data analyzed in
this thesis.

2.2 Overarching research question and scope

This thesis takes an integrative perspective on ECPEs not only because it explores
the physical phenomenon between the scales of extreme weather and climate, but
also because it investigates societal implications of ECPEs in the form of incurred
damage. Building on high-resolution observations of precipitation and additional
data in the southeastern Alpine forelands, it is analyzed how the most extreme
precipitation events scale with temperature conditions, how they are represented
in gauge observations, and what the associated vulnerabilities are on the regional-
to-local level. The overarching research question is:

What is the character and relevance of ECPEs in the Austrian south-
eastern Alpine forelands and how can associated uncertainties be quan-
tified?

The research articles that constitute this thesis address this question from
three different angles, which are (i) observations, (ii) societal risk and (iii) tem-
perature sensitivities.
Three subordinate research questions thus accrue from the overarching research
question. Each research article roots in one of the three levels, but their sub-
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jects are inevitably interlinked. The scope and approach of the three chapters is
laid out hereafter. Because there has been a very active debate on temperature-
precipitation scaling, or temperature sensitivity of precipitation (T/P-scaling) in
the recent years, the topic of temperature sensitivities is given somewhat more
space to embed Research Article 3 in this research landscape.

2.2.1 Observations

Precipitation is an important aspect of the natural world for all life on Earth. It is
yet a delicate one, as both shortage and excess can lead to disastrous consequences.
The most relevant quantity for observers (i.e., life) on the ground is the amount of
water falling over a given area. Precipitation is traditionally measured, however,
at point scale4. This allows collecting standardized and comparable quantities
of precipitation while containing environmental biases and disturbances, such as
evaporation, in the best possible ways. However, rain gauges cannot directly
measure area precipitation, and sites are not necessarily representative of the
surrounding areas under all circumstances.

Remotely sensed measurements of the atmosphere taken by radar and satellite
technology allow detecting spatial patterns of precipitation in two, and increasingly
also in three dimensions (Handler and Homeyer , 2018; Mroz et al., 2018). Satellites,
in particular, can sample precipitation seamlessly over land and ocean, the latter
being notoriously undersampled in global observations (Allen and Ingram, 2002).
Unfortunately, however, satellite products do not yet adequately resolve extreme
events on short time scales (Furl et al., 2018). Ground based radar observation,
despite uncertainties (Cecinati et al., 2017; Villarini et al., 2014), can be used to
investigate structures of convective precipitation events on relevant spatiotemporal
scales (approx. 5 min and 1 km) (Eggert et al., 2015; Lochbihler et al., 2017; Marra
and Morin, 2018; Peleg et al., 2018). Because of comparably short records, and ever
evolving technology that is mostly targeted towards forecasting applications, the
availability of long-term, quality-controlled radar datasets is limited. Consequently,
radar analyses on climatological time scales are still rare and analyze comparably
short periods (10 yr to 15 yr) (Nisi et al., 2016; Panziera et al., 2018).

This thesis focuses on observations from rain gauge station networks. Rain
gauges constitute the most fundamental way of observing precipitation in-situ and

4Point scale here refers to the orifice of the deployed rain gauge, which, depending on the sensor,
is usually 200 cm to 500 cm (O et al., 2018)
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on ground level. Many regions of the world rely on rain gauges and they provide the
longest records of precipitation. Furthermore, advancing remote sensing technology
and models need high-quality ground measurements for reference and validation.

To get information on area precipitation from point observations, most appli-
cations use gridded products of precipitation. Precipitation at unobserved sites
is estimated from interpolating point measurements using geostatistical methods
(e.g., Hiebl and Frei, 2016; Isotta et al., 2014; Sideris et al., 2014, for Alpine
regions). The result is a spatially smoothed and coherent field of precipitation
estimates. For these gridded precipitation products it is not usually easily trace-
able which rain gauge stations were used to generate the precipitation field. There
exist large discrepancies among different precipitation products, which can also
stem from different interpolation methods (Herrera et al., 2018). Although these
issues are acknowledged, the potential implications of an uncertain ground truth
often remain ignored or undisclosed, as most studies in hydrology or climate model
evaluation only choose or have available one observational product to work with.

Because of the concentrated rainfall patterns in ECPEs, they are generally
undersampled by conventional rain gauge observation networks. This is because
the inter-station distances of operational networks are comparably large, e.g.,
approximately 10 km in Austria (Schroeer and Tye, 2019), but can be one order of
magnitude larger in other parts of the world (e.g., Gubler et al., 2017). In order
for a network to comprehensively capture ECPEs, the required spacing of rain
gauges depends on the spatial extent, life span, and travel speed of convective
cells. In the Netherlands, radar data show that 90 % of convective storm cells are
smaller than 7 km in diameter (Lochbihler et al., 2017). In southeastern Austria,
extreme convective storms often do not last longer than a couple of hours (Schroeer
et al., 2018). Peak precipitation rates within the storms occur on even shorter and
smaller scales (Peleg et al., 2016; Syed et al., 2003), requiring even denser meshing
in order to record the most extreme intensities.

Uncertainties from undersampling and underestimation of peak intensities
of ECPEs cascade to downstream applications, with potential implications for
risk assessments. Most hydrological models, for example, process interpolated
precipitation data. Spatial misrepresentation of areal precipitation amounts can
propagate to wrong streamflow estimates, or bias the parameter estimation when
observed runoff is fit to observed precipitation. Another example is the estimation
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of Areal Reduction Factors (ARF)5 in hydraulic application design (Beck et al.,
2017; Svensson and Jones, 2010). Furthermore, the validation and analysis of
climate models strongly depends on estimates of mean area precipitation, because
models output precipitation amounts as an area mean over each gridcell (Herrera
et al., 2018; Kotlarski et al., 2017).

Because many applications rely on spatial precipitation data and ECPEs bear
high hazard potential, it is essential to quantify uncertainties in spatiotemporal
resolution of observations of convective precipitation events. Globally, only very few
precipitation observation networks exist that have a dense enough station network
to capture convective extreme events (e.g., Goodrich et al., 2008). The density
of the observing network always is a trade-off of coverage and accuracy against
technological and financial constraints and priorities. The WegenerNet Feldbach
region climate station network (WegenerNet) in southeastern Styria, Austria, is
one of the very few networks worldwide and the only one available in the European
mid-latitudes with >150 rain gauges over an area of approximately 15 km × 20 km.
The effects of potential undersampling of ECPEs can so be empirically investigated
based on systematic, quality-controlled rain gauge measurements. Hence the first
research question addressed in Research Article 1 in Section 4.1 (Schroeer et al.,
2018) is:

How does the rain gauge density in an observation network influence
the estimation of event maximum area precipitation of ECPEs?

Section 4.1.1 introduces the difficulties to estimate area rainfall from extreme
convective precipitation events. In Section 4.1.2, the data is introduced and it
is described how the experimental sampling framework of the Fishnet-Windowed
Triangular Mesh (FWTM) method is set up to empirically test the dependence
of observed extreme convective precipitation intensities on the density of the rain
gauge network. Results and implications are discussed in Section 4.1.3 and a
concluding summary is given in Section 4.1.4.

5“ARF η is a key parameter in the design for hydrological extremes. For a basin of area A,
η(A,D, T ) is the ratio between the area-average rainfall intensity over a duration D with return
period T and the point rainfall intensity for the same D and T .” (Veneziano and Langousis,
2005, p 1)
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2.2.2 Societal Risk

The quality of observations and subsequently the robustness of estimated changes
of ECPEs are highly relevant from an impact perspective, as, for example, planners
and decision makers are reliant on accurate hazard information. The undersampling
of localized short-duration precipitation intensities might thus result in a biased
picture and reduced awareness of the risk from such events. When taking an
impact perspective instead of focusing on the hazard alone, many more factors
and processes have to be considered, which all influence the severity of an impact.
They range from runoff generation to the vulnerabilities of the exposed assets, and
make any analysis inherently more complex (Cortès et al., 2018).

Patterns of large-scale extreme precipitation events and consequential exten-
sive river floods are often investigated at climatological and national to global
scales (Bloeschl et al., 2017; Hofstaetter et al., 2018; Unterberger et al., 2019; Will-
ner et al., 2018), although also uncertainties may scale high (Trigg et al., 2016).
Natural hazards associated with ECPEs, however, are very different in that they
are spatially much more confined in time and space than large-scale river flooding.
Consequentially, also the data required to map the events need to be much finer
resolved, which exacerbates acquiring them in sufficient quality (Amponsah et al.,
2018; Laudan et al., 2017). Studies often focus on individual flash flood events,
single catchments, and specifically on urban environments, while findings are rarely
compiled on a regional or even national scale. The smaller spatial extent of the
total affected area also confines the scope socioeconomic impacts and thus may
seem less relevant from an (inter-)national perspective.

However, cumulative effects of smaller-scale extremes can significantly increase
the risk of damage on both the spatial and temporal scale. Recent research explor-
ing the coastal risk of flooding showed that the total risk from small-scale events,
referred to as nuisance flooding, accumulates to present financial risk in the same
range as more rare events of higher magnitude (Moftakhari et al., 2017). Bernet
et al. (2017) showed that surface water flooding6 is more often associated with short
and intense storms and contributes significantly to flood losses in Switzerland.
Furthermore, the chance that a point-scale extreme occurs rises when the consid-
ered area is enlarged. This means, point-scale recurrence intervals for a given event
magnitude (i.e., the probability that the same spot is hit twice by such event) may

6Surface water flooding here refers to flooding of surfaces that is not associated with flow paths
along rivers and water channels.
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not reflect the frequency with which the event occurs over a larger region (i.e., the
probability that such event occurs twice at any spot in a region). Since funds to
cope with disasters are often managed on national level, localized extreme events
may have to be compensated more often than recurrence intervals calculated from
single site records suggest.

Given the strong evidence that extreme convective precipitation is intensifying
(c.f. Section 2.2.3), understanding the patterns of vulnerability towards such events
is essential to adequately plan for risk reduction measures. Also, little is known
about the cumulative effects and damage contributions from ECPEs and how they
relate to damage incurred under larger and longer-lasting and larger stratiform
precipitation patterns.

The southeastern Alpine forelands offer a unique opportunity to study vulner-
abilities to extreme precipitation on a regional scale. This is because qualitative
and high resolution precipitation observations are available, and are complemented
by river gauge measurements and damage claim data that indicate the severity
of impacts. A multi-layered assessment allows identifying damage patterns under
different weather types and municipality groups and so detect vulnerabilities to
extreme precipitation. Furthermore, it is possible to learn about uncertainties
associated with hazard observations and calculated recurrence intervals. Research
Article 2 (Schroeer and Tye, 2019) addresses the following research question:

What are damage contributions from convective and stratiform pre-
cipitation events and associated uncertainties regarding the risk from
localized extreme precipitation events?

The challenges of quantifying damage contributions from localized extreme
events are introduced in Section 4.2.1. Section 4.2.2 describes how damage claim
data and observations of precipitation and discharge are prepared and applied in
the study and how socioeconomic, topographic, and synoptic preconditions are
calculated using a clustering and weather typing approach. It is then presented in
Section 4.2.3 how the claims distribute over the different weather types and how
they relate to estimated hazard levels in observed daily discharge and precipita-
tion. Section 4.2.4 discusses the complexity that integrated risk research faces and
elaborates on the implications for future research on the impacts of small-scale
extremes. Section 4.2.5 concludes the article.
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2.2.3 Temperature sensitivity

In light of the high damage potential of ECPEs, there is widespread demand for
information on the magnitude and frequency of extreme events as well as estimates
on whether these may change with global warming. The large uncertainties in
assessing trends and variability of precipitation due to the lack of observations
particularly apply to extreme events. To obtain more robust statements, Allen
and Ingram (2002) proposed to constrain the magnitude of possible changes and
associated uncertainties through calculating large-scale energy budget. Warmer air
can hold more water vapor, and this physical principle is described by the Clausius-
Clapeyron (CC) equation7. Under general conditions at the Earth’s surface, this
relation predicts an increase in atmospheric water vapor content of 6 % ◦C−1 to
7 % ◦C−1 (Held and Soden, 2006).

The increase in global mean precipitation with global mean surface tempera-
ture (GMST) is bound to approximately 2 % ◦C−1 by energy constraints. Because
the most intense rainfall events are expected when all available moisture precipi-
tates, the most extreme precipitation should be more directly constrained by the
CC equation under constant relative humidity (Allen and Ingram, 2002; Held and
Soden, 2006). Based on these principles, it is generally established that the global
hydrological cycle intensifies with increasing GMST, with the consequential effect
that extreme precipitation events become heavier (Fischer and Knutti, 2016; Held
and Soden, 2006; Trenberth et al., 2003).

The idea of constraining changes in precipitation extremes by means of the CC
equation sparked widespread attention among scientists. Under the name of T/P-
scaling, a large body of literature has emerged, comprising a surprisingly diverse set
of approaches. This has led to considerable debate as to the drivers, implications,
and correct interpretation of scaling rates (Zhang et al., 2017). It is therefore
important to distinguish the purpose and methodologies before interpreting and
comparing results from different studies.

Although the approaches can sometimes blend into each other, three main
tracks can be identified: (i) a global approach (ii) a regional-statistical approach

7The theoretical expectation of precipitation intensification is based on the CC equation describ-
ing the relation of pressure of a substance to temperature in a system, in meteorology most
commonly approximated as 1

es

des
dT

= Lv
RvT 2 where T is the temperature, es is the saturation

vapor pressure of water, Lv the latent heat of vaporization, and Rv the gas constant for water
vapor to relate atmospheric water vapor content to temperature (American Meteorological
Society, 2018)
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and a (iii) convective-process approach. The partitioning of the different categories
will be briefly discussed.

(i) Studies of global scope build on Allen and Ingram (2002) and early models
and theory (see Fischer and Knutti, 2016, for a review) to assess how precipitation
responds to increases in GMST using regular or idealized GCM. Here, T/P-scaling
is approached from a mainly conceptual and process-based perspective, where
global energy budget and the CC relation serve as starting points to understand
patterns of precipitation changes at global scale. The atmospheric processes asso-
ciated with increasing temperature and water vapor content are analyzed, such as
changes in vertical motion, condensation rates, and precipitation efficiency. Gen-
erally, dissecting the physical process is given priority over obtaining a particular
scaling rate (Muller and O’Gorman, 2011; O’Gorman and Schneider , 2009a,b;
Pendergrass and Gerber , 2016; Pendergrass and Hartmann, 2014).

One of the main findings of global studies is that because of the energetically
constrained changes to global mean precipitation, the intensification of extremes
happens at cost of light precipitation intensities (Pendergrass and Hartmann, 2014;
Trenberth et al., 2003). This has since been confirmed in studies at storm scale level
in both observations (Ye et al., 2017) and CPM (Ban et al., 2015; Dai et al., 2017).
In an encompassing approach to T/P-scaling, Pfahl et al. (2017) separate RX1D
response to global warming into a globally rather homogeneous thermodynamic
component governed by the saturation vapor pressure and a spatially much more
variable dynamic component governed by changes in vertical velocities (Nie et al.,
2018; Pfahl et al., 2017). Following studies further explored the importance of at-
mospheric circulation and storm scale dynamics for extreme precipitation response
(Ali and Mishra, 2018; Nie et al., 2018; Tandon et al., 2018). Inevitably, however,
studies using GCM operate on scales much larger than convective extremes and
thus cannot resolve processes that are crucial to local extreme precipitation, partic-
ularly on sub-daily scales (Lenderink and Fowler , 2017; O’Gorman and Schneider ,
2009a).

(ii) Looking for a proxy to approximate changes in precipitation on the regional
scale, a second group of T/P-scaling studies exists that relate measures of extreme
precipitation, typically a high percentile, to local temperature rather than GMST.
Most studies use rain gauge based observations and daily mean surface temperature
(T2m), or dew point temperature (Tdew) (e.g., Berg et al., 2013; Formayer and
Fritz, 2016; Lenderink and van Meijgaard, 2009; Mishra et al., 2012; Wasko and
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Sharma, 2015; Wasko et al., 2016), but also CPM have been used to assess local
T/P-scaling (Ban et al., 2015; Kendon et al., 2016; Prein et al., 2017b).

Studies that follow the regional approach regress binned precipitation per-
centiles on local daily ambient temperature indices and interpret the slope of the
regression line8. It is consistently found that the slope of the regression line ex-
ceeds 7 % ◦C−1, and reaches up to so-called super-CC scaling rates (14 % ◦C−1)
for hourly to sub-hourly time scales and convective precipitation. The “puzzling
variety” (Bao et al., 2017a) of scaling rates found across studies has motivated
authors to identify effects that modulate a pure CC scaling relationship. Among
these are positive deviations through statistical artifacts and transition from strati-
form to convective precipitation (Berg and Haerter , 2013) and negative deviations
through storm-type effects (Bao et al., 2017a; Molnar et al., 2015; Wasko et al.,
2015). Furthermore, also climatological moisture limitations in more arid regions
and future increase in drier weather patterns during summer have been discussed
(Chan et al., 2016; Drobinski et al., 2016; Prein et al., 2017b).

Some authors strongly advocate the use of Tdew as regressor, because it in-
corporates moisture content of the air mass and so “removes” the so-called “hook
shape” from temperature-precipitation relation graphs (Lenderink and Fowler ,
2017; Lenderink et al., 2018; Wasko et al., 2018). While this helps to isolate
the thermodynamic CC scaling component, using Tdew does not allow to identify
dynamic processes that modify precipitation extremes, nor does it allow direct
causal inference of changes induced by climate warming.
It is important to note that the regional approach does not allow to make inferences
about the behavior of precipitation extremes in the future. In the mid-latitudes,
scaling rates are governed by the climatology of the considered location and in-
fluenced by, e.g., the seasonal cycle (Wang et al., 2017; Zhang et al., 2012). The
regional scaling approach can be used, however, to assess changes in temperature
sensitivity by determining T/P-scaling for two or more separate time periods sepa-
rately and assessing whether they differ in statistically significant ways (Bao et al.,
2017a).

(iii) A third group of authors studies how the processes of convective initializa-
tion and storm development cause intensification of extreme precipitation within

8Usually an exponential regression is applied through log-transforming precipitation and fitting
a linear regression model to binned precipitation quantiles (Hardwick Jones et al., 2010).
Another approach is to use quantile regression (Wasko and Sharma, 2014) (see also Section
3.2 d))
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individual convective cells (Loriaux et al., 2013, 2016a,b; Singleton and Toumi,
2012) and which role convective organization and cell interaction at regional to
global scales play for extreme rain rates (Bao et al., 2017b; Haerter et al., 2017;
Moseley et al., 2016; Pendergrass et al., 2016). They show that updrafts and
entrainment rates as well as the initiation of convective cells in the cold pools of
preceding cells are important contributors to instantaneous precipitation rates to
scale beyond the CC rate.

The different nature of approaches and pitfalls in interpreting scaling rates
have been discussed by Zhang et al. (2017) and by Pendergrass (2018). Pendergrass
(2018) stresses that it is important to be aware and communicate the differences
in the definition of extreme precipitation (see also Schär et al., 2016) before
jumping to conclusions. Authors consistently note that thermodynamic forcing, or
CC scaling alone, cannot provide the simple answer to our questions of extreme
precipitation changes.9 Yet, divisiveness on the topic and disagreement on the role
of statistical effects of local scaling rates have not ceased, as the recent debate on
direction, magnitude, and physical reasons for statistical scaling rates in Australia
demonstrates (c.f. Bao et al., 2017a, 2018; Barbero et al., 2017; Lenderink et al.,
2018). While dispute is essential to scientific debate, it should be reminded that
the goal is to better understand the physical mechanisms and processes that lead
to deviations from the CC rate rather than to find proof for the CC equation itself.

With long records of sub-daily observations becoming available on continental
scale, approaches (i) and (iii) can be merged to assess the precipitation response
of sub-daily rainfall extremes with GMST. Comparing observations from the
most recent climatological period to the preceding 30-year period, Guerreiro et al.
(2018) find a robust increase in the k largest extreme events over Australia, which
is outside of expectations from natural variability.

An advantage of regional studies is that they can explore sub-daily and even
sub-hourly precipitation data. If adequately interpreted, temperature-precipitation

9For example, “However, local temperature changes may not be a good proxy for global warming
because they tend to co-vary with other meteorological factors (such as humidity, atmospheric
stability, or wind direction) in ways that are uncharacteristic of changes in the mean tempera-
ture” (IPCC , 2013, p 626f).
“[...] at higher surface temperatures and small spatiotemporal scales, extreme precipitation can
strengthen at rates beyond the Clausius–Clapeyron rate (∼7 % K−1). The ‘null hypothesis’,
where thermodynamic limits alone cap increases of intensity, is thereby likely ruled out, and
dynamical effects have been brought into discussion.” (Haerter et al., 2017).
“One major drawback of scaling relationships is that they aggregate a range of climate dynamics,
and hence, there are questions on how they may apply in the future.” (Wasko et al., 2015)

19



2 Research challenges of convective precipitation
extremes

scaling provides means to better understand extreme precipitation, given it is
considered that the behavior and development of extreme precipitation are also
influenced by dynamic processes on the large scale .

Research Article 3 uses sub-hourly precipitation observations in a dense rain
gauge network with average inter-station distances of 7 km to 10 km to analyze how
the temperature sensitivities vary on a local-to-regional scale. Opposed to studies
based on less dense networks or only one single rain gauge (e.g., Drobinski et al.,
2016; Formayer and Fritz, 2016; Scherrer et al., 2016), this allows to identify the
variability and to interpret the meaningfulness of T/P-scaling on the regional-to-
local level. The research questions addressed in Schroeer and Kirchengast (2018)
are:

(1) Which factors control the spatial and temporal variability seen in the
temperature sensitivities on a regional scale? (2) How applicable and
useful is the scaling approach on the regional-to-local scale considering
regional climate variability? (3) What do scaling factors tell us about
changes in absolute rainfall intensities?

Section 4.3.1 reviews the temperature-precipitation scaling literature and
motivates the endeavor to assess scaling factors from a regional-to-local scale
perspective. Section 4.3.2 describes the rain gauge network and data used for
the scaling study and Section 4.3.3 explains the quantile regression method to
establish the regional-to-local scaling factors. The variability and patterns of
scaling factors and implications of percentage sensitivities for the interpretation
of absolute precipitation amounts are discussed in Section 4.3.4. A summary and
concluding remarks are given in Section 4.3.5.
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This thesis sets out to explore the character of and risk from extreme convective
precipitation events (ECPEs) in the southeastern Alpine forelands. All three of
the research articles presented consider ECPEs on various spatial and temporal
scales, and are therefore limited by the extent to which point scale observations
from rain gauges represent these processes. Data and methods were chosen to
allow quantifying the uncertainties associated with the sampling mode. Other
sources of uncertainty exist in precipitation observations, however, they are not
within the scope of this thesis (see Sun et al., 2018, for a review). These include
technical errors and biases on the instrumental side, but also aleatory uncertainty.
This is because we can only observe one state of weather, however, due to chaotic
and complex processes, the present is one realization out of many possible paths
within certain boundary conditions. It is important to keep in mind that these
other factors are also an integral part of any data analyzed.

The data at the core of this thesis are rain gauge-based precipitation obser-
vations from operational weather service stations as well as from one hydrological
and one research rain gauge network. In addition, data on larger-scale atmo-
spheric conditions (i.a., sea level pressure (PSL) and convective available potential
energy (CAPE)), topography (i.a., slope, exposure), and socioeconomic factors
(i.a., population, buildings) are considered. This allows a multi-layered analysis of
atmospheric, hydrospheric, and anthropospheric elements. It is crucial to choose
the methodology that best serves the research purpose and also fits the various
kinds and sources of data. Several statistical methods are combined to analyze
how ECPEs relate to temperature, damages, and the station density of observ-
ing networks. All data were processed and algorithms implemented using Python
(Python Software Foundation, www.python.org). In some cases, geospatial process-
ing methods were integrated through the python module arcpy of the geographic
information system ArcGIS (www.esri.com/arcgis).

This chapter discusses in particular the underlying methodology to the thesis
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as a whole and elaborates on the choice of data and methods relevant to the
three research articles. Detailed descriptions of data and methods used in each
individual article can be found in the data and methods sections of the research
articles (Data Sections 4.1.2, 4.2.2, 4.1 and 4.3.2; Methods Sections 4.1.2, 4.2.3,
4.2.2, and 4.3.3), and in the supplementary information to the Research Articles 1
and 2 in Appendices A.1 and A.2.

3.1 Study area and choice of data

As previously discussed (c.f. Section 2), ECPEs are likely misrepresented in gauge-
based precipitation observations and derived gridded datasets but the extent of
misrepresentation is largely unknown. This hampers analyses of localized extreme
events at regional and climatological scales. A sufficiently dense rain gauge station
network and complementary data are required to quantify these uncertainties. The
study region in the southeastern Alpine forelands of Austria offers an ideal setting
for several reasons. Long-term high-quality records of precipitation and other
data are available at high resolution. The region is prone to intense convective
precipitation events during the summer months (Seibert et al., 2006), and has
experienced considerable warming during the last decades, suggesting a particular
sensitivity to global climate change (Hohmann et al., 2018; Kabas et al., 2011). In
spite of the strong warming trend, no statistically significant or coherent trends
could be identified in the annual mean and maximum daily precipitation and for
the summer season in the southeastern Alpine region (CCCA, 2016).

The central datasets used here are point-scale precipitation observations from
gauges operated by the Austrian weather service Zentralanstalt für Meteorologie
und Klimatologie (ZAMG), the Hydrographischer Dienst Österreich / Austrian
Hydrographic Service (AHYD), and the research network WegenerNet Feldbach
region climate station network (WegenerNet). WegenerNet data is available under
open data policy (www.wegenernet.org), and the network is explicitly designed
for research purposes (see Kirchengast et al., 2014, for more information on the
WegenerNet).

Daily and sub-daily precipitation data from ZAMG is made available to the
Wegener Center at the University of Graz for research purposes through a data
sharing agreement. The 10 min recordings of precipitation used in this thesis
were provided by the federal office of ZAMG in Styria through station-by-station

22

www.wegenernet.org


3.1 Study area and choice of data

inquires. Sub-daily precipitation data from AHYD were also collected through
personal inquiries directed to five federal departments of the AHYD (i.e., the
states of Styria, Tyrol, Lower Austria, Salzburg, and Carinthia, respectively). The
different access policies and restrictions on the data showcase one common barrier
to research on high resolution observations.

AHYD provides daily observations of precipitation and discharge through the
platform www.ehyd.gv.at hosted by the Austrian Federal Ministry of Sustainability
and Tourism (before 8 January 2018: Federal Ministry of Agriculture, Forestry,
Environment and Water Management (BMLFUW)).

Figure 3.1: The study area in the Austrian southeastern Alpine forelands. The edges of the
digital elevation model demarcate Austria. Green, blue, and red dots show the gauge locations
of WegenerNet, AHYD, and ZAMG networks used in the southeastern Austrian study area,
respectively. Green and red shaded data layers show examples of land cover (here: forested area)
and population data for the municipalities analyzed in Research Article 2. The blue data layer is a
snapshot of INCA gridded precipitation dataset from 2011-07-07 15:45. Grids in the southeastern
region visualize grid resolutions of the ERA-Interim data and 1.5 km and 10.5 km fishnet meshes
used in the Fishnet-Windowed Triangular Mesh (FWTM). Note that the layers are vertically
displaced and the illustration is not equidistant, equal of area, or angle.

The goal of collecting different datasets is to use as much information on
ECPEs in the study region as possible. Given the uncertainties associated with
observational records, using data from various sources comes with limitations, such
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as using data that is not homogenized1. Some of the pitfalls can be alleviated
through careful research design. The following aspects are considered throughout
the analyses. First, the magnitude of instrumental uncertainty (e.g., O et al.,
2018) is smaller than the targeted sampling uncertainty of extreme precipitation.
Further, the core interest lies in the character of largest events. These are de-
scribed using percentiles, but absolute thresholds are also considered. All data
are checked against neighboring stations and existing quality controlled gridded
daily precipitation products. This procedure applies especially to outliers, which
are individually checked for plausibility. Additional information is collected from,
e.g., the ZAMG daily weather reports and media outlets, such as online archives
of local newspapers. The winter months are excluded from the analysis which
avoids most uncertainties due to frozen precipitation. Hail cannot be excluded
since no systematic observations of hail are available for Austria, and hail can
occur particularly in severe convective storms (SCS). Hail damage is, however,
excluded from the damage data analysis, because hail damage is not covered by the
disaster fund. Because of short and homogenized records, sub-daily data are not
used for time series analysis or trend detection. Spatial interpolation of sub-daily
precipitation data is avoided because of the stark spatio-temporal precipitation
gradients. Last, sources of uncertainties and confidence intervals are shown and
discussed throughout the analysis.

Through identifying synoptic conditions that govern precipitation generation,
the use of weather types can increase confidence in the type of precipitation despite
fragmentary ground-based measurements. To characterize larger-scale atmospheric
conditions, global reanalysis data from ERA-Interim with a horizontal resolution
of 0.75° (approx. 80 km) (Dee et al., 2011) is used. The data is well documented
and freely available through the European Center for Medium-Range Weather
Forecasts (ECMWF). The procedure of weather type classification is described in
detail in Section 3.2.2.

The atmospheric process of precipitation is only one element of risk from
ECPEs. In Research Article 2, the scope is widened to taking a climate-impact
perspective through assessing incurred damages reported to the Austrian disaster

1Data homogenization describes the process of identifying inhomogeneities and breakpoints in
observational records caused by non-weather and climate related factors and adjusting for them
where possible. Reasons for inhomogeneities are, for example, station relocations, changes in
the land surface and built structures in the vicinity of the station. Rigorous quality claims and
the necessity for well-documented metadata on the station history leads to drastic reduction
of available homogenized gauge records (Auer et al., 2005).
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fund (Katastrophenfonds). Complexity in the dynamic human-environment system
so becomes a further source of uncertainty. Because of this, it is necessary to
include more layers of data. Case studies are often able to use finer-grained data
of land cover and exposed assets (Ettinger et al., 2016; Fuchs et al., 2015; Spekkers
et al., 2017), and it is generally desirable to have as exact information as possible.
However, data above a catchment scale are usually not readily available. The
required level of detail is further affected by the sensitivity of the analysis to a
respective resolution. The scale of analysis in Research Article 2 is preset by the
resolution of the damage data. These are available daily and at the municipality
scale. An advantage of using coarser data is that information comes from the same
data source over the entire study region. The resolution of the data chosen as risk
indicators described below is thus considered appropriate for the initial assessment
of damage contributions from convective and stratiform weather types.

Table 3.1 lists all data and respective resolution used in this study. On the
hazard side, precipitation and atmospheric observations are used. Also runoff is
considered, for which stream gauge observations are employed. Both natural and
anthropogenic factors of land surface and subsurface properties influence runoff
generation. Land cover data and a digital elevation model allow considering the
basic disposition of the Austrian municipalities. A third level is given by the
susceptibility of people and infrastructure to be adversely affected by the hazard.
Census data and building inventories are considered as a proxy for the spatial
distribution of vulnerabilities in the study region.
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Table 3.1: Properties and usage of data used in the research articles

Variablea Type/Product Original spatial
resolution

Original temporal
resolution

Source b Usage

rr

gauge point 10 min, 1 d
ZAMG

Temperature sensitiv-
ities, testing and vali-
dation, precipitation
recurrence intervals,
Research Articles 1,
2, 3

grid/gpard1 1 km × 1 km 1 d
grid/INCA 1 km × 1 km 15 min

grid/WegenerNet 1 km × 1 km 1 d Wegener Center,
University of Graz

gauge point 5 min, 10 min, 1 d
AHYD

Q gauge point 1 d
Flood recurrence
intervals, Research
Article 2

CAPE grid/ERA-I 0.75° × 0.75° 1 d

ECMWF Weather typing,
Research Articles 1,
2, 3

PSL grid/ERA-I 0.75° × 0.75° 1 d
ZG500 grid/ERA-I 0.75° × 0.75° 1 d
u700, v700 grid/ERA-I 0.75° × 0.75° 1 d
SynopticAT text, identifier national (Austria) 1 d ZAMG
Damage table municipality 1 d

STYRPopulation table municipality effective 2001 Municipality
clustering, Research
Article 2

Topography grid 10 m × 10 m effective 2010
Landcover grid/CORINE 100 m × 100 m effective 2006 EAA
Buildings vector data – effective 2016 OSM
arr : precipitation, Q: discharge, CAPE : Convective available potential energy, PSL: sea level pressure, ZG500 : 500 hPa geopotential
height, u700, v700 : 700 hPa wind speed, SynopticAT : written weather reports
bZAMG: Austrian weather service, AHYD: Austrian hydgrographic service, STYR: Office of the Styrian Government, Graz, Austria,
EEA: European Environmental Agency, OSM: openstreetmap.org
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3.2 Choice of methods

Given the heterogeneity of the data used in this study, statistical and analytic
methods need to be flexible and allow adequate reporting on the associated un-
certainties. The applied methods should be traceable and facilitate conclusive
interpretation of the results. In the following paragraphs, the methodical choices
are discussed.

3.2.1 From data series to individual events

The typical spatial scale of ECPEs is in the order of a few kilometers, and precipi-
tation occurs on temporal scales from minutes to a few hours. Highly concentrated
peak intensities precipitate over even smaller scales (Peleg et al., 2016). At daily
resolution extreme intensities are thus not well resolved, but consecutive days can
mostly be assumed to be independent events. Sub-daily sampling allows a better
representation of the peak intensities, however, consecutive sub-daily recordings are
more likely to come from the same storm and so be dependent. Studies that assess
the temperature sensitivity of extreme precipitation often use all sub-daily samples
to calculate extreme percentiles. This likely violates the statistically premised
independence. However, potential sensitivities of the results are rarely discussed.
To avoid dependencies, calculations in this thesis base on samples of individual
storms. An event detection algorithm is run on the full precipitation data series
to identify consecutive wet episodes separated by dry intervals.2 For each event,
peak intensities for 10 min to 3 h time integration, total accumulated precipitation,
and duration are calculated. This allows for robust statistical analyses based on
physically plausible events and also reduces the amount of data for faster process-
ing. The event statistics derived from the ZAMG and AHYD rain gauge records
show good agreement with expected precipitation patterns under the weather types
extracted from independent data sources (see description of weather typing be-
low). Furthermore, also the convective precipitation classification automated in
the WegenerNet quality control largely agrees with the timing of events delineated
in the region, indicating that the procedure is robust.

2To avoid segmentation by very small observations (minimum sampling resolution amounts to
0.1 mm), an observation is counted as wet only if the accumulated 1 h precipitation total
around any 10 min observation exceeds a given threshold (1 mm). This removes very small
values surrounded by dry records and accepts occasional dry observations within longer events
if the total hour sum is large enough. Sensitivity tests supported plausible dissociation for a
wet-hour threshold of 1 mm.

27



3 Data and methodology

3.2.2 Identifying convective conditions through
weather types

ECPEs are at the center of all three research articles, and the difficulties in reliably
observing such events have been discussed in Sections 2 and 3.1. Because under-
sampling of localized extreme events is a known issue, precipitation data alone
cannot be used to robustly distinguish between convective and non-convective
precipitation. Environmental approaches are an established method that help to
identify conditions that favor the emergence of severe convective weather (e.g.,
Allen et al., 2015; Gensini and Allen, 2018; Madonna et al., 2018; Mohr et al.,
2015). Higher confidence in the state of the atmosphere at larger scales can so
narrow down uncertainties in observations of the phenomenon itself.

Weather typing is one common environmental approach to explore the con-
nections of larger-scale circulation and smaller-scale hazards, such as landslides
or flooding (e.g., Messeri et al., 2015; Wood et al., 2016). Two basic approaches
can be distinguished (Philipp et al., 2016). Approach 1 uses predefined weather
type classifications, while approach 2 more flexibly identifies patterns relevant to a
particular atmospheric phenomenon. Approach 1 is useful, e.g., to detect changes
in general circulation patterns over time or in the context of weather forecasts,
where given weather type classifications have been used for long times (Hoffmann,
2018; Nilsen et al., 2017). Approach 2 allows to target the pattern identification to
a particular predictand (Schiemann and Frei, 2010; Vallorani et al., 2017), which
in this thesis are conditions favoring ECPEs. Here, the two types are combined
to obtain a tailored classification for studying ECPEs in the southeastern Alpine
forelands. First, an automated classification is obtained (approach 2), which is
then refined using weather classes operationalized by the ZAMG (approach 1).

For the classification procedure, the COST 733 Circulation Type Classifica-
tion software is employed (Philipp et al., 2016). Variables known to be relevant
predictors of convective weather are chosen prior to running the pattern detec-
tion algorithms. The variables used are PSL, CAPE, 500 hPa geopotential height
(ZG500), and 700 hPa wind velocity (UV700) from ERA-Interim reanalysis (1979-
2016) (Dee et al., 2011) over the Greater Alpine Region (see also Section 4.2.3).
The variables considered are measures of the general flow direction governed by the
large-scale pressure distribution, of atmospheric instability, and the velocity of the
weather systems. Several sensitivity tests were done by varying the number and
type of input variables, the domain, the time over which the clusters are identified,
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and by changing the number of prescribed output weather types to 9, 12, or 27.
The chosen classification scheme is a combination of principal component analysis
(PCA) and cluster analysis (CA) with the number of weather types prescribed to
27 and is described in detail in Prein et al. (2016). The final setup was found
to be the most appropriate for distinguishing between stratiform and convective
precipitation patterns.

The combination of four predictive variables and a high number of weather
types used in the classification leads to a differentiated clustering where some
patterns are populated by less than 10 occurrences. Although the overall target
is to distinguish only between primarily convective or stratiform precipitation
weather types, a detailed first clustering is beneficial. This is because the region
of interest in the southeastern Alpine forelands is significantly smaller than the
region over which the clustering needs to be run in order to identify the large-scale
flows. The study area is furthermore located in immediate vicinity to the Alps,
which constitute a major climatic divide. The peculiarities of the Alpine ridges and
valleys are insufficiently resolved in the ERA-Interim dataset with resolution of
approx. 80 km (ERA-Interim gridcells are visualized in Figure 3.1 for comparison).

To eventually arrive at a diagnostic delineation of weather patterns over the
study region, charts of the predictive variables under the 27 weather types are
analyzed together with high-resolution precipitation observations in the study
region and a catalogue of written Austrian weather reports issued by the ZAMG.
For each day, the reports contain a written statement on the synoptic situation
and an identifier assigning one of 18 weather classes3. The final six weather types
used for the analysis are described in Section 4.2.3.

The chosen procedure trades off the immediate transferability of the method
against a robust identification of weather types that cause convective precipitation
events in the southeastern Alpine foreland region. For example, days on which main
weather patterns transitioned from one to another cannot be adequately resolved
by the automated COST 733 method at daily resolution. The written weather
reports allows identifying such days and considering them in the final classification.

3The circulation types are 1) High over western and middle Europe 2) Interim high 3) Zonal
high pressure ridge 4) High centered over Fennoscandia 5) High centered over Eastern Europe
6) Northerly flow 7) Northwesterly flow 8) Westerly flow 9) Southwesterly flow 10) Southerly
flow 11) Low gradient situation 12) Low south of the Alps 13) Low centered over the western
Mediterranean Sea 14) Low centered over southwestern Europe 15) Low over the British Islands
16) Meridional low pressure trough 17) Continental low 18) Low on trajectory Adria–Poland
(“Vb”)
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Furthermore, the written reports provide highly valuable information for the outlier
verification.

3.2.3 Designing a method to assess sampling
uncertainty: The FWTM Method

Many methods exist to estimate area precipitation from gauge measurements
through interpolating observations to unobserved sites (Chen et al., 2008; Hiebl
and Frei, 2016; Isotta et al., 2014). Such estimates can be cross-validated using
gauges that were excluded from the interpolation process. This assessment is
always either limited to the point scale or limited by the inter-station distances of
the rain gauges, which determine the size of the area over which precipitation is
estimated. Most operational rain gauge networks have station spacings of 10 km
and more, therefore it is largely unknown how sampling uncertainties materialize
on the often much smaller scales characteristic to peak convective precipitation
intensities. These uncertainties become particularly relevant when evaluating high
resolution climate models, which output precipitation (and any other variable) as
gridcell averages.

The WegenerNet is a research climate station network that simultaneously
fulfills the criteria of very dense gauge spacing (1.4 km), a high number of gauges
(154 as of 2018), and being operationally run for a comparably long time (since
2007). For the first time, this set-up allows to empirically assess uncertainties in
observed peak precipitation intensities in convective events using ground-based
observations. The idea is to downsample the high resolution network to estimate
how lower-resolution networks measure the same ECPEs. So far, no method exists
to systematically reduce the rain gauge station density. Hence the goal of the
FWTMmethod presented in Research Article 1 was to develop an algorithm to thin
out a very high density network step-by-step, strictly controlling the inter-station
distances between each group of any three neighboring edge gauges. Triangulation
unambiguously defines the area spanned between the gauges. Keeping inter-station
distances fixed avoids interpolation biases from unevenly spaced gauges. The
meshing controls for balanced representation of sampling areas despite varying
initial densities of the ZAMG + AHYD and WegenerNet networks. The procedure
of FWTM is described in detail in Section 4.1.2 (see also Figure 4.1.3). As a
result, a cascade of networks with approximately equally spaced nodes is created.
Applying the event detection scheme and identification of convective environments
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described above, peak event intensities and estimated mean area precipitation were
calculated for sub-hourly to sub-daily time scales at spatial scales from 1.5 km to
30 km. In principle, the results obtained from FWTMmethod can so be interpreted
equivalently to climate model output, offering new opportunities for testing and
validation on convective scales.

3.2.4 Choosing robust methods to explore the
character and risk from ECPEs

In addition to the methods discussed, further statistical procedures were applied.
In contrast to the methods discussed above, they are not designed and devel-
oped individually but rather used “out of the box” without specific adaptations:
a) principal component analysis (PCA), also empirical orthogonal functions (EOF),
b) cluster analysis (CA), c) extreme value statistics, and d) quantile regression.

a) PCA and b) CA: In atmospheric sciences, PCA is mostly used to “identify
patterns of simultaneous variation” (Storch and Zwiers, 1999, p 293), such as
identifying global teleconnections from global gridded climate data. Methods a)
and b) are also applied in the weather typing, but the dimension reduction and
clustering procedure is automated by the COST 733 classification software and,
besides the sensitivity tests described above, used without further adjustments.
PCA is applied in a different context in Research Article 2. Dealing with many
different data on various scales simultaneously calls for a reduction to the most
essential factors that best explain the variability in the data. Damage data are
reported for 480 municipalities in southeastern Austria, and each municipality is
associated with certain topography, land cover, population, and number of build-
ings. These are used to identify vulnerability factors that have an effect on the
risk from ECPEs. It would be possible to run an isolated analysis for each munici-
pality, but this would lead to unclear results. This is because many municipalities
have similar preconditions and effects would be difficult to distinguish. Also the
statistical robustness decreases, as the number of claims per analyzed instance is
drastically reduced. Instead, indicators are used to pool the municipalities into
similar groups. This can be achieved through PCA and CA. In a first step, princi-
pal components explaining most of the variance in the multi-dimensional data are
identified (the data used for clustering are indicated in Table 3.1). In a second step,
the municipalities are grouped by means of k-means clustering. Each municipality
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is randomly assigned to one of a predefined number of clusters to which a centroid
is defined as the average location of all points. Each instance is then iteratively
assigned to its closest cluster, whose centroid is then recalculated until all samples
are clustered to their closest, i.e. most similar, centroid (Hooshyar et al., 2015;
Sharghi et al., 2018). Sensitivity tests varying the total amount of explained vari-
ability by the principal components, and the target number of clusters showed that
the four clusters of alpine, agricultural, urban, and city character is a distinctive,
yet overseeable pooling of the municipalities.

c) extreme value statistics: In climate sciences, extreme value statistics is
widely used to model the tails of a climate variable’s probability distribution F
(the parent distribution, Gilleland and Katz (2016)) by fitting a distribution Fn to
the extrema and use its quantiles to make inferences about exceedance probabilities
of rare extreme events. Extreme value theory is frequently applied to rainfall and
streamflow data (Towler et al., 2010; Villarini et al., 2011). The results often
have direct practical implications, e.g. for dimensioning flood protection measures
according to a defined protection level, such as a 100-year flood. In probabilistic
terms, a 100-year flood is to be understood as a flood event with annual exceedance
probability (AEP) of 1/100 = 0.01 whose magnitude z (the return level) is exceeded
on average once in 100 years (the recurrence interval or return period).

To model the extreme value distribution, the maximaMn = max{X1, . . . , Xn}
are assumed to be of an infinite sequence of independent and identically distributed
random (i.i.d.) variables X1, . . . , Xn, and so the probability Pr{Mn ≤ z} = Fn(z).
However, Fn(z) −→ 0 as n −→∞ if F does not have a finite upper limit smaller
than z (Gilleland and Katz, 2016). The Fisher–Tippett–Gnedenko theorem, anal-
ogous to the central limit theorem4, states that if the maxima Mn converge, then
they asymptotically follow one of three distributions from the generalized extreme
value distribution (GEV) family. The GEV family comprises the Gumbel (type I),
Fréchet (type II), and Weibull (type III) distributions, which can be subsumed in
the form:

G (z) = exp
[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ

+

]
,

4The central limit theorem states that the distribution of sums of an infinite series of i.i.d.
variables asymptotically follows a normal distribution, regardless of the distribution of the
variables. It is also relevant for the analysis of precipitation, e.g., while the distribution of
daily precipitation is not normally distributed, annual sums of precipitation converge to a
normal distribution for large samples. (Storch and Zwiers, 1999)
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where y+ = max{y, 0}, σ > 0 and −∞ < µ, ξ < ∞ (Coles, 2001; Gilleland and
Katz, 2016). µ and σ are commonly called the location and scale parameter,
respectively. The shape parameter ξ determines the behaviour of the tail and thus
the type of the distribution. Fréchet ξ > 0, Weibull for ξ < 0 . If ξ −→ 0, the
GEV reduces to the Gumbel type:

G (z) = exp
[
− exp

{
−
(
z − µ
σ

)}]
,−∞ < z <∞.

This approach is commonly referred to as block maxima (BM) approach5, as
the maxima are taken from sequence of data blocks, usually one year of daily data.
Research Article 2 uses the annual seasonal maxima of daily precipitation totals
(annual seasonal maximum daily precipitation amount (sRX1D)) and discharge
(annual seasonal maximum daily discharge (sQX1D)) to estimate their recurrence
intervals on days where damages from hydro-meteorological hazards were reported
(see Section 4.1).

The Gumbel or GEV Type-I distribution is commonly applied in flood fre-
quency analysis, but it is sometimes argued that the light-tailed Gumbel distri-
bution underestimates rare extremes and thus a three parameter GEV is rec-
ommended (Koutsoyiannis, 2004; Phillips et al., 2018). However, fitting three
parameters is less robust for small sample sizes, as is the case for some of the
catchments. The sensitivity of the results presented in Research Article 2 was
thoroughly tested and also fit to a three–parameter general GEV for comparison.
Using the estimates from GEV, the relative share of major events increases at
cost of minor events, but also the share of extremes (recurrence interval >20 yr)
decreases. This is explained by the fat-tailed shape of the GEV.

Table 3.2 schematically summarizes the effects of using either of the two meth-
ods on the results. The shifted limits between minor, major, and extreme events do
not significantly change the relative shares of the hazard levels associated with dam-
age and thus do not alter the conclusions drawn from the analysis. Furthermore,
uncertainty intervals from GEV (estimated through a bootstrapping procedure as
described in Section 4.1) are much larger and include or overlap those estimated
for the Gumbel fits. In summary, the results cannot be interpreted as significantly
different or superior. The positive goodness of fit tests and the fact that data are

5A second approach is the peak-over-threshold (POT) approach, where extremes are defined by
values exceeding a high threshold. The extrema of a sequence of i.i.d. variables then converge
to the generalized pareto distribution (GPD) (Gilleland and Katz, 2016).
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Table 3.2: Qualitative description of results from the sensitivity tests comparing the estimated
AEP using GEV versus GEV type-I (Gumbel) fitted to sRX1D and sQX1D for the empirically
observed events of magnitude z

Parts of
empirical
distribution

classification through
GEV

classification through
GEV type–I (Gumbel)

left part
(small z)

lower probability, events more
likely classified major than minor

higher probability, events more
likely classified minor than major

middle part
(medium z)

lower probability, events more
likely classified major than minor

higher probability, events more
likely classified minor than major

right part
(large z, tail)

higher probability, events more
likely classified major than ex-
treme

lower probability, events more
likely to be classified extreme
than major

not extrapolated over the observation period, support that the choice to fit Gumbel
distributions sufficiently serves the purpose of the analysis. The high uncertainty
ranges nevertheless show the general caveats of applying extreme value statistics
to comparatively short real-world data and underline the need for further research.

d) quantile regression: Research Article 3 analyses the temperature sensitivity
of extreme precipitation to local temperatures in the southeastern Alpine forelands.
It is thus a form of the regional-statistical approach (ii) of estimating instantaneous
scaling rates. Most authors employ a “standard binning approach” (Westra et al.,
2014). In addition, quantile regression has been proposed. Unlike in ordinary
linear regression, not the mean, but a given quantile of the predictand is modeled
(Koenker , 2005; Villarini and Slater , 2018). Wasko and Sharma (2014) argue that
quantile regression is a superior method for estimating temperature-precipitation
scaling, or temperature sensitivity of precipitation (T/P-scaling) rates, because
it is insensitive to sample size and allows to flexibly integrate co-variates. The
first point is important, since naturally the sample of extremes becomes smaller
towards the high end of the temperature scale particularly in the midlatitudes. Fur-
thermore, estimating slopes using standard linear regression methods as employed
in the binning approach, is generally sensitive to outliers. Given a large sample,
the results from both methods are statistically robust and comparable among the
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two methods (Molnar et al., 2015). Although uncertainty estimates from quantile
calculation in the standard method could be considered in the regression analysis,
confidence intervals around obtained scaling rates are often not shown or discussed.
The distribution of samples is implicitly considered in quantile regression and al-
lows a straightforward reporting of the associated model uncertainty.
Furthermore, the robustness of the T/P-scaling is increased through using precip-
itation event indicators as described above. This avoids a potential issue where
several sub-daily precipitation samples of the same storm are repeatedly paired
with the daily temperature. This reduces the influence of temporal dependence, but
does not consider spatial dependence of neighboring stations. Analyses of spatial
correlation and general results from Research Article 1 show that peak intensities
in ECPEs rapidly decorrelate in space with an estimated correlation distance of
7.8 km (see Figure 4.1.4). Since rain gauges used in Research Article 3 are 7 km
to 10 km apart, the sampling method is appropriate for convective events. When
scaling factors are calculated for each station individually (see Figure 4.1.2), this is
not directly relevant. However, the patterns of scaling factors emerging at longer
integration times indicate the much larger correlation distances in non-convective
precipitation events. Hence statistical effects may arise from mixing observations
across climatically different zones. To limit such effects, pooled scaling factor
analyses are done for climatically coherent sub-regions in the eastern and western
part of the study domain, respectively.
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4 Scaling relationships and
damage contribution of
convective precipitation

4.1 Research Article 1: Strong dependence of extreme
convective precipitation intensities on gauge network
density

Published as:
Katharina Schroeer, Gottfried Kirchengast and Sungmin O (2018). Strong
dependence of extreme convective precipitation intensities on gauge network density.
Geophysical Research Letters 45, pages 8253–8263. DOI: 10.1029/2018GL077994.
Original article and supporting information available at: https://doi.org/10.1029/
2018GL077994
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Abstract Extreme convective precipitation on subhourly scales is notoriously misrepresented in rain
gauge-based observations, but uncertainties are weakly quantified at the 1 to 30 km scale. We employ
a unique observing network, the high-density WegenerNet and surrounding operational rain gauge
network in southeastern Austria, to sample convective precipitation extremes at these scales.
By systematically constructing lower-density networks, we explore how estimated maximum area
precipitation depends on observing station density. Using subhourly to hourly temporal resolution,
we find a d−0.5(±0.1) power law decay of the event maximum area precipitation over distances d from 1 to
30 km, showing that operational gauge networks underrate extreme convective precipitation falling over
small areas. Furthermore, extremes at point scale are found underestimated by operational networks by
about 20%. We consider the dependencies representative for short-duration convective events over similar
regions at midlatitudes and the results valuable for high-resolution climate model evaluation.

Plain Language Summary Precipitation is commonly measured using rain gauge networks.
For many applications it is relevant how much precipitation fell over a given area, which is often
approximated from point-scale gauge observations. In operational networks, gauges are usually 10 km
or more apart. This spacing is not sufficient to observe extreme rain intensities in summer convective
events, which occur on subhourly time scales and over small areas. Sparse gauge observations lead
to high uncertainty in the estimated area precipitation from such events, hampering, for example,
damage risk assessments. The WegenerNet Feldbach region in southeastern Austria is one of the densest
networks worldwide, with 150 rain gauges within an area of just 300 km2. We use this as core network
to explore how maximum area precipitation in convective events depends on the density of the gauge
network. We find strong spatial dependence showing that maximum area precipitation observed
at 5–6 km gauge separation distance is less than 50% of the maximum intensity observed at point scale.
We demonstrate that extreme convective precipitation is underestimated in operational networks.
The derived spatial dependence curves illustrate the concentrated nature of convective extremes
and are valuable for evaluating climate models and interpreting rain gauge-derived precipitation
data sets.

1. Introduction

Convective storms at midlatitudes cause the most intense precipitation on short time and small spatial scales
(minutes to hours and meters to a few kilometers, respectively). Knowing the spatial distribution, timing,
and magnitude of convective extreme precipitation is crucial to understand flash floods (Archer & Fowler,
2018; Cristiano et al., 2017; Rogelis & Werner, 2013) or debris flow initialization (Marra et al., 2016). Concur-
rent with socioeconomic changes, risks from such events might change as heavy convective precipitation
intensifies with global warming (e.g., Ban et al., 2015; Dai et al., 2017; Prein et al., 2017; Westra et al., 2014;
Ye et al., 2017).

Rain gauges deliver the only direct measurement of surface precipitation and, with data available on cli-
matological time scales, constitute the fundamental source and reference for precipitation studies despite
inevitable uncertainties (McMillan et al., 2012; Sun et al., 2018). Often, area rather than point precipitation
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is desired, and deriving area estimates from gauge observations is a long-standing challenge in hydromete-
orology. Usually, gauge data are deterministically or geostatistically interpolated (Dirks et al., 1998; Lebel &
Laborde, 1988; Ly et al., 2011; Syed et al., 2003; Verworn & Haberlandt, 2011). Spatial correlation measures of
gauge observations help estimating area precipitation (Ciach & Krajewski, 2006; Sivapalan & Blöschl, 1998;
Sunilkumar et al., 2016; Tokay et al., 2014; Villarini et al., 2008). On small scales, however, this is a challenge
because usually very few data pairs exist at small station separation distances, weakening the robustness of
the estimated correlogram, semivariogram, or covariance function (Lebel & Laborde, 1988).

For coherent precipitation fields over flat terrain, interpolation yields acceptable results even in low density
networks (Dingman, 2015; McMillan et al., 2012), but intense convective precipitation in the midlatitudes
unfolds on smaller scales than most operational networks cover at scales of 10 km or larger. Because of
the scale mismatch between point observations and precipitation process (cf. Blöschl & Sivapalan, 1995),
convective extremes are poorly represented in widely applied gauge-derived precipitation grids.

Radar data provide valuable insights to spatial precipitation structures. Eggert et al. (2015) found that con-
vective precipitation dominates precipitation extremes in Germany at scales below 10 km and shorter than
45 min. Over the Netherlands, 90% of summertime convective events were <7 km in cell diameters, and
peak precipitation intensities declined rapidly within 5 km from the storm center (Lochbihler et al., 2017).
Yet, considerable uncertainties remain in radar-derived quantitative estimates of precipitation intensities
at surface level (Berne & Krajewski, 2013). In convective events and on subhourly to hourly time scales,
extreme intensities are often severely underestimated (Bárdossy & Pegram, 2017; Haberlandt & Berndt, 2016;
Kann et al., 2015).

In infrastructure design and climate model evaluation (Mishra et al., 2012; Tripathi & Dominguez, 2013), area
reduction factors (ARFs; Ly et al., 2011), relating point to area precipitation, are often employed. Area reduction
is larger in summer due to increased convective precipitation and in rare extreme events (Eggert et al., 2015;
Svensson & Jones, 2010). Although characteristic differences between ARFs for convective and stratiform
precipitation have long been recognized (Bell, 1976), little reliable research exists of how extreme area pre-
cipitation scales in the 1 to 10 km range. On subhourly to hourly time scales, little or no reduction is assumed
over areas of 5 to 10 km2(Langousis, 2005). Again, low rain gauge density hampers a robust evaluation of ARFs
(e.g., Barbero et al., 2014).

Precipitation at very small scales below 1 km can be studied in confined, campaign-type study settings
(Goodrich et al., 1995; Pedersen et al., 2010; Peleg et al., 2013), and at large scales, uncertainties generally
decrease. But on the 1 to 10 km scale, just below most operational rain gauge network densities and in the gray
zone of climate models, extreme convective surface area precipitation is still subject to large uncertainties
(Lind et al., 2016). This restrains evaluation of climate model skill to represent precipitation intensities, partic-
ularly for rare extreme events relevant to society (Prein & Gobiet, 2017; Sunyer et al., 2013). Regional climate
models at comparably high spatial resolution of 6 km still show considerable negative precipitation biases in
summer compared to point precipitation statistics (Olsson et al., 2014). Deeper knowledge of observational
uncertainties is crucial to evaluate and interpret such simulations.

Rain gauges provide close to ground-truth precipitation observations, but very few networks with>50 gauges,
densities of >0.1 gauges/1 km2, and subhourly recordings required to study convective area precipitation
exist around the globe (e.g., Moore et al., 2000; Singer & Michaelides, 2017; Yoon & Lee, 2017). The very high
density, long-term climate station network WegenerNet Feldbach Region (WEGN) in southeastern Austria
provides a unique setting with 150 gauges (density 0.5 gauges/1 km2). Here we empirically explore the depen-
dence of event maximum area precipitation (EMAP) estimates in extreme convective storms on the observing
station density to quantify observational uncertainty associated with convective extreme precipitation at the
critical 1 to 30 km scale.

2. Data and Methods
2.1. Precipitation Data and Convective Events Selection
The study area of 60 km × 60 km is located in southeastern Austria (Figure 1). It is characterized by
low-elevation topography except for its north-western most area. The region is considered to be climato-
logically homogeneous regarding synoptic patterns of heavy precipitation (Seibert et al., 2007). Precipitation
observations from 170 rain gauges in the extended convective season (April–September) are used over the
years from 2007 to 2015. The 11 and 9 gauges are operated by the Austrian national weather service (ZAMG)
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Figure 1. Study area and rain gauge locations in southeastern Austria. ZAMG = Austrian national weather service; AHYD
= Austrian hydrographic service; WEGN = WegenerNet Feldbach Region.

and the Austrian hydrographic service (AHYD), respectively. The WEGN, operated by the Wegener Center
of the University of Graz, comprises 150 gauges approximately aligned on a grid with 1.4 km × 1.4 km
station spacing.

The WEGN network is located over the southeast quadrant of the study domain covering an area of about
20 km × 15 km. Interstation distances range from 0.7 to 23.4 km. For a detailed introduction of the WEGN and
its data quality control and data products generation, see Kirchengast et al. (2014) and Kabas et al. (2011). Raw
precipitation amount is sampled at 5-min intervals. O et al. (2018) recently performed a thorough validation
and bias estimation of the gauge data and we here use the bias-corrected WEGN level 2 version 6 precipitation
data. All WEGN observations are aggregated to 10-min temporal resolution to match AHYD and ZAMG data
resolution.

Summertime convective precipitation events are identified a priori. WEGN data processing automatically flags
time intervals as convective based on the interstation variability of precipitation. Based on the flagged obser-
vations, convective events are classified individual events if they are separated by≥5 hr of no or nonconvective
precipitation. This way 429 convective events were identified, with a mean duration of 1.2 hr, and less than
1% of events longer than 5 hr. To allow for advection time over the study domain, 2 hr before and after each
event are included as margins in the analysis.

To complement the WEGN classification, larger-scale synoptic conditions favoring convection were identi-
fied from ERA-Interim reanalysis data (Dee et al., 2011) using the COST Action 733 CT classification software
(Philipp et al., 2016; Schiemann & Frei, 2010) and synoptic classifications issued by the Austrian weather service
ZAMG. Technical details on the weather typing are provided in the supporting information Text S1.

An event detection algorithm (cf. Schroeer & Kirchengast, 2018) run over all convective days identified
98 precipitation events not flagged by WEGN over the study region. After visual validation using radar-
rain gauge-blended integrated nowcasting through comprehensive analysis (INCA) nowcasting precipitation
grids (Haiden et al., 2010), these were added to the sample, resulting in a total of 527 convective precipitation
events E1−527. Snapshots of two characteristic storm patterns are displayed for illustration in Figure 2.

2.2. Multi-Scale Estimation of EMAP
The spatial correlation of precipitation provides a first measure to characterize precipitation patterns.
Pearson’s correlation coefficient is calculated from gauge observations after Villarini et al. (2008), and
root-mean-square deviation (RMSD) of precipitation (Mishra, 2013) is calculated at increasing station sep-
aration distances. For computing the RMSD, pairs of zero rainfall are omitted to avoid overestimating the
spatial homogeneity of the rainfall field due to many zero-zero pairs in the network, which are naturally com-
mon in convective events. All measures are assessed for 10-min, 30-min, 1-hr, and 3-hr time integrations (𝜏).
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Figure 2. Typical examples of sampled convective events over the study region (red square). Both events occurred after
very hot days (daily max T >30∘ C) in low gradient synoptic weather conditions. Data are from the radar/rain
gauge-blended integrated nowcasting through comprehensive analysis (INCA). Rain gauges are indicated as black dots.
(a) Single-cell convective storm, (b) multicell convective storm.

The equations used are summarized in Table S2. Correlation analyses, however, do not measure area precipi-
tation and are not targeted to event peak intensities. Results are sensitive to the selection of time frames and
uncertainties can arise from averaging over different precipitation intensities (Wood et al., 2000).

In convective precipitation events, highest intensities and main runoff are generated by the storm core
(Lochbihler et al., 2017; Syed et al., 2003). Extreme intensities are a key uncertainty in observations of convec-
tive precipitation and peaks are relevant for infrastructure design. WEGN allows us to empirically explore how
estimates of gauge-derived, subhourly EMAP in extreme convective events depend on the station density.

We approach this endeavor in two steps (see Figure 3). First, subnetworks of decreasing resolution are
extracted from the high-density network and second, convective area precipitation is estimated for each of
the subnetworks.

To systematically generate subnetworks of predefined station separation distance d, we introduce the
fishnet-windowed triangular mesh (FWTM) method. We increase d stepwise by 1.5 km from 1.5 to 49.5 km and
at each step apply a search tolerance of s(d) = ±0.75 km. As intergauge distances in a real network are never
exactly the same, such a search tolerance s must be applied (gray circles in Figure 3). While too low search

Figure 3. Schematic description of the fishnet-windowed triangular mesh (FWTM) subnetwork sampling method
including inverse-distance-weighted area rainfall estimation per triangle.
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tolerance decreases statistical robustness through reducing the number of station pairs, too high search tol-
erance leads to overlapping distance bin boundaries; we find s(d) = ±0.75 km the best choice to maximize
search tolerance while avoiding bin overlap.

For each d, all rain gauges are paired with those neighboring gauges at distance d±s(d)with which they form
an approximately equilateral triangle C with side length d. At each distance d, a total number of k triangular
areas among three gauges A, B, and C with AB ≈ BC ≈ CA ≈ d is found (Ck(d), Figure 3, 1a). Although
rainfall cells are naturally not triangular in shape, triangles constitute the most elementary and robust way
to construct an area over which mean area precipitation can be uniquely defined. Constructing equilateral
triangles also eliminates issues arising from irregular rain gauge spacing.

Because of the very high density of stations in the WEGN area, triangles may spatially overlap, for example,
when two gauges are so close that both qualify as edge station for a triangle at larger d (c.f. Figure 3, 1b). If both
areas were kept, information is used which would not be available in a real network with separation distance d.
We avoid such potential biases by superimposing a regular fishnet grid with cell area Agridcell(d), corresponding
to the area Ad of Ck(d)over the study domain to filter redundant triangular areas. That is, only one triangle with
its center of mass closest to each fishnet cell’s center is kept. This fishnet-windowing reduces the number of
triangles from Ck(d) to Cj(d) (Figure 3, 1b). We tested the sensitivity of the analysis to this filtering by shifting
the fishnet’s origin in latitude and longitude, to randomize the gauges selected as edge stations, and found
our results robust over the different testing scenarios (see Figure S1).

In each of the subnetworks of interstation distances d ∈ [1.5, 49.5], precipitation intensity ICj(d),𝜏,En
over all

triangular areas Cj is estimated as the arithmetic mean weighted by the gauge distances to the triangle’s
center of mass (linear inverse-distance-weighting, IDW). Testing the sensitivity of calculations using squared
IDW (exponent 2) showed little effect on the results (see Figure S1). For all convective events EN, area rainfall
estimation is done for integration times 𝜏 ∈ (10, 30, 60, 180 min), obtaining time series for all triangular areas
Cj(d) at each d and 𝜏 .

Next, we select the maximum intensity during each event in both time and space. Only the largest precipi-
tation observation at 𝜏 is kept: Imax

Cj(d),𝜏,En
(temporal selection, Figure 3, 2a). Of all temporal event maxima over

the study domain, we select the area with the highest estimated precipitation: Imax
d,𝜏,En

(spatial selection). This
selects the highest estimated mean area precipitation in each individual convective event En, done for all
subnetworks with the different station separation distances d (Figure 3, 2b).

Of the n = 527 convective events, extreme events are defined as those in which the maximum subhourly area
intensity at d =1.5 km exceeds the 80th percentile (P80 events, Figure 3, 2c). The selected summertime con-
vective storms already sample the most intense subdaily precipitation of the years (Schroeer & Kirchengast,
2018), so that this threshold allows analyzing a robust ensemble of extreme events.

The extreme EMAP I𝜏 (d), called EMAP hereafter, is then adopted to be the median of the P80 events and is
obtained for each time resolution 𝜏 : EMAP_10, EMAP_30, EMAP_60, EMAP_180. The upper and lower bound-

aries of the 90% confidence interval of EMAP are estimated as the n
2
− 1.645

√
n

2

th

and ( n
2
+ 1) + 1.645

√
n

2

th

ranked
values of the sample, respectively.

Finally, a two-parameter power law of the form I𝜏 (d) = Bd−b is fitted to the observed EMAP over the 1.5 to
33.0 km range (Figure 3, 2d). The chosen outer scale is considered the limit to reasonable inferences in the
60 km × 60 km study domain, with sampling up to d = 33.0 km being nearly seamless despite the strict bin
separation (only three bins 20.5, 22.5, and 30.5 km are not populated), whereas above, areas can no longer be
seamlessly covered with triangles due to the large interstation distances combined with few stations in this
large-scale domain.

3. Results and Discussion

Figure 4 shows rapidly decorrelating precipitation at 10-min resolution (correlation distance d0 = 7.8 km),
which decreases for longer integration times (3 hr: d0 = 26.5 km). The relative RMSD of precipitation amounts
between gauges (Figure 4b) increases rapidly up to around 10 to 15 km for subhourly scales and eventually
levels off, while 1-hourly and 3-hourly curves increase even beyond 20 km. These short correlation distances
of convective precipitation are consistent with other studies (e.g., Dzotsi et al., 2014). The results indicate
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Figure 4. (a) Correlogram (spatial correlation) and (b) root-mean-square deviation of precipitation (pairs of zero rainfall
are omitted) in 1.5 km bins (dots), using all station series at time integrations from 10 min to 3 hr. Solid lines show
three-parameter exponential models fitted to the paired correlations, parameters are shown in the boxes. Shaded areas
show the 5th–95th percentile range in each bin. Parameter uncertainties are provided in Table S3.

that an operational coverage of ground observations at 7 to 10-km distance scales cannot provide reliable
estimates of area precipitation on smaller spatial scales.

Figure 5 shows the maximum estimated area precipitation in extreme convective precipitation events (EMAP)
depending on station separation distance (i.e., the density) of the rain gauge network. Figure 5a shows the
EMAP intensity Iarea(d) relative to gauge observations Ipoint, which describes an empirical area reduction
Iarea∕Ipoint.

Two measures are shown for comparison. First, theoretical ARFs, ARFtheor, are calculated from maximum point
observations following Leclerc and Schaake (1972, equation given in Table S2). Among many methods of ARF
calculation, this was chosen because it has repeatedly been used to evaluate precipitation in regional climate
models (e.g., Mishra et al., 2012; Tripathi & Dominguez, 2013). Second, using the 20 operational ZAMG + AHYD
rain gauges only, precipitation fields are interpolated onto regular grids of cell size C(d) applying standard
squared IDW interpolation with no further restrictions. For each En(d, 𝜏), maxima are saved to obtain a best
estimate of EMAP from the fixed-density operational network if no further information on the rainfall field
was available.

The smallest observable area in the full network is∼1 km2 for a triangular area with station separation distance
∼1.5 km. At this scale, EMAP is 94% (10 and 30 min) to 85% (3 hr) of the point observation. At d = 3 km, EMAP
drops to 69% (3 hr) to 66% (10 min). Near operational network scales of d = 10 km, the observed EMAP is 37%
(3 hr) to 33% (10 min). With decreasing change rates, EMAPs reach 25% (3 hr) to 20% (10 min) at d = 30 km.
These results underline the small scales of extreme convective intensities, as integrating over 3 hr at 1 km scale
significantly decreases observed intensities, while enlarging the area but sampling at short temporal intervals
also strongly decreases the EMAP estimates.

Between d = 1.5 km and d = 35 km (areas from 1 to 500 km2, respectively), the observed EMAP decays at a
rate well approximated by a two-parameter power law I𝜏 (d) = Bdb, with an exponent b (dimensionless) and
a reference intensity B (in intensity units), the latter describing the reference EMAP at a distance d (in units
[km]) of 1 km. We find exponents b ≈ −0.5(±0.1) up to the hourly time scale, that is, a decrease by 50% from
1 to 5 km, and a lower but not significantly different b ≈ −0.45(±0.1) at 𝜏 = 3 hr. All parameters are given in
Figure 5, parameter uncertainties are provided in Table S4.

The ARFtheor used in climate model evaluation studies decreases at a much lower rate to 80–90% within
the first 10 km, to reach constant values of 50–75% at 20 to 30 km. This underlines that properties of con-
vective extremes are not sufficiently considered by such ARFs, as emphasized also by Wright et al. (2014),
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Figure 5. Observed (marker symbols) and power law fits (continuous lines) of EMAP intensities in extreme convective
precipitation events observed at interstation distances d for different integration times: 10 min (dark red), 30 min (red),
1 hr (orange), 3 hr (yellow). EMAP point observations are also indicated (circles at distance zero). (a) EMAP relative
to the point observation scale, ARF after Leclerc and Schaacke (1972; dashed bicolored lines) and estimates from ZAMG
+ AHYD operational gauge interpolation only (thin dashed colored lines) are shown for comparison; (b) Absolute EMAP
intensities [mm/hr] in the high-density WegenerNet Feldbach Region (markers and heavy lines) and low density ZAMG +
AHYD operational network (light dashed lines), respectively; (c) EMAP converted to the rainwater flux per area. (d–f )
Shaded areas show the magnitude of the 90% confidence intervals around the corresponding EMAP estimates
in (a), (b), and (c), shown in separate panels to avoid graphical confusion in (a), (b), and (c). The legend in (b) is valid also
for panel (a). Boxes show parameters of the power law fits. x axis scales of distances d in (a) and (b) are consistent in
scale with the x axis of (c), showing the corresponding areas between three gauges at distance d. EMAP = event
maximum area precipitation; ARF = area reduction factor; ZAMG = Austrian national weather service; AHYD = Austrian
hydrographic service.
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who explored storm-centered, event-based radar estimates of area reduction down to hourly scales in
North Carolina, United States, demonstrating underestimation of reduction by the traditional U.S. Weather
Bureau method.

The estimates from interpolated rainfall grids lie in between estimates from ARFtheor and the empirically sam-
pled EMAPs. The 80th percentile of point precipitation sampled from the operational network is 17–25%
lower than in the ensemble including WEGN stations, showing that operational network sampling underes-
timates the magnitude of extreme point rainfall. However, from d = 3 km, extreme area estimates from the
operational network are 12% to 50% larger than estimates from the FWTM network sampling. This indicates
that the area of maximum precipitation intensity is overestimated in the operational network, because no
area precipitation estimate of such magnitude is observed for the same event despite sampling with much
denser networks (station separation distances of 1.5 to 9 km). A potential reason for this is the radial estima-
tion around the rain gauge, leading to characteristic bull’s eye effects around local maxima. This statement is
only robust for d smaller than 7–10 km, because at larger d, the operational station density exceeds that of
the less dense FWTM subnetworks.

Figure 5b shows EMAP intensities in WEGN and operational station network in millimeter per hour. EMAP
curves of different time integrations stay separated over d. The 10-min intensities are highest even over large
areas. Hence, peak precipitation rates in convective storms are usually not sustained for 30 min or longer,
30-min extreme rates are not sustained over 1 hr, and so forth. This is substantiated by the usually short
duration of events at individual station locations (median: 1.5 hr, interquartile range: 0.9 to 2.6 hr).

The estimated EMAP intensities are finally converted to units of total rainwater flux per area (i.e., EMAP inten-
sities are multiplied by the area over which the EMAP is calculated (Figure 5c)). This leans toward hydrological
applications and illustrates the magnitude of maximum total rainwater volume precipitating over the given
areas in extreme convective storms. One may view this as catchment water influx estimates, while actual
runoff water fluxes will clearly depend on factors such as topography, land cover, and soil properties.

4. Summary and Conclusions

We showed that EMAP in extreme convective storms occurs over small areas; hence, the EMAP estimation
depends on the density of any observing station network. The results here are based on 9 years of precipita-
tion observations from the very dense WegenerNet rain gauge network (WEGN) and surrounding stations of
operational networks (ZAMG and AHYD).

We found a power law decay of observed EMAP with increasing interstation distance d of the rain gauges over
1 to 35 km and areas of 1 to 500 km2, respectively, following d−0.5(±0.1), which corresponds to a decay of ∼50%
from 1 to 5 km distance. Extremes at the point scale (the rain gauge location), however, stay well below the
values extrapolated to the point from the power law for small (1 km scale) distances. This indicates that the
spatial extent of the most extreme intensity in convective storm cells (i.e., the area over which there would
be no EMAP reduction from the point location) is smaller than 1 km2 but clearly not zero, that is, needs to be
addressed at subkilometer scale (e.g., Pedersen et al., 2010).

When deriving areas of maximum precipitation from interpolation of the operational network only, a simple
interpolation method such as IDW results in overestimating the area affected by most extreme precipitation
intensities at scales below the operational resolution. The presented scaling rates can assist in choosing inter-
polation parameters, for example, when adjusting the power value of IDW to precipitation type for confining
the range of influence as suggested by Kann et al. (2015).

Irrespective of interpolation, the frequency of extreme peak precipitation is significantly undersampled in
the operational network. While the maximum point-scale intensities recorded in both data sets are of similar
magnitude, the distribution of extreme intensities in convective events shows significant differences, with the
80th percentile being approximately 20% lower when sampled from ZAMG-AHYD as compared to WEGN.

Unadjusted traditional ARFs strongly underestimate area reduction of convective extremes on small scales,
since storm type differences are not explicitly considered (Pavlovic et al., 2016). Extremes at point scale are
caused by different storm types than extremes at larger scales (Eggert et al., 2015). Comparative studies show
that applying unadjusted ARF methods (e.g., review by Svensson & Jones, 2010) may significantly overes-
timate or underestimate area rainfall and that storm-centered, radar-based approaches better capture area
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reduction in thunderstorm environments (Mineo et al., 2018; Wright et al., 2014). Advantages and drawbacks
of ARF methods should thus not only be carefully considered in engineering but also in evaluating climate
models.

Our empirically substantiated spatial scaling can serve as a reference for improved evaluations of convective
storm types in climatologically similar regions, that is, in warm temperate, fully humid, and warm summer
climates at midlatitudes, such as most of Central Europe and southeastern parts of United States, Australia, or
South-America (e.g., Kottek et al., 2006).

Radar data will further grow in quality and relevance for precipitation observation but rain gauges remain the
primary source for ground-truth reference data sets. Most data sets of past climate rely on gauge data alone,
and insufficient coverage by ground stations is responsible for persisting uncertainty. Our study quantified
part of these uncertainties for summertime convective precipitation events at midlatitudes.

Peak area precipitation in convective events decays on spatial scales much smaller than operational net-
work interstation distances, leading to severe underestimation at scales below 10 km, which can conversely
result in interpolating too low intensity over too large areas. With growing evidence that midlatitude con-
vective precipitation extremes are intensifying with climate change (e.g., Barbero et al., 2017; Dai et al., 2017;
Fischer & Knutti, 2016; Ye et al., 2017), it is increasingly relevant to interpret and evaluate climate model and
gauge-derived precipitation intensities at kilometer-scales. By providing a fundamental scaling dependence
of convective extreme area precipitation on station density derived from high-quality, ground-truth gauge
observations, our results can assist these tasks.
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Convective precipitation is intensifying in many regions, but potential implications
of shifts in precipitation types on impacts have not been quantified. Furthermore,
risk assessments often focus on rare extremes, but also more frequent hydro-
meteorological events burden private and public budgets. Here synoptic, hydrologi-
cal, meteorological, and socio-economic data are merged to analyse 25 years of
damage claims in 480 Austrian municipalities. Exceedance probabilities of dis-
charge and precipitation associated with damage reports are calculated and com-
pared for convective and stratiform weather patterns. During April to November,
60% of claims are reported under convective conditions. Irrespective of the weather
type, most of the accumulated cost links to minor hazard levels, not only indicating
that frequent events are a highly relevant expense factor, but also pointing to defi-
ciencies in observational data. High uncertainty in damage costs attributable to
extreme events demonstrates the questionable reliability of calculating low-
frequency event return levels. Significant differences exist among weather types.
Stratiform weather types are up to 10 times more often associated with damaging
extreme discharge or precipitation, while convective weather shows the highest
nuisance level contributions. The results show that changes in convective precipita-
tion are pertinent to risk management as convective weather types have contributed
significantly to damage in the past.

KEYWORDS

convective precipitation, extreme events, natural hazard, nuisance events,
vulnerability, weather types

1 | INTRODUCTION

Damage from extreme precipitation disrupts daily life and
imposes financial burdens on private and public budgets. In
Austria, damage repairs from hydro-meteorological hazards
are largely supported by a tax-financed disaster fund. While
fluvial flooding, often stemming from large-scale precipita-
tion, is considered in risk assessments on the national level
(BMNT, 2011), also flash floods, debris flows, and landslides
frequently cause damage. These events are often caused by

intense localised convective precipitation on sub-daily time
scales (Aceto, Caloiero, Pasqua, & Petrucci, 2016; Llasat,
Marcos, Turco, Gilabert, & Llasat-Botija, 2016).

Contributions from convective precipitation to total dam-
age volume are not well quantified, but knowledge of such
damage potential is important because extreme convective
precipitation is expected to intensify with global warming in
many regions (Bao, Sherwood, Alexander, & Evans, 2017;
Dai, Rasmussen, Liu, Ikeda, & Prein, 2017; Donat, Lowry,
Alexander, O'Gorman, & Maher, 2016; Prein et al., 2017;
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Westra, Alexander, & Zwiers, 2012). The frequency of con-
vective storms has increased over the mid-latitudes (Feng
et al., 2016; Ye, Fetzer, Wong, & Lambrigtsen, 2017), and
atmospheric conditions favouring severe storms are pro-
jected to increase over central-southern Europe (Pú�cik et al.,
2017). Convective storms challenge risk assessments,
because associated extreme precipitation and runoff are not
well represented in gauge observations (Eggert, Berg,
Haerter, Jacob, & Moseley, 2015; Lebel, Bastin, Obled, &
Creutin, 1987; Schrooer, Kirchengast & O, 2018). There is
still considerable underestimation of extreme intensities in
radar estimates (Kann et al., 2015; Peleg et al., 2018). Insur-
ance data can complement sparse observations, but come
with their own set of uncertainties (Grahn & Nyberg, 2017;
Punge & Kunz, 2016; Wirtz, Kron, Löw, & Steuer, 2014).

Data limitations often force regional risk assessments to
focus on large-scale precipitation patterns or to single out
specific catchments or events (e.g., Boudou, Lang, Vinet, &
C�ur, 2016). Bernet, Prasuhn, and Weingartner (2017)
showed that surface water flooding away from watercourses,
which is rarely considered in studies, contributes consider-
ably to overall flood losses in Switzerland. The shares were
particularly high in conjunction with local extreme rainfall
intensities, while after long-duration precipitation events
more fluvial flood damages occurred. This suggests that
damage patterns from convective precipitation are different
than from stratiform events, but little is known about these
differences.

Weather types, which describe the larger-scale synoptic
situation over a region, can increase confidence in the type
of precipitation despite fragmentary ground observations
(e.g., Prein, Holland, Rasmussen, Clark, & Tye, 2016).
Weather types have been used, for example, to determine
synoptic conditions favourable to landslide occurrence
(Wood, Harrison, Turkington, & Reinhardt, 2016), to
develop a weather based risk index for flooding and land-
slides in Italian regions (Messeri et al., 2015), or to identify
conditions driving very rare flood events in a long historical
record (De Niel, Demarée, & Willems, 2017).

Localised extreme precipitation, typical for convective
weather patterns, can be perceived as rare and catastrophic
from a local perspective, but the probability of occurrence
increases over larger domains (e.g., Sass et al., 2012; Syed,
Goodrich, Myers, & Sorooshian, 2003). Moftakhari, Agha-
Kouchak, Sanders, and Matthew (2017) showed how expo-
sure to less severe frequent coastal flooding, so-called
“nuisance” events (annual exceedance probability AEP >
0.5), accumulates to financial risk similar to the risk from
more extreme events (AEP < 0.05). So far, attention to
inland nuisance flooding has been limited and focused on
stream flow rather than precipitation (Slater & Villarini,
2016). Yet, for risk management actors such as the Austrian
government, financing disaster recovery through the public
disaster fund, such cumulative damage contributions are

highly relevant. Because risk measures in the form of
exceedance probabilities are typically derived from daily
observations, in which convective extremes are not well
represented, convective precipitation is more likely to appear
as nuisance events and its impacts may be misrepresented in
regional risk analyses.

To understand how convective precipitation events have
contributed to regional damage accumulation in the past and
how this risk is reflected in annual exceedance probabilities
of daily precipitation totals and river discharge levels, we
analyse a large database of damage claims using weather
types to distinguish between damage from convective and
stratiform precipitation. The number and cost of reported
damage claims, including damage caused by flooding, debris
flows, and landslides, are assessed and associated hazard
levels of discharge and precipitation are compared for dis-
tinctive patterns of convective and stratiform precipitation
over the convective season from April to November.

2 | DATA AND METHODS

2.1 | Damage claim and municipality data

We analyse a database of 116,900 claims reported to the
Austrian disaster fund (Katastrophenfonds) in 480 municipal-
ities in southeastern Austria over 25 years (1990–2014). The
data were obtained from the office of the provincial govern-
ment of Styria, Austria.

The disaster fund is an ex-ante form of risk financing
financed by shares of annual income and corporate tax reve-
nues (BMF, 2016). While ~70% of this fund supports pre-
ventive measures such as torrent and avalanche control,
emergency services and compensation for uninsured recov-
ery activities after exceptional events are also covered
(OECD, 2014). On average, 20–30% of damage is reim-
bursed, with up to 50% for building damages. Payouts are
only to be used to restore functionality. The types of damage
eligible for reimbursement include direct damages to build-
ings and inventory, private roads, meadows, harvest and
livestock, forest soil and roads, but exclude cars, luxury or
hobby items as well as any consequential damages such as
business operation losses. Before an individual can claim
excess damage from the disaster fund, insured losses must
be deducted from the total loss. Unfortunately, these data are
not available (c.f. Prettenthaler & Vetters, 2009). There is no
compulsory hazard insurance in Austria, and insurers
respond to adverse selection through restricting coverage
and charging expensive premiums (Holub & Fuchs, 2009).
The combination of tax-based governmental relief and
adverse selection leads to low flood insurance coverage in
Austria (e.g., Gruber, 2008; Hanger et al., 2017; Raschky,
Schwarze, Schwindt, & Zahn, 2013). Thus, the disaster fund
currently holds the most reliable data available for analysing
household level natural hazard damages.
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We consider claims associated with hydro-
meteorological hazards (flooding, landslides, debris flows)
during the warm season (1 April to 30 November), and
exclude damage from avalanches, snow pressure, and earth-
quakes. This covers 84% of all claims in the database. The
data comprise the municipality (but not exact location), date,
type of damage, and claimed costs. To estimate vulnerability
and exposure at the macro-scale of this analysis (c.f. Merz,
Kreibich, Schwarze, & Thieken, 2010), we combine avail-
able data sets of indicators such as buildings, population,
land use, and topography at the municipality level. Table 1
summarises the data used.

The municipalities are divided into three groups of pri-
marily agrarian, alpine, and urban character using principal
component and hierarchical clustering analyses (Figure 1).
The capital Graz builds a fourth cluster comprised of only
one municipality with high population density. Figure 2
shows the properties of the clusters. Alpine municipalities
are generally the steepest and most extensive, have consider-
able forestry, and cover the northwestern part of the study
region. Agricultural municipalities lie in the southeastern
part, with a similar population density as alpine municipali-
ties, but considerably more buildings. The urban municipali-
ties include county towns with higher population density,
many buildings and artificial surfaces, and a third of agricul-
tural area. Each of the four groups has a similar overall pop-
ulation of around 300,000 inhabitants.

Figure 3 shows the number and value of damage claims
per year by municipality cluster. All costs were inflation
adjusted to the Austrian consumer price index, with no

further adjustments or normalizations. In total, a sum of
200 million € was claimed. A minimum claim threshold of
1,000€ superseded a model with deductibles and minimum
payout sum in 2012 and so increased the official reporting
threshold from approx. previous 600€. The high variability
of hazard occurrence and decentralised handling of damage
assessment make it difficult to quantify the effects of legisla-
tive changes. To avoid biases from the introduction of mini-
mum reporting value, we remove all claims below 1,000€
from the sample before calculating trends. Simple trend ana-
lyses and Mann-Kendall tests show no significant trends in
annual number of claims or cost, but the average cost per
claim has almost doubled from the first (1990–1999) to the
most recent (2006–2015) decade of observations (factor
1.9). This value only changes slightly (factor 1.8) when the
extreme years 1991 and 2009 are excluded. Calculating
trends including claims below 1,000€ increases the factors to
2.3 and 2.5, respectively, indicating that the introduction of
the minimum reporting value explains ~20% of the increased
cost per claim in the full dataset.

Other reasons for an increased cost/claim ratio are poten-
tial increases in value of the objects damaged or the intensity
of a hazard. Increased construction and property values in
flood-prone areas are often mentioned as a reason for rising
flood damages, but this is not generally true as regional
trends in development have to be considered (Fuchs,
Keiler, & Zischg, 2015). For Styria, census data from
1991–2011 indicate the second lowest overall demographic
change of all nine Austrian provinces, with decreasing popu-
lation in 56% of municipalities (on average −2.6% per

TABLE 1 Summary of the data used in this study

Description
Time period
analysed Resolution Reference/source Data used for

Point observations of precipitation
(108 daily/72 sub-daily gauges)

1990–2016 10 min/daily Austrian national weather (ZAMG) and
hydrographic (AHYD) services

Characterising precipitation in
weather types

Daily discharge observations
(61 gauges)

1990–2016 Daily Austrian hydrographic service
(AHYD), ehyd.gv.at

Calculating exceedance
probabilities of discharge levels

Weather reviews and synoptic
situation descriptions

1999–2017 Daily Austrian national weather service
(ZAMG)

Classifying weather types

gpard1 gridded precipitation dataset
(quality controlled)

1990–2011 Daily, 1 x 1 km Hofstätter et al. (2015) Validating weather type
classification, calculating
average daily precipitation
totals for all municipalities and
estimating exceedance
probabilities of precipitation
events

INCA nowcasting system gridded
precipitation (not quality
controlled)

2004–2014 15 min, 1 x 1 km Haiden et al. (2010)

ERA-interim reanalysis data (PSL,
CAPE, geopotential, wind speed)

1979–2016 Daily Dee et al. (2011) Classifying weather types

Damage claims to the disaster relief
fund

1990–2014
(available
until 2016)

Daily Departments of the provincial
government of Styria
(data.steiermark.at)

Analysing distributions among
weather types and municipality
clustering

Census data of the population in the
Styrian municipalities

1991, 2001, 2011 10-year Municipality clustering

Digital elevation model 2014 10 x 10 m Municipality clustering

CORINE land cover 2000 100 x 100 m EEA (2017) (gis.epa.ie) Municipality clustering

Shapefile of building outlines in the
study area

2016 vector data OpenStreetMap (openstreetmap.org) Municipality clustering

Note. See Table S1 in Appendix S1, Supporting Information for a detailed list of gauges.
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decade in the districts excluding Graz and Graz-Surround-
ings) (Federal Government of Styria, 2014). Only the district
surrounding Graz experienced a net increase in population
(on average +10% per decade). The dynamics of land use
change in Austria are among Europe's lowest, and the rate of
artificial land take (0.21% p.a., corresponding to a total of
50 km2 over 2006–2012), is half that of the European aver-
age (EEA, 2017). Although changes are important on the

local scale, the magnitude of these changes does not influ-
ence the clustering of municipalities.

For the distribution of incurred damages among convec-
tive and stratiform weather types, it can be assumed that vul-
nerable objects are equally exposed to the different weather
types in any given year. We consider both the cost and num-
ber of claims. While claim occurrence indicates exposure,
the accumulated costs on a particular day and/or place signal
the severity of the event and level of vulnerability.

2.2 | Precipitation and discharge

We use several data sources for a more robust analysis of
precipitation observations. Sub-daily precipitation data
(10 min aggregated) and daily precipitation sums are avail-
able for 72 and 108 gauges, respectively. The gauges are
operated by the Austrian weather service (ZAMG) and the
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FIGURE 1 Study area, municipalities, gauge locations and catchments in the southeastern Alpine forelands of Austria. The shading of the municipalities
denotes the group according to the cluster analysis

FIGURE 2 Factors of vulnerability and exposure in the four municipality
clusters

FIGURE 3 Number of damage claims from flooding, landslides, and
debris flows per year and municipality cluster (bars, left axis) and total
claim value per year (black solid line, right axis) as reported to the disaster
fund 1990–2015 (1 April to 30 November)

4 of 13 SCHROEER AND TYE

4 Extreme precipitation

56



hydrographic service of Styria (Figure 1). Daily (sub-daily)
records range from 1 to 27 (2 to 25) years with a median of
25 (13) years. See Tables S1–S3 in Appendix S1, Support-
ing Information for lengths and missing data in all station
records. Rain gauge observations are used to assess sub-
daily precipitation characteristics of the weather types.

Furthermore we use the gridded, quality-controlled data-
set gpard1 (daily, 1990–2011) (Hofstätter et al., 2015), and
the nowcasting product INCA, which blends station and
radar observations (15 min aggregated to 1 day, 2004–2014)
(Haiden et al., 2010). Both products are based on ZAMG
gauge observations and are provided on a 1 km x 1 km grid.
Gridded data are used to estimate daily precipitation totals
over all municipalities on damage days.

No trends were identified in the sub-daily precipitation
data, however, studies found a decreasing trend in annual
precipitation over the region (Masson & Frei, 2015). Agree-
ment among data products is high on the daily scale, but cor-
relations decrease towards sub-hourly observations due to
the high variability on small spatio-temporal scales and
storm movement. Furthermore, sub-daily extremes and
small-scale phenomena are not well represented in gridded
precipitation datasets (Hiebl & Frei, 2018; Schroeer, Kirch-
engast & O, 2018).

Average daily discharge data from gauges operated by
the hydrographic service are available for 62 catchments
ranging from 20 to 1,000 km2 (See Tables S1 and S4 in
Appendix S1 for information on individual gauge records).
Each municipality is associated with the relevant stream/
river catchment. Administrative boundaries largely coincide
with topography so that this mapping is unambiguous. The
annual exceedance probability (AEP) of the daily discharge
is calculated for each stream using Gumbel extreme value
distributions fitted to the seasonal maxima over all available
years. Kolmogorov-Smirnov statistics support this choice for
100% of the gauges in summer, and for 99 and 92% of the
gauges in spring and fall (autumn), respectively (95% confi-
dence level). Information on anthropogenic modifications of
the catchments was not available. For annual maximum
daily discharge in Austrian discharge gauges, no change
points were detected for the mean in the southeastern Alpine
region, and significant change points in variance at two sta-
tions fall outside the study period (Villarini, Smith, Seri-
naldi, Ntelekos, & Schwarz, 2012). We address uncertainties
in AEP by fitting the distribution to randomly selected two
thirds of the data 1,000 times. The 90% confidence interval
is then defined as the 5-95th percentile range of AEPs calcu-
lated from each of these bootstrapped distributions.

The same method is applied to the seasonal maxima of
daily rainfall calculated for each municipality using the
gridded datasets to estimate AEPs of precipitation events
(Kolmogorov–Smirnov test support a Gumbel distribution
for all gauges except for one in fall). We follow Moftakhari
et al. (2017) in classifying events with return intervals below

2 years as minor (AEP > 0.5), between 2 and 20 years
(AEP ≤ 0.5 and AEP > 0.05) as major and ≥ 20 years
(AEP ≤ 0.05) as extreme. These comparably low thresholds
are justified by our interest in the cumulative effect of fre-
quent events, the application to observed data only, and
make calculations arguably more tractable, as statistical
models are less sensitive to assumptions about the extreme
tail behaviour (Serinaldi & Kilsby, 2014).

2.3 | Weather types

The spatiotemporal coverage of sub-daily precipitation
observations is sparse compared to the spatiotemporal reso-
lution of reported damages. This leads to high uncertainties
when linking gauge-based sub-daily precipitation directly to
damage in the municipalities. Through associating observed
precipitation with larger-scale synoptic conditions, we can
utilise all available information and increase confidence in
the character of precipitation events under different weather
patterns. We first perform a circulation type classification
based on daily ERA-Interim data (1979–2016) (Dee et al.,
2011) over the Greater Alpine Region (40.5–51.57�N,
3.0–20.25�E), using the COST Action 733 circulation type
classification software (Philipp, Beck, Huth, & Jacobeit,
2016). The optimal classification scheme depends on the
predictand (Huth, Beck, & Kucerova, 2016; Schiemann &
Frei, 2010), here patterns of predominantly convective or
stratiform precipitation. We apply principal component anal-
ysis and cluster analysis method (e.g., Prein et al., 2016) to
sea level pressure, 700 hPa wind velocity, convective avail-
able potential energy (CAPE), and 500 hPa geopotential as
indicators of atmospheric stability and seasonality, and to
consider fast and slow moving systems. Codes for the syn-
optic situation over Austria were then collected from daily
weather reports issued by the ZAMG since March 1, 1999.

Through merging the computationally identified weather
classes with the weather types issued explicitly for Austria,
we obtain a tailored classification of six weather types,
WT1A, WT1B, WT1C, WT2, WT3, and WT4. WT1A to
WT1C and WT4 are dominated by low gradient or high-
pressure situations, while WT2 and WT3 predominantly
contain days of south and south-westerly and north and
north-westerly flows, respectively. Positive CAPE anomalies
and above-average peak intensities distinguish the convec-
tive classes WT1A and WT1B occurring 1 June through
30 September. The difference is that WT1A sees low daily
precipitation totals and wet spell durations mostly associated
with single-cell or multi-cell storms, while extreme precipi-
tation under WT1B is associated with disturbances and
intense frontal precipitation and unstable atmospheric condi-
tions, reaching higher precipitation totals and longer lasting
events. WT1C is also dominated by low gradient situations,
but CAPE and precipitation in general are lower in spring
and fall. WT4 is dominated by persistent high-pressure
situations and negative precipitation anomalies. Rare
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precipitation events can occur in form of isolated thunder-
storms on the warmest days in this class. Duration and daily
precipitation totals are high in WT2, with only average peak
intensities. In WT3, long wet spells, high daily precipitation
totals, and low peak intensities prevail. Although dominated
by large-scale and stratiform precipitation, embedded con-
vection at the onset of the precipitation event, particularly
during the summer months, does occur.

Figure 4 illustrates the frequency of each weather type
during the study period and the weather-type specific
extreme (98th percentile) daily precipitation totals and
10-min peak intensities and average wet spell duration (sum
of 10 min intervals >0.1 mm) compared to the respective
monthly percentile. These indicators were calculated from
all rain gauges. WT-specific discharges are provided in
Figure S1 in Appendix S1.

3 | RESULTS

3.1 | Distribution of damage claims by weather types

Figure 5 shows the frequency (% days) of each weather type
and the associated damage (% total reported cost). The pre-
dominantly convective weather types WT1A and WT1B

show over-proportional damage shares (15 and 43%, respec-
tively), whereas little damage is reported during WT1C and
WT4. ~12% of the total cost is attributed to WT2, while the
share of damage under WT3 is approximately proportional
to its occurrence (~20%).

Generally, most claims are caused by flooding (~62%),
followed by landslides (~20%) and debris flows (~18%).

FIGURE 4 Weather type frequency (black bars, rows 2 and 4) and associated extreme precipitation (98th percentile, horizontal bars) for peak intensity (red),
daily sum (yellow), and average wet spell duration (blue). Shadings show 90% confidence intervals. Full lines are identical in all panels and show the overall
monthly climatological percentile values (full lines, dotted lines mark 90% confidence intervals). Note that the scales differ between colours

FIGURE 5 Relative frequency of days under all weather types
(1990–2014, April to November) (hatched bars). Grey bars show the
cumulated cost associated with each weather type relative of the total cost.
Asterisks mark the relative frequency of damage reports within each
weather type (number of days with reported damage divided by total
number of weather type days)
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Figure 6 splits the claims by cause and municipality group.
Graz is not included in this visualisation, because of the
small total of 1,558 claims, of which ~90% are due to flood-
ing. The breakdown shows an interesting division of the vul-
nerabilities of the different municipality groups to the
weather types. WT1B is associated with most claims for all
hazards and municipality groups except for landslides in the
agricultural group. This is due to several large-scale precipi-
tation events in the region which caused exceptional
amounts of landslides under WT2 and WT3 (Hornich &
Adelwöhrer, 2010). Short but intense summer precipitation
events under WT1A have less impact in this class, while
alpine municipalities record the second largest frequency of
both flood and debris flow claims in this weather type.

Precipitation processes interact with the basic topogra-
phy and thus amplify vulnerabilities. While flooding can be
expected anywhere in the study region, the agricultural
group is prone to landslides due to its geological disposition,
with over 5,000 km2, or half of the total area of the Province
of Styria, classified in the highest of three landslide risk
levels (Leopold, Draganits, Heiss, & Kovacs, 2013; Proske &
Bauer, 2016). This part is also more directly influenced by
southerly flow directions common under WT2, which occur
in spring and fall when precipitation in the alpine municipal-
ities in the higher northwestern parts can fall as snow and
delay runoff. Furthermore, Alpine catchments are charac-
terised by steep mountain topography and susceptibility to
debris flows. Orography enhances convective precipitation
in Alpine regions (Giorgi et al., 2016), a known trigger for
debris flows.

Per capita claims in Graz and the urban municipalities
are disproportionately low. Towns are usually not in steep
areas prone to debris flows or landslides and most damage is
caused by flooding under WT1B and WT1A. Because urban
municipalities cover smaller areas, the probability of loca-
lised extreme precipitation hitting the area is smaller, yet if it

does the consequences such as extreme runoff and surface
water flooding occur immediately (c.f. Roodsari & Chandler,
2017; Sass et al., 2012; Syed et al., 2003), which is why
urban areas are considered to be particularly vulnerable to
flash floods (Guillén, Patalano, Garcia, & Bertoni, 2017;
Kermanshah, Derrible, & Berkelhammer, 2017; Mahmood,
Elagib, Horn, & Saad, 2017; Pereira, Diakakis, Deligianna-
kis, & Zezere, 2017). On the contrary, the area exposed is
much larger in agricultural and alpine municipalities, and
buildings are likely located closer to the hazard processes.

3.2 | Annual exceedance probabilities of damage-
associated river discharge and precipitation

The previous section showed disproportionately high dam-
age under convective weather types (WT1A, WT1B) com-
pared to the incurred damage under stratiform weather types.
To find out how this risk is reflected in hazard measures, we
analyse the damage contributions under estimated minor,
major, and extreme precipitation and discharge events and
compare the patterns from convective weather types to the
most damaging non-convective weather type WT3.

The analysis of the annual exceedance probabilities
(AEP) of river discharge shows considerable differences in
the calculated flood risks among WT1A, WT1B, and WT3
(Figure 7). The AEP is shown separately for municipalities
within catchments that were (a) not affected (no reported
damage), (b) affected (1–20 damage claims), and
(c) severely affected (>20 reported claims). This stratifica-
tion indicates the severity of an event based on the impact
and is independent of observations of precipitation or
discharge.

Expectedly, AEP of discharge is always significantly
lower on days with more damage claims than on days with
moderate or no impact reported. However, under WT1A,
AEPs only decrease slightly for moderate and high impact

(a) (b) (c)

FIGURE 6 Number of claims to the disaster fund due to (a) flooding, (b) debris flows, and (c) landslides in rural, Alpine, and urban municipalities in the
different weather type groups. Graz is not included due to the small numbers in claims. Note the different axis scaling in (a) and (b, c)
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events. With medians in the minor flooding class, daily dis-
charge observations rarely indicate the risk of damage under
WT1A. Although discharge levels are significantly higher
under WT1B, in �50% of the incidents the AEP of the clos-
est stream gauge does not record unusual discharge even
when more than 20 damage claims are reported in the catch-
ment. On the contrary, high impact events under the strati-
form WT3 are accompanied by major and even extreme
discharge more regularly.

A possible reason for this is that widespread and long-
duration precipitation under WT3 allows more time for the
rivers to react and the distance between damage location and
stream gauge is less relevant under such conditions. In con-
trast, short-duration, localised convective events might not
have much effect on average daily discharges. Convective
rainfall intense enough to cause damage might still not pre-
cipitate a large enough volume of water to raise water levels
to a major or extreme level, especially in large rivers. If,
additionally, the centre of a storm is located away from a
stream gauge, this effect is even stronger, as runoff may be
infiltrated or intercepted by the sewer system before reaching
a stream.

Overall, minor discharge levels are observed on days
accounting for 42.7–52.7% of the total reported cost.
15.9–18.6% and 5–17.7% of costs coincide with major and
extreme river discharge levels, respectively. Less than 1% of
the total cost associated with extreme discharge occurred
under WT1A, in contrast to 2.3–6.8% under WT1B and
1.3–5.9% under WT3. For �25% of the total cost no dis-
charge data is available for the respective catchment.

The differences in the distributions of hazard levels
become more apparent when AEPs are considered relative to
the weather type specific cost. Nuisance levels are associated
with 69.2–73.6% of the damages under WT1A, with
41.1–52.5% under WT1B, and with only 27.3–34.8% under
WT3. Likewise, 0.7–3.9% (WT1A), 5.3–15.4% (WT1B) and
6.7–22.9% (WT3) of weather type specific cost can be
linked to extreme discharge.

Figure 8 shows the AEPs of discharge relative to the
WT-specific cost in the different municipality groups.

Extreme discharge most frequently occurs in agricultural
municipalities, particularly under WT3, where also the share
of nuisance flooding is low (~20% of the cost). Also in urban
municipalities, up to 20% of damage is associated with
extreme discharge, albeit large uncertainty arises from the
smaller sample. In alpine and urban municipalities under
WT1A, daily discharge data almost never reach extreme
levels. No significant differences are observed between
municipality groups under WT1B.

FIGURE 7 Annual exceedance probabilities of discharge levels on days with 0, 1–20, and > 20 reported claims under the convective WT1A and WT1B and
the stratiform WT3. Whiskers denote the 5–95th percentile interval. Dotted horizontal lines mark the AEP thresholds applied in this study to define minor,
major, and extreme events. Corresponding recurrence intervals (RI) are also given

FIGURE 8 Relative proportion of claimed loss by annual exceedance
probability of river discharge in each catchment. Green (light blue, dark
blue) bars indicate minor (major, extreme) discharge levels. The proportions
are shown individually for the total payout sums in urban, agricultural, and
alpine municipalities under weather types WT1A, WT1B, and WT3. Error
bars indicate the 90% confidence intervals of the individual contributions,
that is, to be interpreted as the possible upper ends of each colour band.
Space is left blank where no discharge data are available. Figure after
Moftakhari et al. (2017)
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The large share of cost associated with nuisance-level
events suggests that streamflow is not well correlated with
large parts of the damage data. This can be either because
damage was caused despite low discharge levels in form of
nuisance flooding or surface water flooding, or because the
discharge is not correctly observed. E.g., discharges used are
those associated with the day of the reported claim and do
not include delayed overland runoff. Although the data do
not allow for disentangling of these effects, robust differ-
ences among weather types indicate that the risk of impacts
under convective WT1A and, to lesser extent, frontal con-
vective WT1B, is particularly underestimated in daily
discharge data.

Precipitation is more directly linked to surface water
flooding and AEPs of daily precipitation totals might better
indicate the risk from convective extremes than available
discharge data. Also here, minor events contribute 63.6–73%
to the overall reported cost. Major and extreme level precipi-
tation is observed in 18.5–19.7% and 6.5–14.8%, respec-
tively. The proportion of total cost associated with extreme
daily precipitation differs between convective (WT1A:
0.7–1.1%, WT1B: 2.5–6.2%) and stratiform (WT3:
9.9–11.1%) weather types. Within the weather type specific
cost, 4.0–6.9% (WT1A), 5.6–14.1% (WT1B), and
16.7–29.0% (WT3) can be linked to extreme daily
precipitation.

Figure 9 shows the shares of the event magnitudes
within each weather type and municipality group. Again, the
agricultural municipalities see the lowest share of nuisance
level events under WT3, whereas this fraction is particularly
high under the isolated convective WT1A. In alpine munici-
palities, the group most vulnerable to WT1A, precipitation
data better indicates the risk of damage than discharge data
(5.9 vs. 0.1% of cost can be attributed to extreme levels of
precipitation and discharge, respectively), although part of
this might be due to better data coverage (2% of costs coin-
cide with missing precipitation data).

In summary, both precipitation and discharge data agree
quite well on the damage contributions under minor, major,
and extreme events. For one half to two thirds of the total
cost, observational data indicate only minor hazard levels,
and this effect is particularly distinct in convective WTs
even when major impacts were reported.

4 | DISCUSSION

4.1 | Discussion of uncertainties and limitations

The results showed that convective weather types are associ-
ated with frequent damage claims and that associated precip-
itation and discharge events often do not indicate this risk.
Several sources of uncertainties come into play when inter-
preting these results.

The high number of damage reports that cannot be
linked to significant precipitation or discharge levels indi-
cates that extremes under WT1A and WT1B are indeed not
well represented in observations. Under WT3, extremes
from large-scale precipitation patterns, which can be approx-
imated with some confidence within the study region's
observation network, seem to be better captured. Still, a high
share of damage can only be linked to nuisance hazard
levels. The share of nuisance level events is lowest in agri-
cultural municipalities and particularly high in alpine munic-
ipalities. This indicates that the range of explanatory power
of observations is smaller in the mountainous topography
with secluded valleys in the alpine municipalities.

Increasing availability of precipitation data on small
spatio-temporal scales from high-resolution networks and
improving radar data will help to overcome these issues in
the future. To understand damage fingerprints from convec-
tive and stratiform precipitation, better information is also
needed on location and eligibilities of damages, and on pro-
cedural changes in claim handling. This would allow distin-
guishing damage from surface water flooding away from
watercourses from flooding from overflowing streams. Fur-
thermore, weather type specific exposures could be

FIGURE 9 Relative proportion of claimed loss by annual exceedance
probability of daily precipitation totals in the respective municipalities.
Green (light blue, dark blue) bars indicate minor (major, extreme)
precipitation totals. The proportions are shown individually for the total
payout sums in urban, agricultural, and Alpine municipalities under weather
types WT1A, WT1B, and WT3. Error bars indicate the 90% confidence
intervals of the individual contributions, that is, to be interpreted as the
possible upper ends of each colour band. Overshooting error bars can thus
occur due to the stacked layout. Space is left blank where no precipitation
data are available. Figure after Moftakhari et al. (2017)
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explicitly considered. For example, hail is associated with
intense convective events (Nisi, Martius, Hering, Kunz, &
Germann, 2016) and particularly with cold fronts during
early summer (Schemm, Nisi, Martinov, Leuenberger, &
Martius, 2016). Non-availability of hail damage data likely
leads to undervaluing the damage potential from convective
patterns especially in agricultural municipalities. If exposure
and vulnerability are generally similar to the analysed
region-wide household level data, the non-availability of
these data, for example, of damages to small businesses has
little effect on the presented results of relative contributions.

Large uncertainty ranges in damage cost attributable to
extreme discharge events highlight the difficulty in confi-
dently assessing low frequency return levels. This is even
though the threshold for extremes of annual exceedance
probability of 0.05 is comparably low and the lengths of
observational data series exceed the targeted return level.
This underlines how more recent concepts such as the flood
peak ratio, which avoids the calculation of large return inter-
vals by setting observed flood peaks in relation to a 10-year
flood event (Czajkowski, Cunha, Michel-Kerjan, & Smith,
2016), can help the assessment of extreme flood events.

Uncertainties also arise from changes in vulnerability
and exposure over time. Regarding the presented results, the
main question is whether implemented actions and measures
have had divergent effects with respect to convective or
stratiform hazards. Exposure and vulnerabilities might be
weather type specific among sectors, or for direct and indi-
rect damages. Such differences could not be considered here
and need further research. After catastrophic events in 2005,
the city of Graz initialized a 65 million €, 10-year Special
Programme—The Streams of Graz, investing in protection
measures, retention areas, renaturalization, and educational
advertising. Similarly, with expenditures of 27 million € per
annum over 2000–2005, and 40 million € per annum
2005–2013, the province of Styria continuously invests in
flood protection measures (Hornich, Zenz, Hammer, &
Reischl, 2014). Construction projects often run for several
years, and sometimes high-risk land is purchased to incorpo-
rate it into the floodplain instead of building protection mea-
sures, thus the avoided impact difficult to assess. The fact
that there is no obvious indication of damage reduction in
the data analysed here calls for a deeper analysis of the
effectiveness and temporal dimensions of such adaptation
efforts. Effects of public awareness campaigns and private
adaptation are generally hard to quantify (Aerts et al., 2018),
but first studies show how disastrous events trigger adapta-
tion (Kreibich et al., 2017). So far, these studies focus on
large fluvial floods. Extending this research offers an oppor-
tunity to find out how various adaptation measures are effec-
tive in reducing impacts from large-scale events and
localised extremes, and stratiform or convective precipita-
tion, respectively.

4.2 | Implications for future risk assessment

Data on past losses include comprehensive information on
damage from both frequent and rare events arising from con-
vective and stratiform conditions. The large database ana-
lysed here helps to quantify the respective contributions and
delivers insights into impacts related to convective precipita-
tion events. This is important because many risk assess-
ments, which often build on exceedance probabilities of
inundation depths and coarse input data, might underesti-
mate the risk from localised convective precipitation events
as well as the cumulative effects from frequent nuisance
level events.

This analysis showed that �60% of all damage occurred
under synoptic conditions favouring convective precipitation
with high sub-daily intensities. For one half to two thirds of
these incidents, neither the observed stream discharge nor
the daily precipitation indicate this risk.

It is interesting that the contribution of extreme level
events to overall damage under the predominantly stratiform
WT3 (�23%) is close to the estimates of how much extreme
events contribute to total exposure (�20%) in US coastal cit-
ies by Moftakhari et al. (2017). Although the scope and set-
ting of the studies differ, this supports the hypothesis that
large-scale extremes are more easily captured in observa-
tional data and future flood risk assessments.

Hanger et al. (2017) find that “generally, governments
focus more on large-scale flood protection opportunities than
on incentivizing private risk-reduction behaviour”. Our
results underline why focusing on large scale events is not
enough to reduce impacts from extreme precipitation.
Annual frequencies of weather types do not show significant
changes over the study period, except for a slight increase in
frequency of WT1B days (0.65 days per year, 90% confi-
dence level). Extreme convective precipitation intensities are
highly sensitive to temperature in southeastern Austria
(Schroeer & Kirchengast, 2017) and are generally expected
to increase with global warming (Zhang, Zwiers, Li, Wan, &
Cannon, 2017). Although trends in sub-daily extreme pre-
cipitation cannot be robustly detected at this point, this
means that both the frequency of convective days and the
intensity of precipitation on these days could increase in the
future. It is thus important to facilitate private risk-reduction
behaviour to increase resilience to localised impacts and sur-
face water flooding, against which technical measures along
streams are less effective.

Most regular annual payouts of the disaster fund are
spent on damage in rural and less densely populated areas.
Claims per capita are much smaller in urban areas. Potential
reasons for this are the smaller areas exposed and thus lower
probability of an event occurring exactly here, and the fact
that protection measures effectively protect a larger number
of people than in dispersed settlements. Interesting differ-
ences between rural and urban areas regarding risk percep-
tion are observed also by Fuchs et al. (2017). They compare
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the perception and adaptation of inhabitants of a rural region
susceptible to large-scale river floods, and an urban area
prone to flash floods. They find a lower individual disposi-
tion to pro-actively invest in adaptation measures in the rural
population exposed to large scale events, even though sev-
eral floods occurred in the recent past. What is more, state
and administrative authorities were blamed for unsatisfactory
levels of protection measures. The willingness to accept
human behaviour and development as risk factors and to
individually adapt was higher in the urban area threatened
by flash floods.

Even though the different socio-cultural backgrounds
must be considered, these findings relate to our results
because they point towards the difficulties that may arise
when developing adaptation strategies. It underlines the
importance of differentiating the hazard processes as well as
the socio-economic context of the exposed area. Our results
emphasise that private risk reduction behaviour is important
to complement publicly funded structural measures concen-
trating on watercourses.

In the alpine municipalities, debris flows also cause a
considerable proportion of the damage. In a modelling study,
Meissl et al. (2017) reveal possible implications for steep
mountain catchments in Alpine environments. Continued
warming reduces the days with critical antecedent soil mois-
ture conditions but increases mobilizable dried up litter.
Hence, the consequences of intensified convective precipita-
tion extremes could lead to rarer, but more intense debris
flows.

Here, we established a relationship between critical cir-
culation types and vulnerability factors using observed data.
Such an approach, for example, through assessing larger-
scale trends in severe storm environments (Pú�cik et al.,
2017), can support identifying future damage potential using
climate models, where simulation of small-scale extreme
precipitation is improving, but considerable uncertainties
remain (e.g., Olsson, Berg, & Kawamura, 2014). However,
also changes of circulation types over the Alpine region need
further research and uncertainties remain particularly in sum-
mer (Rohrer, Croci-Maspoli, & Appenzeller, 2017).

5 | CONCLUSION

We analysed a large database of damage claims in combina-
tion with several observational hydro-meteorological data-
sets to identify contributions from different weather types
and assess their reflection in hazard intensity measures.
Observed and projected intensifications of convective pre-
cipitation and the associated high damage potential make
this issue relevant to risk management activities. While at a
specific location the event may be considered rare, impacts
from convective storms occur more frequently at regional
scales. The accumulated cost contributes significantly to the
damage cost from natural hazards. Weather types indicate

the character of the hazard event even when sub-daily obser-
vations are not available at the damage location.

The present analysis showed that more than half of the
damage from hydro-meteorological hazards in the warm sea-
son (1 April to 30 November) can be attributed to synoptic
situations favouring convective precipitation. In 50–60% of
these events, associated river discharge levels are not consid-
ered to be extreme (AEP < 0.05). Under stratiform condi-
tions, discharge reaches extreme levels more frequently, yet
�40% of the damage is attributed to only minor discharge
levels.

The generally high proportion of minor hazard levels
indicates that convective precipitation, nuisance level events,
and surface water flooding all significantly burden the disas-
ter fund. Better resolved data on discharge, precipitation,
and the location of damages, are needed to accurately ascribe
damages to these processes. Large uncertainty ranges in
AEP of extreme events underline the difficulty of accurately
estimating return levels of extreme events from limited
observations.

This initial study showed that identifying the risk-prone
environment through merging a “top-down” weather typing
approach with ground based observational data is beneficial
for data-limited analyses. It allows identifying the different
natures of damaging precipitation events through their
atmospheric drivers and local impacts and so improves our
understanding of region- and context-specific vulnerabilities.
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interpretation of the intent and setting of the study. When 
this is considered, conditional scaling factors can help to 
better understand which influences control the intensification 
of rainfall with temperature on a regional scale.

Keywords  Precipitation · Temperature · Alps · Climate · 
Variability · Risk · Intensity

1  Introduction

Hydro-meteorological hazards induced by extreme precipi-
tation pose considerable risk to communities. Thus, state-
ments on possible changes of extreme precipitation are del-
icate information for politicians, urban planners, farmers, 
and others who need to manage the risk from climate and 
weather extremes. However, knowledge gaps exist especially 
on regional to local scales due to the complex precipitation 
generating processes, the high natural variability of rainfall, 
and because data are often not available in sufficient resolu-
tion, length, or quality (Alexander 2016; Prein and Gobiet 
2016; Contractor et al. 2015).

In recent years, an increasing number of studies has built 
on the physically based expectation that extreme precipita-
tion intensity changes with temperature following the Clau-
sius–Clapeyron (CC) equation, which describes the water 
holding capacity of the atmosphere. Thus, an increase in 
rainfall intensity of 6–7%/°C–1 (CC-rate) is expected, given 
constant relative humidity. The concept and recent devel-
opments have been reviewed by Westra et al. (2014) and 
O’Gorman (2015). Three major aspects can be summarized.

First, convective extreme precipitation intensities at sub-
daily scales have been found to increase at rates up to about 
double the CC-rate in both observations and models over 
the mid-latitudes, whereas intensities on the daily scale 

Abstract  Potential increases in extreme rainfall induced 
hazards in a warming climate have motivated studies to link 
precipitation intensities to temperature. Increases exceeding 
the Clausius–Clapeyron (CC) rate of 6–7%/°C–1 are seen in 
short-duration, convective, high-percentile rainfall at mid 
latitudes, but the rates of change cease or revert at regionally 
variable threshold temperatures due to moisture limitations. 
It is unclear, however, what these findings mean in term 
of the actual risk of extreme precipitation on a regional to 
local scale. When conditioning precipitation intensities on 
local temperatures, key influences on the scaling relation-
ship such as from the annual cycle and regional weather 
patterns need better understanding. Here we analyze these 
influences, using sub-hourly to daily precipitation data from 
a dense network of 189 stations in south-eastern Austria. We 
find that the temperature sensitivities in the mountainous 
western region are lower than in the eastern lowlands. This 
is due to the different weather patterns that cause extreme 
precipitation in these regions. Sub-hourly and hourly inten-
sities intensify at super-CC and CC-rates, respectively, up 
to temperatures of about 17 °C. However, we also find that, 
because of the regional and seasonal variability of the pre-
cipitation intensities, a smaller scaling factor can imply 
a larger absolute change in intensity. Our insights under-
line that temperature precipitation scaling requires careful 
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and those associated with stratiform precipitation mostly 
increase at approximately the CC-rate (Ivancic and Shaw 
2016; Ban et al. 2015; Berg and Haerter 2013; Lenderink 
and van Meijgaard 2009; Haerter and Berg 2009). The high 
scaling rates have been attributed to both a shift from strati-
form to convective precipitation, and an intensification of the 
convective process itself (Moseley et al. 2016; Attema et al. 
2014; Loriaux et al. 2013; Berg et al. 2013).

Second, a decline or reversal of extreme intensities takes 
place at regionally varying threshold temperatures when the 
environmental conditions shift from a moist to dry regime 
and suppress a further intensification of rainfall (Prein et al. 
2017; Chan et al. 2016; Drobinski et al. 2016).

Third, connecting local temperature-precipitation rela-
tionships to global warming is controversial (IPCC 2013, p. 
626) and the available studies differ in scope. Some ana-
lyze a single rain gauge (Formayer and Fritz 2016), others 
assess regional (e.g., Molnar et al. 2015; Wasko and Sharma 
2015), or global station networks (e.g., Wang et al. 2017; 
O’Gorman 2015). Zhang et al. (2017) differentiate studies 
that detect long-term trends in precipitation intensities with 
global warming (e.g., Barbero et al. 2017), and studies that 
establish regional scaling relationships based on conditional 
quantiles (e.g., Drobinski et al. 2016). In the first case, ther-
modynamic effects and the Earth’s energy budget are con-
sidered to be the dominant factors. In the latter, the variable 
dynamic conditions throughout the annual cycle become 
increasingly influential. Furthermore, the cooling effect of 
precipitation on local temperatures might significantly influ-
ence the scaling rates especially for larger-scale precipitation 
events (Bao et al. 2017).

Here we analyze the variability of the temperature pre-
cipitation relationship at the regional to local scale, deliber-
ately considering how the annual cycle and weather systems 
affect the sensitivity of the statistical scaling factors on the 
sub-hourly, the hourly and the daily scale. Thus the aim of 
this study is not to analyze trends in rainfall extremes, but 
to gain deeper insight into the controls of the spatio-tempo-
ral variability of scaling factors on a regional level and to 
address the implications for interpreting the results. We use 
sub-hourly rainfall data from a very dense regional station 
network over south-eastern Austria, filling a gap between 
the aforementioned single station studies and considerably 
sparser station networks on national scales.

The study region presents an interesting setting from both 
a climatological and a socio-economic viewpoint. The geo-
graphic location transitions from high Alpine terrain in the 
north-west of the region to lower-elevation forelands in the 
south-east, where a strong warming trend with a substantial 
increase in heat days has been observed over the last decades 
(Kabas et al. 2011). Moisture advection from the Mediter-
ranean Sea and orographic lifting provide essential ingredi-
ents for extreme precipitation events on the southern Alpine 

slopes (Cassola et al. 2016; Panziera et al. 2015; Schicker 
et al. 2010; Sodemann and Zubler 2010) and lows over the 
Mediterranean moving northeastward (’Vb’-cyclone tracks) 
regularly result in excessive rain and large-scale flooding 
in the southern and south-eastern Alpine region (Volosciuk 
et al. 2016; Messmer et al. 2015; Hofstaetter and Chimani 
2012).

Furthermore, small-scale flash flooding caused by 
local, short-term extremely intense convective rainfall has 
destroyed human livelihood in the past, where for the most 
destructive events, rainfall depths of 100–600 mm have 
been reconstructed (hydroConsult GmbH 2011; Schock-
litsch 1914; Forchheimer 1913). One of the top three Cen-
tral European one-day precipitation records occurred here 
(Munzar et al. 2011). The area is densely populated and the 
terrain favors debris flows and landslides. The local agri-
culture with vineyard and fruit cultivation is vulnerable to 
short-term extreme precipitation and hailstorms especially 
during the summer half year.

We assess the temperature sensitivity of the maximum 
(10-min) peak and maximum hourly rainfall intensity within 
observed rainfall events, as well as daily rainfall sums dur-
ing the summer half year (April to October). The questions 
we strive to answer here are: (1) Which factors control the 
spatial and temporal variability seen in the temperature sen-
sitivities on a regional scale? (2) How applicable and useful 
is the scaling approach on the regional to local scale con-
sidering regional climate variability? (3) What do scaling 
factors tell us about changes in absolute rainfall intensities?

The paper is structured as follows. The data and methods 
used are described in Sects. 2 and  3, respectively. We report 
and discuss the spatial, seasonal, and storm-type variability 
of scaling factors in Sects. 4.1 and 4.2, and link them to 
actual rainfall amounts in Sect. 4.3 to assess how the tem-
perature sensitivities can be interpreted from a regional to 
local impact scale perspective. Concluding arguments are 
given in Sect. 5.

2 � Data

Our study area comprises the south-eastern Alpine foreland 
region of Austria south of the main Alpine ridge (Fig. 1). 
Southerly flow and weak gradient situations with convective 
precipitation during the summer months are the dominant 
patterns associated with extreme daily precipitation sums in 
the eastern part. In the southern- and westernmost part, the 
heaviest precipitation days occur during “Southern Stau” 
situations and peak in October (Seibert et al. 2006).

We use sub-daily precipitation data from 77 semi-auto-
mated weather stations of the Austrian meteorological ser-
vice (ZAMG) and from 112 rain gauges provided by five 
provincial administrations of the Austrian hydrographic 
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service (AHYD), both delivering 0.1 mm resolution in 
rainfall amount. This yields a total number of 189 sta-
tions, with record lengths from 1 to 58 years (median: 14 
years), ending November 2014. The mean distance to the 
nearest neighboring station is ∼6 km. 1–5 min aggregated 
precipitation at AHYD stations was summed up to match 
the 10 minute aggregated precipitation reported at ZAMG 
stations. The data are cut to our focus season defined as the 
period from 1st April to 31st October.

The average amount of missing data is 1.4%, with 15 
stations reporting a higher fraction of over 15%. These 15 
stations are not excluded from the analysis, because they 
are amongst the stations with the longest records (20 years 
on average) and a detailed inspection showed that periods 
of missing data are due to long coherent out-of-service 
periods. As no time series or trend analysis is done in 
this study, we decided to use all existing information on 
plausible events. Since previous quality control of the data 
varied with the provider, all station series were double-
checked for data gaps and inconsistencies.

Extreme outliers (events exceeding the 99.95th percen-
tile) were analyzed case-by-case and only removed from 
the statistical analysis if they could not be justified to be 
physically plausible. For this, we analyzed the rainfall 
records at the station where the event was recorded and at 
the five closest neighboring stations from 12 h before until 
12 h after the event. We checked the records for suspi-
cious values (e.g., 99 and similar, several identical values 

in a row, sudden breaks), and in addition investigated 
weather review reports issued by the ZAMG document-
ing exceptional rainfall events, and hydrographical year 
books issued by the Austrian Federal Ministry of Agri-
culture, Forestry, Environment and Water Management, 
which contain dates and record rainfall amounts, water 
levels and runoff at AHYD gauges. As a result, 41 out of 
153 outlier events were excluded from the sample.

Because temperature measurements are not available for 
every precipitation station, the daily average and maximum 
temperature of the days of and preceding a precipitation event 
were interpolated for all station locations from the high qual-
ity 1 × 1 km SPARTACUS (Hiebl and Frei 2016) and INCA 
(Haiden et al. 2010) gridded temperature data products (INCA 
to extend the SPARTACUS dataset from 2011 to 2014). We 
used inverse distance-weighted horizontal interpolation and a 
standard vertical temperature lapse rate (−6.5 K/km). Single 
station temperature time series used for validation showed very 
good agreement of the interpolated and directly observed tem-
peratures, confirming the adequacy of this approach.

3 � Methods

We estimate the temperature sensitivity of extreme precip-
itation on an event basis rather than from single observa-
tions. This has been done by several other authors (Wasko 
and Sharma 2015; Molnar et al. 2015; Gaál et al. 2014) 

Fig. 1   Austrian south-eastern Alpine foreland region (red polygon) 
and precipitation measurement stations used in the analysis. Observa-
tions of additional atmospheric variables (temperature, humidity) are 

available for most stations operated by the Austrian meteorological 
service ZAMG (red). Stations operated by the Austrian hydrographic 
service AHYD (blue) provide precipitation data only
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and prevents double counting of dependent observations 
within the same storm. Note that this considers only the 
temporal dependence; if the same storm moves over more 
than one station, it repeatedly enters the sample.

We first define periods of continuous rainfall as rain-
fall events, where each dry interval separates two rainfall 
events. For each day, we save the number and duration 
of events, the total number of wet observations, the daily 
precipitation sum and rain rate (total sum divided by the 
number of wet observations). We consider only the highest 
10-min amount as maximum peak intensity (MPI) and the 
highest hourly amount as maximum hour intensity (MHI). 
This way, we only pair each daily mean temperature once, 
while keeping the information on how concentrated or dis-
persed the total daily rainfall was distributed over the day.

In addition, we performed a circulation type classifica-
tion (CTC) based on daily ERA-Interim data (1979–2016, 
Dee et  al. 2011) over the Greater Alpine Region 
(40.5–51.57°N, 3.0–20.25°E), using the COST Action 733 
CTC software (Philipp et al. 2016). We apply a principal 
component analysis and cluster analysis with 27 circula-
tion types (CTs), which has been shown to perform best in 
explaining Alpine precipitation variability (Schiemann and 
Frei 2010). In addition to sea level pressure, we include 
data of convective available potential energy as indicator 
of atmospheric stability and seasonality, 700 hPa wind 
velocity to consider fast and slow moving systems, and 
500 hPa geopotential.

Since we are primarily interested in summertime convec-
tive precipitation as well as in keeping samples large enough 
for robust statistical analyses, it is not expedient to continue 
with 27 CTs. Hence we classify each given day as either 
falling into a summer convective CT or not. This is done by 
visual inspection of the anomaly plots of the variables used, 
the frequency of occurrence, and precipitation anomalies of 
the CTs (using ZAMG GPARD-1 1 × 1 km daily gridded 
precipitation data over Austria, Hofstätter et al. 2015).

Maximum hour and maximum peak intensities (MHI 
and MPI), as well as the daily precipitation sums (DPS) are 
paired with the daily mean temperature of the day of event 
onset (Tmean). Days with an average daily temperature below 
5 °C were dismissed to exclude snow events. We alterna-
tively calculated the temperature sensitivities for the daily 
rain rate, for the daily maximum temperature, as well as 
for the mean and maximum temperature of the day prior 
to event onset in order to exclude cooling due to the event 
itself, but the scaling results did not show significant differ-
ences to the results obtained from Tmean. Similar low sen-
sitivities against some variation in temperature choice were 
found by Lenderink and van Meijgaard (2009) and Lepore 
et al. (2015).

We also calculated the scaling rates for dew point tem-
peratures (dpT), as they are a more immediate indicator 

of the available moisture (Lenderink and Meijgaard 2010), 
and compared them to the results for Tmean. Data were only 
available for a reduced sample of ZAMG stations. The 
change rates for the 98th percentile were not significantly 
different for dpT as compared to Tmean, while the moderate 
intensities showed higher dpT sensitivities.

We calculate the scaling factors that describe the per-
centage change in precipitation intensity per degree of 
daily mean temperature using quantile regression. In con-
trast to ordinary least squares regression, quantile regres-
sion estimates the influence of the independent variable on 
a selected conditional quantile of the dependent variable 
instead of just on the mean (see, e.g., McMillen 2012). 
Quantile regression thus gives a more comprehensive pic-
ture of the influence of temperature on the distribution 
of precipitation intensities. We fit the quantile regression 
model for each event sample of interest to the logarithmic 
precipitation as a function of mean temperature, similar to 
Wasko et al. (2015),

where P is the event precipitation intensity (MHI, MPI, or 
DPS), q is the target quantile, and T the daily mean tempera-
ture of the event onset day. Based on the linear-slope regres-
sion coefficient �q

1
 obtained from this fit, the scaling factor 

(SF) as the rate of change of precipitation with temperature 
is then estimated as

The significance of a regression coefficient �qe
1

, where qe is 
the quantile of interest (e.g., the 98th percentile), is esti-
mated to be most robust and distinct if it not only deviates 
from zero with 95% confidence, but if the 95% confidence 
interval of �qe

1
 does not overlap with the one of �qmed

1
, where 

qmed is the median (50th percentile). The method is also 
more robust against outliers and allows a more straight-
forward reporting of the statistical uncertainties than the 
more common temperature binning approach (e.g., studies 
reviewed in Westra et al. 2014).

Quantile regression is a linear method, and therefore non-
linearities in the data are not considered (which is also the 
case when a linear regression is fit to binned percentiles). 
However, in sensitivity tests, in which we cut off the data at 
different temperatures at the lower and higher ends of the 
temperature range, we found that the decrease of intensi-
ties at the highest temperatures primarily manifests itself in 
large uncertainty ranges in in these areas, while the overall 
scaling factor remains robust. This is due the smaller sam-
ple sizes at the highest temperatures. Thus, the uncertainty 
ranges deliver an important indicator of the robustness of the 
regression. To account for non-linearities in a more explicit 

(1)ln(P) = �
q

0
+ �

q

1
T ,

(2)SF [%∕◦C] = (ΔP∕ΔT) = 100 ⋅ (e�1 − 1).
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Fig. 2   Scaling factors (SFs) 
of station event precipitation 
intensity with daily mean tem-
perature for the 98th percentile. 
Results for the maximum peak 
intensities (MPI, top panel), 
maximum hourly intensi-
ties (MHI, center panel), and 
daily precipitation sums (DPS, 
lower panel) are shown. Plus 
symbols (+) indicate that the 
SF is sensitivity significantly 
different from zero, circles (o) 
indicate that the SFs of the 
98th percentile is also signifi-
cantly different from the 50th 
percentile (median). The size of 
the circle symbols indicates the 
length of the station record as 
summarized in the legend
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way, we calculated the scaling rates in moving windows over 
the temperature range (see Sect. 4.3).

4 � Results and discussion

4.1 � Spatial variability and regional patterns of scaling 
factors

Figure 2 and Table 1 show the 98th percentile station event 
scaling factors (SFs) for maximum peak intensity (MPI), 
maximum hour intensity (MHI), the daily precipitation sum 
(DPS), and the average rain rate (mm/h, Table 1 only) of the 
entire event sample.

With an average SF of 12%/°C, the MPIs increase with 
daily mean temperature at rates that exceed the CC-rate and 
that are significantly higher than those for moderate inten-
sities (50th percentile) at the majority of the stations. The 
MHIs increase closer to the CC-rate at 9% on average, but 
a spatial partition emerges with higher/lower SFs in the 
eastern/western part of the study region, respectively. The 
higher sensitivity of the 10 min peak intensity compared to 
the hourly peak intensity is robust throughout our analysis. 
This is interesting, because even though most studies see 
scaling rates increase when the time scales decrease from 
daily to sub-hourly resolution, findings on super-CC scal-
ing on the sub-hourly scale have been inconclusive (Molnar 
et al. 2015, and review by Westra et al. 2014). The SFs of the 
DPS show a bipolar pattern with SFs around 3% in the east-
ern part and negative SFs around –10% in the western part.

We calculated the station SFs for each summer month 
individually, for the MPI, MHI, DPS, and rain rates (not sepa-
rately shown). We find that the MPI sensitivities generally 
show the most consistent scaling at CC-to-super-CC rates 
throughout the year, especially in the eastern region. In the 
west, super-CC scaling prevails, but several stations show 
non-significant or even negative scaling especially in April 
and October. For the MHI, positive scaling at approximately 
the CC-rate is consistent in the east, whereas in the west, the 
picture is inconclusive. Here, negative SFs prevail in April, 
rise towards CC-rates in September for almost all stations, 
and become negative again in October at several stations. The 
bipolar pattern of the SFs of the DPS is consistent throughout 

the year, although the transition from negative to positive SFs 
is located farther west in April, May, and June.

The regional and seasonal patterns of SFs indicate that 
regional scale temperature sensitivity depends on weather 
patterns and the climatology of the region. The eastern 
part of the study region is located at lower elevations and 
the average daily mean temperatures are higher than in the 
mountainous and high Alpine western part throughout the 
year. Climatologically, the days of heaviest precipitation in 
the eastern region are predominantly convective and occur 
during July and August under weak-pressure-gradient syn-
optic situations. In the south western part, the heaviest pre-
cipitation days culminate in October during ’Southern Stau’ 
conditions, when moist air masses from the Mediterranean 
are lifted at the Karavanks and Carnic Alps, often resulting 
in persistent and intense precipitation (Prettenthaler et al. 
2010; Seibert et al. 2006).

This helps to explain the low and negative SFs in the 
south-western part of our study region, since in these situa-
tions, the moisture content of the advected air mass is driven 
by warm Mediterranean SSTs, while local temperatures are 
cooler especially in the fall season. In addition, the daily 
mean temperature during long and persistent rainfall events 
is likely to be more affected by the rainfall events itself than 
it is for short events (Bao et al. 2017). The eastern part is 
largely shielded from ’Southern Stau’ events, the highest 
extremes occur during shorter convective events during 
the warm summer months and are less affected by cooling 
effects due to the event itself, which can explain the higher 
SFs in this region.

It is apparent that despite the regional patterns, some 
neighboring stations show large differences in SFs. This 
underlines that deriving regional temperature sensitivities 
from a single station is problematic. Especially in mountain-
ous regions, station altitude and temperature range could 
in part account for differences of scaling factors in nearby 
stations. However, in a simple linear regression analysis, 
we find no statistically significant influence of the station 
altitude on the SFs. We do find a weakly significant posi-
tive effect of the station temperature range on its MHI SF, 
explaining about 15% of the variability, but not on the MPI 
SF.

The spatial variability and pattern of scaling rates pre-
sented here are consistent with results from Molnar et al. 

Table 1   Summary 
characteristics of the station 
scaling factors (results for 98th 
percentile)

The values in all columns except the first and last one are in units [%∕◦C]

Mean SF Stdev Min 25% 75% Max Avg. 95% CI Avg. 98th percentile

MPI 12.2 3.5 −3.1 20.2 10.6 14.3 ±3.5 8.1 mm,  σ = 6.6 mm
MHI 8.9 2.8 3.6 7.3 10.6 19.0 ±3.3 16.0 mm,  σ = 10 mm
DPS −1.4 3.9 −11.4 12.8 −3.8 1.8 ±2.8 52.0 mm,  σ = 30 mm
Rain rate 10.7 2.8 −5.2 19.6 9.0 12.3 ±3.6 1.7 mm/h,  σ = 0.7 mm/10 min
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(2015), who, for 59 rain gauges over Switzerland, found that 
stations in pre-Alpine areas show higher SFs than high Alpine 
regions and valleys. The analysis of the considerably denser 
rain gauge network used here robustly confirms the influence 
of regional weather patterns on SF in a mountainous region.

4.2 � Seasonal and storm type patterns of scaling factors

Climatological precipitation over the Alpine area generally 
reaches its maximum in the warmer summer/fall season 
and its minimum in the cold winter season (Frei and Schär 
1998). Scaling factors conditioned on the local absolute 
temperatures are therefore always governed by the annual 
cycle, and hence are of limited suitability to assess the effect 
of global warming on extreme precipitation intensities (see 
Zhang et al. 2017 for a more detailed discussion). Still, it 
is highly worthwhile to look at conditional SFs in order to 
quantify the extent to which the annual cycle and weather 
patterns govern the local temperature-scaling relationship 
and to assess under which temperature conditions intense 
rainfall is most likely to occur.

The previous section showed that rainfall intensities and 
temperatures are not spatially independent, and pooling all 
stations over the study region conceals higher scaling rates 
particularly in the east (see Fig. 3). We thus separate the 
western and eastern parts of the study region by the 15°E 
meridian. The mixing effect over diverging temperature 
ranges might also play a role in mountain regions due to the 
substantial vertical temperature gradients. However, we do 
not further account for these effects here.

As displayed in Fig. 3, MPIs show the highest scal-
ing rates, ranging from 2–12%, with MHIs being 1–2% 
lower on average, while the DPS SFs are mostly negative. 
The MPI and MHI extreme intensities (98th percentile) 

increase faster with temperature than the moderate intensi-
ties (50th percentile) during May–September in the west-
ern region and during April–October in the eastern region. 
For the daily sums, the difference between the moderate 
and extreme daily sums is only significant in the east-
ern region. Here, the moderate daily sums decrease by 
4–7%/°C, while the extreme daily sums only decrease at 
about 0–2%/°C.

Inspecting the distribution of rainfall events and temper-
ature in the subsamples (not shown) helps to understand the 
variability driven by the differences in regional climatology 
as described above. A possible explanation for diverging 
scaling rates in moderate and extreme DPS is the concen-
trated nature of convective storms that dominate extreme 
precipitation in the east. When it rains on a hot summer 
day, it pours. The shorter and more concentrated a rainfall 
event, the less difference there is between the MPI, MHI, 
and the DPS. Hence, the DPS from extremely intense rain-
fall events do not decrease as significantly with temperature 
as the moderate DPS. in the western part, extreme DPS 
occur at cooler temperatures and events last longer. In addi-
tion, the rainfall sums are larger than in the east, and it is 
therefore harder to preserve high scaling rates (see Sect. 4.3 
for discussion).

Furthermore, the MPI sensitivities are significantly lower 
in July and September. The analysis of the scatter plots of 
the underlying temperature-precipitation distributions in 
these months (not shown) indicate extremes that are higher 
and more evenly distributed over the temperature range than 
in other months. This is because the temperature range is 
shifted to the right and the extreme intensities decrease over 
the hottest temperatures. Moisture limitations might inhibit 
larger scaling factors at these temperatures (see Westra et al. 
2014), however, data on relative humidity are only available 

Fig. 3   Monthly scaling factors (SFs) for the 50th (thin lines) and 
98th (fat lines) percentiles of maximum peak intensities (MPI, red), 
maximum hour intensities (MHI, yellow), and daily precipitation 

sums (DPS, blue). The vertical spread of the lines denote the 95% 
confidence interval of the SF
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for the ZAMG stations and cannot sufficiently prove this 
general assumption.

In addition to rainfall intensity, event duration is an 
important factor of the damage potential of extreme precipi-
tation. Convective showers in the mid-latitudes are usually 
short and intense, whereas extreme stratiform precipitation 
events accumulate large sums at lower intensities over longer 
durations. Short events, however, occur frequently and under 
all weather conditions in our sample.

In order to assess whether the temperature sensitivity 
of summertime convective precipitation is different from 
other days, we separated those days from our sample that 
fall within a circulation type (CT) associated with convec-
tive conditions over the Alpine domain. Note that this is not 
a classification of the rainfall type in individual events, but 
of the large-scale synoptic situation over the Alps. In addi-
tion, the samples were conditioned on the total duration of 
non-zero rainfall (0.2–2, 2–5, 5–24 h), indicating the overall 
’wetness’ of the day when an event occurred. Figure 4 shows 
the results for the subsamples.

CC- to super-CC scaling is apparent on days with short 
rainfall events over the entire region. In the east, the SFs for 
MPI and DPS diverge in autumn, which is due to an increas-
ing influence of events yielding high total sums at lower 

temperatures and rain rates. In the west, the proximity of 
MPI and DPS SFs indicate that both the daily sums and the 
peak intensities increase with temperature.

The convective CT sample isolates the hottest days dur-
ing high summer. The temperature sensitivities during June, 
July, and August (JJA) are lower than for the other CTs. In 
the east region, daily mean temperatures reach up to 27 °C, 
while extreme rainfall intensities start to decline from ∼24 
°C upwards. In September, the mean temperatures generally 
do not exceed ∼24 °C anymore and the higher SFs indicate 
a robust increase of extreme intensities in convective CTs. 
In the western region, daily mean temperatures in JJA rarely 
exceed ∼24 °C. Extreme rainfall intensities, however, start to 
decline already at ∼20 °C. This indicates that the reversal of 
extremes as described in, e.g., Prein et al. (2017) is location 
specific even on this regional scale.

On the wetter days in July, SFs during nonconvective-
CTs are only about 2–3%/°C. Again, the distribution of tem-
perature and precipitation suggests that Tmean in July rarely 
falls below 10 °C, and high precipitation intensities occur 
over the entire temperature range, decreasing at its high end, 
resulting in low SFs. This decrease of the highest intensities 
at the highest temperatures is less pronounced in June and 
September, and in addition, fewer extreme intensities are 

Fig. 4   Monthly scaling factors in the east and west region (upper 
and lower row, respectively) for the 98th percentile of maximum peak 
intensities (MPI, red), maximum hour intensities (MHI, yellow), and 
daily precipitation sums (DPS, blue) on days with a total maximum 

of two wet hours (left), 2–5 wet hours (middle), and 5–24 wet hours 
(right). SFs for days under summer convective synoptic conditions 
are shown separately (dashed lines, Jun–Sep). The shaded areas 
denote the 95% confidence interval of the SFs
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observed at cooler temperatures, which leads to a steeper 
increase and a higher SF. Further research on the synoptic 
patterns and atmospheric conditions that inhibit or foster the 
intensification of extreme intensities in the warmest summer 
months is needed to explain the differences in SFs.

4.3 � How regional scaling factors relate to absolute 
rainfall intensities

Risk from extreme precipitation is either posed through high 
intensity rainfall over short times, causing sudden and small 
scale flash flooding, or through persistent precipitation lead-
ing to slower-onset but larger-scale flooding. We have shown 
that the temperature sensitivity of extreme precipitation, 
defined as the 98th percentile of event maximum intensities 
on the 10 minute, the hourly and the daily scale, vary with 
the station location, the time of the year, and the prevailing 
weather patterns. The magnitude of a scaling factor, how-
ever, does not provide any information on the magnitude of 
the actual rainfall intensity.

Figure 5 shows four graphs of CC- and super-CC-rates for 
the MPI, MHI, and DPS 50th and 98th percentile, respec-
tively. The graphs are initialized at the respective percentile 
value estimated for the 5–7 °C Tmean bin. By means of the 
highest observed rainfall intensities over the study area, we 
illustrate how the scaling rates relate to absolute amounts of 
precipitation intensity.

Whether a scaling rate implies a high absolute change in 
rainfall intensity depends on the magnitudes of the scaling 
rate, the rainfall intensity, and the temperature. For the 98th 
percentile MPI, a CC-rate can be perpetuated up to daily 
mean temperatures above 30 °C before traversing the thresh-
old of the current record rainfall amount. The same holds 
true for a super-CC rate in the case of the much smaller 50th 
percentile MPI.

This changes drastically when either the absolute rainfall 
intensities increase, or the scaling factor is higher. For exam-
ple, super-CC scaling in MPI from our graph (Fig. 5, top) 
would imply record intensities beyond daily mean tempera-
ture of ∼16–17 °C. For scaling in the DPS (Fig. 5, bottom), 
the threshold temperatures to reach the record are ∼16 °C for 
CC- and ∼8 °C for super-CC scaling, respectively.

Furthermore, a low scaling factor in high rainfall inten-
sities implies a larger absolute change than a high scaling 
factor in low rainfall intensities. Even though the scaling 
factors in the western region—or on days with long rainfall 
durations—are lower than they are in the eastern region—or 
on days with short rainfall events—, the extremes do sig-
nificantly increase with temperature during the summer 
months. At around 20 °C, for example, a 4% increase in a 
long event MHI ∼50 mm) implies an additional 2 mm per 
degree; at the same time, an 8% increase in a short event 
MHI ∼20 mm) means an additional 1.6 mm per degree. That 

Fig. 5   CC (blue) and super-CC (2CC, red) scaling rates, originating 
from the 50th (thin lines) and 98th (fat lines) percentile values calcu-
lated for the 5–7 °C daily Tmean bin. The panels show maximum peak 
intensities (MPI, top), maximum hour intensities (MHI, middle), and 
daily precipitation sums (DPS, bottom) on a log-scale (left ordinate) 
and linear scale (right ordinate); the legend box on top identifies the 
individual cases. Actual MPI, MHI, and DPS rainfall records over the 
SEA study region are shown as green dashed lines 
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is, even though the MHI in longer and larger scale rainfall 
events scales lower, the flood risk might increase consider-
ably if the event occurs in warmer temperature conditions.

Our findings also demonstrate that the change rate for a 
given percentile (e.g., 98th) should only be compared under 
consideration of the underlying temperature and precipi-
tation data, because the actual percentile values may vary 

significantly, with major implications for the resulting scal-
ing factor.

Figure 6 shows a comparison of the actual 98th percentile 
values of rainfall intensity calculated for 2 °C bins contain-
ing at least 100 events. To visualize non-linear dependen-
cies in the data and to get a better understanding how the 
SFs relate to the absolute rainfall intensities, we calculated 

Fig. 6   Absolute 98th percentile values (upper panels in both rows) 
of the maximum peak intensities (MPI, left, red), maximum hour 
intensities (MHI, middle, yellow), and daily precipitation sums (DPS, 
right, blue) for the east and west region. The lower panels in both 
rows show the corresponding scaling factors calculated over 7  °C 

moving windows (as indicated in the left panels). Note that the scales 
for the scaling factors vary for MPI, MHI, and DPS. Both percentiles 
and scaling factors are shown for summertime convective synoptic 
situations (dashed) and all other synoptic conditions (solid), with CC-
rates shown as reference lines (black dashed)
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the SFs for sub-samples using a 7 °C moving window over 
the range of daily mean temperatures. The window width 
of 7 °C yielded the most robust SFs when trading off the 
event sample size and a sufficiently large temperature spread 
over which the regression could be calculated. We find this 
approach more informative than splitting the event sample 
only once at the estimated threshold temperature at which 
the scaling turns from positive to negative (Wasko and 
Sharma 2015).

The illustrations of Fig. 6 summarize the findings of the 
spatial and seasonal analysis of the scaling factors and their 
relation to absolute rainfall. The temperature sensitivities 
are highest for the MPI, lower for the MHI, and lowest for 
the DPS. The highest SFs are seen between about 10–15 °C, 
after which they start to decline.

The temperature sensitivity under summertime convec-
tive conditions is lower than on other days until approx. 
20 °C. These convective days are characterized by warmer 
temperatures and overall higher extreme precipitation 
intensities. Extreme convective precipitation in the gener-
ally cooler western region occurs at lower local daily mean 
temperatures than in the eastern region.

Orographic enhancement of convection in mountainous 
regions is one reason for the strong intensities at lower tem-
peratures occurring in the western region. This is supported 
by recent regional climate models, which show that global 
warming likely intensifies Alpine summer convective pre-
cipitation (Giorgi et al. 2016). Generally, SFs are lower and 
extreme percentiles are higher in the western region. The 
98th percentile MPIs start to decrease around 24 and 20 °C 
in the eastern and western regions, respectively. However, 
the data on events at the highest ends of the temperature 
distributions are too sparse to calculate robust percentiles 
and SFs.

The peak intensities of small scale, short convective 
showers, which contribute the largest share of events in this 
high temperature range, might be underrepresented in the 
data due to the limited spatial coverage of the observation 
network (Kann et al. 2015; Jones 2014), adding uncertainty 
to the analysis of the scaling relationship at these tempera-
tures. It is likely that humidity constraints contribute to the 
inhibition of further intensification of the extreme intensi-
ties. Data on relative humidity, however, is only available 
for approx. one third of the stations and thus moisture condi-
tions could not be robustly assessed. Data in the subsample 
for which humidity could be analyzed indicate lower rela-
tive humidity on days with the most extreme intensities as 
compared to days with moderate precipitation, pointing to a 
potential moisture limitation. However, further research is 
needed to test this assumption in our study region. Recent 
contributions to the literature by Loriaux et al. (2016a) and 
Loriaux et al. (2016b) demonstrate that considering relative 
humidity alone is not sufficient to explain the intensification 

of extreme precipitation. Through including atmospheric 
control factors such as large scale moisture convergence and 
atmospheric stability, they deliver valuable contributions to 
process understanding. 

5 � Summary and concluding remarks

We have analyzed the temperature sensitivities of extreme 
daily, hourly and sub-hourly (10-min) precipitation inten-
sities of rainfall events over a dense network of 189 rain 
gauges in the south-eastern Alpine foreland region of Aus-
tria. Scaling factors conditioned on local temperatures 
require a different interpretation than scaling factors that 
assess the precipitation response to global warming, as sea-
sonal weather patterns and the annual cycle outweigh the 
thermodynamic response. We looked at the spatial and sea-
sonal patterns of the temperature sensitivities to assess these 
implications. Linking the scaling rates to actual changes in 
rainfall amounts enables new insights for the adequate inter-
pretation of temperature sensitivity from an impact-perspec-
tive. We find several distinct aspects of scaling behavior over 
the study region.

First, the maximum 10-min peak intensities (MPI) signifi-
cantly and strongly increase with temperature at super-CC 
rates at most of the stations, whereas peak hourly intensities 
(MHI) do so at weaker rates around the CC-rate, and daily 
precipitation sums (DPS) decrease with temperature.

Second, the temperature sensitivities are higher in the 
generally warmer eastern parts of the study region, where 
extreme precipitation is associated with short, convective 
rainfall events during summer and low gradient synoptic 
conditions with high shares of locally recycled moisture 
(Bisselink and Dolman 2008). Extremes here rarely occur 
in cold temperature conditions. In contrast, the scaling 
factors in the western part of the study region are lower. 
Extreme precipitation occurs when Mediterranean moisture 
is advected and lifted at the southern slopes of the Alps. 
Thus the moisture is not locally sourced, and local tempera-
tures might be less indicative of the sensitivity (Zhang et al. 
2017). Also, the cooling effect of large scale events might 
play a role here (Bao et al. 2017), as well as the orographic 
amplification of precipitation and generally cooler tempera-
tures in the Alpine environment.

Third, the temperature sensitivities are higher for short 
duration rainfall as compared to long duration events in both 
regions. This implies that the peak event intensities on the 
hourly and sub-hourly scale in long rainfall events increase 
slower with temperature than peak event intensities in short 
rainfall events. An explanation for these differences is again 
the variability of weather patterns, but this time within the 
respective regions. Further research on how the temperature 
sensitivities look like in different weather types, might thus 
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reveal valuable insight into the dynamic controls of the tem-
perature precipitation scaling on a regional to local scale.

The salient seasonal and spatial variability in the scaling 
factors that we found underlines the difficulty to compare 
scaling factors among different studies. The confrontation 
with actual rainfall amounts showed that the sample size and 
the magnitude of a specific percentile are crucial parameters 
of a given rainfall change rate.

From a risk assessment perspective, it is furthermore 
important to note that a statistically defined extreme event 
can deviate from what is considered an extreme event in 
practice. For example, high scaling factors at low daily mean 
temperatures do not necessarily imply large absolute changes 
in precipitation intensity, while even moderate scaling fac-
tors at high temperatures may have substantial consequences 
in terms of accumulated rainfall.

It is often justifiably argued that the local temperature 
is not an appropriate choice for temperature precipitation 
scaling, since the moisture uptake often occurs in regions 
and at temperatures far away from the point of precipitation. 
Through taking into account these dynamic factors by isolat-
ing, e.g., weak gradient synoptic situations with mainly local 
moisture recycling from other events, regional temperature 
sensitivities can however deliver useful insights into how 
the thermodynamic and dynamic factors play together in 
controlling the change of precipitation intensities with tem-
perature in specific seasons and regions.
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5 Discussion and Conclusions

This thesis shows that extreme convective precipitation events (ECPEs) in the
southeastern Alpine forelands are a highly relevant atmospheric phenomenon. Tak-
ing an integrative perspective on the character and impacts of ECPEs, it considers
observational uncertainty, societal risk, and patterns of temperature sensitivity
associated with extreme precipitation events. The findings can be of use not only
to researchers, but also, for example, to risk managers, who have great interest in
reducing the risk from ECPEs. This risk has been notoriously hard to quantify,
because high resolution observations are largely missing. Thanks to several high
resolution, gauge-based precipitation datasets in the study region, a detailed anal-
ysis of extreme precipitation is possible on the sub-daily to sub-hourly scale. In
addition, a weather typing approach helps to identify convective and stratiform
precipitation patterns. Individual and physically plausible events are identified
from the observations prior to subsequent pairing with other data. This allows
a targeted and robust analysis considering also the duration, and mean or peak
intensities of the storms.

Research Article 1 reveals that the loss of information on short-duration
extreme intensities with increasing inter-station distances can be empirically quan-
tified using the very high resolution research rain gauge network WegenerNet
Feldbach region climate station network (WegenerNet) (Schroeer et al., 2018).
The results (see Section 4.1.3) show that event maximum area precipitation esti-
mates exponentially decrease with lower network densities. It is complemented
here that discrepancies among the WegenerNet and the networks operated by
Zentralanstalt für Meteorologie und Klimatologie (ZAMG) and Hydrographischer
Dienst Österreich / Austrian Hydrographic Service (AHYD) are more relevant for
area- rather than point-scale precipitation. They arise from two sources. First,
when point measurements are interpolated onto a grid, the strong spatial gradients
in ECPEs lead to rapidly declining area precipitation estimates with increasing
inter-station distances. This is shown in Figure 4.1.5 of Research Article 1. Second,
given the observation period is long enough, and the area considered is climati-
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5 Discussion and Conclusions

cally homogeneous, a gauge in a lower-density network will likely at some point
be hit by a ECPEs and thus sample a representative maximum event intensity.
Figure 5.1 illustrates this. The distributions represent the event maximum pre-
cipitation intensities in 527 ECPEs events in the southeastern Alpine forelands
(see Section 4.1.2) sampled with high-density WegenerNet on the one hand and
with low-density ZAMG and AHYD networks on the other. The rug plots at the
top of the panels show that the most extreme samples are indeed roughly in the
same order of magnitude in both networks. However, the WegenerNet observes
medium to high intensities significantly more often, indicating that lower density
networks underestimate the frequency of ECPEs. The underestimation of the
regional frequency in low-density networks can be expected to be less severe for
area-covering stratiform precipitation events, which will be recorded by one or
more gauges with much higher probability, while ECPEs falling in between gauges
may remain completely unobserved.

Given that ground-based and space-borne radar technology can deliver es-
sential information on the spatial scales of precipitation (Belachsen et al., 2017;
Eggert et al., 2015; Lochbihler et al., 2017), the question arises as to whether
the underestimation of ECPEs can be alleviated using radar data. Very large
discrepancies and uncertainties result from the fundamentally differing observation
modes of radar quantitative precipitation estimate (QPE) as opposed to rain gauge
measurements. Other types of sensors are employed, and the final precipitation
estimate is integrated over different temporal and spatial scales (Foehn et al., 2018;
Gabella et al., 2017). Several precipitation products have been developed that
merge ground-based gauge observations and radar QPE in order to obtain spa-
tially coherent precipitation fields (e.g., the product CombiPrecip for Switzerland
(Sideris et al., 2014) or the INCA system for Austria (Haiden et al., 2010)).
These products improve earlier gridded precipitation products (e.g., Panziera et al.,
2018) and generally more accurate runoff simulations can be achieved using the
adjusted precipitation data as input to hydrological models (Antonetti and Zappa,
2018; Bernet et al., 2018). However, convective events with extreme localized
precipitation are still not accurately captured because of too sparse rain gauge
coverage (Kann et al., 2015; Sideris et al., 2014). This becomes evident in flood
modelling as particularly runoff simulations for short and intense precipitation
events still hinge on the resolution of the underlying station network (Antonetti
and Zappa, 2018). With improving technology, radar QPE will increasingly be used
outside the forecasting rooms and likely be given more weight in climatological
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Figure 5.1: Histograms and kernel density estimates of the event maximum precipitation intensities
sampled by WegenerNet (green) and ZAMG and AHYD (red-blue) rain gauges for the sample of
ECPEs analyzed in Research Article 1. ZAMG and AHYD gauges within 5 km of the WegenerNet
are considered and the same 527 events were sampled for all distributions. Rug plots on top of
the panels indicate the maximum intensities of individual events. From top left to bottom right
panel the distributions are shown for 10 min (EMPI_Max), half-hourly (EMHHI_Max), hourly
(EMHI_Max), and 3-hourly (EM3HI_Max) time integration, respectively.

datasets. However, for the time being rain gauge observation networks serve as
undisputed ground reference and are a prerequisite to adequate representation of
ECPEs.

Very highly resolved precipitation observations, such as weather radars and
networks like WegenerNet, are expensive to initialize and operate. An area-covering
deployment on a larger scale is therefore currently neither practical nor feasible.
Experiments on the small scale can serve as cornerstones through quantifying how
much and how often ECPEs are actually underestimated in lower-density networks.
The empirical relationships of maximum event intensities on gauge spacing pre-
sented in Research Article 1 can serve such purpose.
A major challenge will be to find means and techniques to transfer findings dis-
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covered at the local scale to datasets at larger scales. This is essential because
these datasets are used by a large number of users from science to practice, and
developing standardized ways to incorporate uncertainty information will provide
downstream applications with radically improved information. A prerequisite to
upscaling the extreme precipitation–station density relationship derived from the
WegenerNet observations is to test and validate the magnitudes of undersampling
also in other regions. Streamflow data and hydrological models can provide useful
tools to assess and compare the effects of spatial precipitation estimates and storm
intensity by means of analyzing the generated runoff (Syed et al., 2003).
As simulations from Convection Permitting Climate Models (CPM) become in-
creasingly available, accurate estimates of convective precipitation undersampling
in observations is crucial information to validate CPM output. Hence, an interest-
ing exercise will be to compare the empirically derived scaling rates to their model
equivalents calculated from CPM area precipitation estimates at increasing model
resolution.

Historical data are subject to uncertainties and cannot be interpreted as un-
filtered observed truth. Increasing awareness of this has initialized several efforts
to better represent those uncertainties. For example, observational datasets are
reprocessed to include uncertainty from underlying gauge densities, although on
much larger, pan-European scale (Cornes et al., 2018). The need for climatological
consistency is acknowledged also through developing regional reanalysis ensembles
for Europe using the numerical weather prediction model COSMO (Bach et al.,
2016). Furthermore, hourly precipitation observations are now more systemati-
cally collected and transferable quality control routines are developed (Blenkinsop
et al., 2018). Data can so be used to derive sub-daily precipitation datasets on the
national scale, which are consistent also with the larger-scale climatology (Lewis
et al., 2018). This is a a major step towards better hydrological modelling of
flooding caused by sub-daily extremes.
Lewis et al. (2018) conclude their study by saying that “[s]ome key prerequisites
for generating a probabilistic rainfall product would be to gain a better under-
standing of the uncertainties associated with the hourly gauge data (for example
undercatch)”. The scaling relationships of maximum event intensities found for
ECPEs present empirically quantified estimates of such uncertainty (Research Ar-
ticle 1). It needs to be further explored how these findings can be combined with
methods of stochastic storm generation (e.g., Singer et al., 2018) and precipitation
disaggregation techniques (e.g., Müller and Haberlandt, 2018) used in hydraulic
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modelling. This could cross-fertilize the incorporation of undersampling uncertain-
ties of localized extreme precipitation to applications at the larger scale, e.g., to
model ECPEs-specific exposure.

Research Article 2 demonstrated that precipitation observed with ZAMG and
AHYD rain gauge networks is insufficient to characterize the risk from ECPEs in
the southeastern Alpine forelands (Schroeer and Tye, 2019). For weather types
characteristic to isolated, very localized convective storms, available observations
often did not even record any extreme precipitation or discharge quantities. This
exemplifies some of the difficulties that result from sparse observations and conse-
quential undersampling of localized ECPEs for downstream risk analysis. These
results, together with results from Research Article 1, indicate that infrastructure
and agricultural assets are more often exposed to extreme convective rain rates
than traditional rain gauge observation networks suggest.
The weather type analysis shows that approximately 60 % of all analyzed damage1

in 480 southeastern Austrian municipalities were reported to the national disaster
fund under convective weather types. The fact that those damages are often not
captured in precipitation observations is an important constraint to using precip-
itation observations to define thresholds. Often, the sensitivity of a system to
trigger an event of some kind is inferred from relating event data to precipitation
observations and identifying a critical threshold, e.g., for damage occurrence (e.g.,
Cortès et al., 2018), or debris flow initialization (Marra et al., 2017; Segoni et al.,
2018). Especially if the event is sensitive to highly intense precipitation on small
spatiotemporal scales, identified thresholds might be inaccurate.

Research Article 2 further shows that damage from events of smaller magni-
tude accumulates to significant financial burdens. Moftakhari et al. (2018) argue
that defining a category of so-called nuisance flooding (NF) provides a useful con-
cept to consider the consequences of high-frequency, low-magnitude events. They
state that “[a]lthough individual NF events are not expected to lead to disaster
declarations, defining NF offers the potential for providing Federal [sic] funding for
major cumulative impacts resulting from chronic NF”. The high damage shares
where no significantly high precipitation or runoff levels are observed indicate that
nuisance-level events causing minor damages are a relevant phenomenon also in the
Alpine region. Further research is needed, however, to distinguish true nuisance
flooding from cases where high hazard levels are just not accurately represented

1The considered damage includes claims associated with hydro-meteorological hazards flooding,
landslides, and debris flows during 1 April–30 November from 1990–2015
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in observations. As underestimation of observed rainfall is of particular concern
under convective conditions, the relations of ECPEs and nuisance level events are
particularly interesting. In order to better understand nuisance level events in
the Alpine region, the different types of hazards (e.g., rainwater intrusion, surface
water floods, flash floods, river floods) need better understanding.

It is furthermore essential to analyze the vulnerabilities towards ECPEs related
hazards. The differences in damage numbers under the different weather types and
among municipality groups indicate that there are distinct patterns of susceptibility
for both ECPEs and large-scale precipitation events. Analyzing the complex chains
of interaction of hazard and vulnerabilities is key to understanding impacts from
natural hazards (AghaKouchak et al., 2018; Sillmann et al., 2018). This reaches
from precipitation to runoff generation, and from identifying exposed areas to
understanding highly variable socio-economic vulnerabilities. A deeper analysis of
the drivers of risk, however, is currently hampered by the lack of high resolution
data. Uncertainties regarding patterns of vulnerability likely exceed the factor
of precipitation uncertainty, and include many facets such as the vulnerability of
buildings (Ettinger et al., 2016; Fuchs et al., 2015), dynamic adaptation effects
(Aerts et al., 2018; Kreibich et al., 2017), and even adverse impacts from structural
protection measures (Di Baldassarre et al., 2018; Mård et al., 2018).

These studies demonstrate the high level on which risk analyses are already
done. However, the small scales of localized extreme precipitation make it in-
herently difficult to compile the data necessary to disentangle the factors of risk
on scales beyond case study examples, although some progress has been made.
Responding to the need for better data on regional scales, Amponsah et al. (2018)
provide a dataset which includes comprehensive data of flash flood events in the
Mediterranean region in order to facilitate research on various aspects of the rain-
fall to runoff process. To advance our understanding of the risk from ECPEs,
combining the weather type approach applied here with building-level vulnerabili-
ties (e.g., Fuchs et al., 2015) and address-based distinction of surface water floods
(e.g., Bernet et al., 2017) pose challenging, but promising directions for future
research.

The urgency to better understand the risk from ECPEs is augmented by
the fact that extreme convective precipitation is generally expected to increase
with global climate change (see Chapter 2) and that observed sub-daily rain rates
in extreme precipitation events in southeastern Austria are strongly and posi-
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tively related to temperature. This is shown in Research Article 3 (Schroeer
and Kirchengast, 2018). First and foremost, however, it is crucial to understand
and acknowledge the fundamentally different approaches that go by the name of
temperature-precipitation scaling, or temperature sensitivity of precipitation (T/P-
scaling) (see Section 2.2.3) that are rarely explicitly discussed in the literature (e.g.,
by Wang et al., 2017; Zhang et al., 2017). Research Article 3 contributes to the
debate in two ways. First, it reveals and discusses the regional and seasonal pat-
terns that govern the scaling rates at the regional-to-local level. These exemplify
the contribution of circulation patterns and highlight common misinterpretations
when deriving climate change effects from instantaneous local scaling rates, i.e.,
from regressing same-day precipitation and temperature observations. Second, it
works out the relevance of the absolute scale of precipitation changes (c.f. Figure
4.3.5). This is a facet often overlooked by the physical science community but
highly relevant from an impact perspective. Depending on the temperature range
and definition of extreme (e.g., whether a high percentile is calculated including
or excluding dry observations (Schär et al., 2016)), a high T/P-scaling rate is not
necessarily related to high absolute increases.
Although no temporal trends were considered in the analysis, the strong positive
scaling rates indicate potential for precipitation extremes to become more intense
as temperatures continue to rise with global climate change. In general, scaling
rates refer to the intensity and not the frequency of extreme events, however,
both are relevant factors. Thermodynamics constrain the atmospheric water va-
por availability, but dynamic processes direct large scale moisture transport and
influence local relative humidity and precipitation efficiency. While both forcings
are implicit in scaling rates derived from observations, expectations based on the
Clausius-Clapeyron (CC) equation are limited to the thermodynamic component.
Further research is thus needed on how patterns of large-scale circulation now and
in the future interact with storm initialization to fully understand the potential
for changes in extreme precipitation at the regional-to-local scale.

In summary, this thesis showed that the risk from ECPEs is substantial in the
southeastern Alpine forelands and several sources of uncertainty were identified.
These are related to observing ECPEs using rain gauge networks, but uncertainty
also exists with regard to societies’ vulnerability and ability to cope with such events.
It is empirically substantiated that rain gauge spacing of 10 km and more cannot
accurately resolve the scales of intense precipitation from ECPEs; as a consequence,
event maximum area precipitation intensities are strongly underestimated when
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derived from such networks. The damage potential of ECPEs is demonstrated
to be significant, as events under convective weather types are associated with
approximately two thirds of all damage claims during April–November. The high
local temperature sensitivities of sub-hourly precipitation intensities in ECPEs
indicate the potential that risk from ECPEs might increase in the future. Spatio-
temporal patterns of T/P-scaling attest the importance of dynamic processes on
the precipitation response to warmer temperatures and underline the need for
better understanding.
The identified uncertainties have consequences for other fields such as hydrology
and risk management, because the risk from such events might be underestimated.
Not only scientists, but also practitioners will profit from further exploring the role
of ECPEs. All aspects explored in this thesis will immensely benefit from better
and higher resolved data. The weather type classes applied comprise convective
precipitation under different atmospheric flow patterns for the purpose of an initial
discrimination of precipitation types. However, a more detailed and process-based
analysis of the atmospheric patterns will help to understand which processes in
particular are important drivers of ECPEs. Such patterns can then be analyzed
also in climate models to infer potential future developments.
It is further argued in this thesis that the goal of T/P-scaling studies should not
be to prove the CC equation through obtaining a rate as close as possible to CC
scaling. Instead, the goal should be to better understand the drivers and processes
that determine the character and frequency of extreme precipitation events. This
applies both to what we have to expect in present times, and to how patterns
might change in the future. While isolating CC scaling from other factors can be
one step in achieving this, other factors such as potential shifts in seasonality of
extreme events also need to be considered (Brönnimann et al., 2018).
In order to fully comprehend regional-to-local sensitivities of extreme precipitation
to climate change as well as to understand the risk from extreme precipitation
events to society, dynamical and feedback processes of both physical and socio-
economic systems need to be analyzed across scales. An integrative perspective
on both the hazard and the impacts, as propounded on the example of ECPEs in
this thesis, presents a promising approach to achieve this.
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Supplementary information to Schroeer, K. and Tye, M.R.: Quantifying damage 

contributions from convective and stratiform weather types: how well do 

precipitation and discharge data indicate the risk? 

Contents: 

1. Figure 1: Discharge anomalies associated with weather types

2. Table S1: Summary statistics of gauge records

3. Table S2: Information rain gauges (sub-daily precipitation)

4. Table S3:  Information rain gauges (daily precipitation)

5. Table S4: Information stream gauges (daily observations)

Figure 1: Average monthly discharge anomalies associated with the different weather types over all 
stream gauges. Horizontal green lines show the average weather-type specific deviation from the long-
term climatological mean (horizontal black lines); green boxes denote the 90% confidence intervals of  
the sample means. 
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Table S 1: Summary statistics of gauge records 

Number 
gauges 

Median 
record 
length 

Record lengths 
5th and 95th 
percentile 

Median 
Missing data 
study period 

Missing data 
study period 
5th and 
95th 
percentile 

Sub-daily 
precipitation 

72 13 [6.2, 22.3] 0.4 [0.0, 6.6] 

Daily 
precipitation 

108 40 [17, 114] 0.0 [0.0, 4.0] 

Stream 
gauges 

61 40 [20, 63] 0.0 [0.0, 0.0] 

Appendix
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Table S 2: Information rain gauges (sub-daily precipitation)  

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 6.3 ZAMG 46.69 15.98  
2 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.8 ZAMG 47.11 14.18  
3 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.7 ZAMG 47.07 15.59  
4 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.6 ZAMG 47.08 15.45  
5 1993-02-16 13:30:00 2014-12-26 23:50:00 21.9 3.3 ZAMG 47.20 15.47  
6 1993-07-29 11:10:00 2014-12-26 23:50:00 21.4 1.8 ZAMG 47.07 14.42  
7 1994-10-24 13:30:00 2014-12-26 23:50:00 20.2 1.6 ZAMG 46.82 15.23  
8 1994-10-24 13:10:00 2014-12-26 23:50:00 20.2 1.2 ZAMG 47.28 15.98  
9 1997-02-17 12:40:00 2014-12-26 23:50:00 17.9 1 ZAMG 47.45 15.30  
10 1997-09-01 00:10:00 2014-12-26 23:50:00 17.3 0.5 ZAMG 47.20 14.75  
11 1999-08-16 09:30:00 2014-12-26 23:50:00 15.4 0.4 ZAMG 46.95 15.88  
12 2001-11-08 16:10:00 2014-12-26 23:50:00 13.1 0.9 ZAMG 47.27 14.78  
13 2002-07-31 14:20:00 2014-12-26 23:50:00 12.4 0.7 ZAMG 47.18 15.49  
14 2003-04-08 16:10:00 2014-12-26 23:50:00 11.7 0.4 ZAMG 46.87 15.90  
15 2003-11-03 12:10:00 2014-12-26 23:50:00 11.2 0.3 ZAMG 46.77 15.55  
16 2004-10-28 14:50:00 2014-12-26 23:50:00 10.2 3.6 ZAMG 47.41 15.25  
17 2004-10-31 20:10:00 2014-12-26 23:50:00 10.2 3.3 ZAMG 47.07 15.09  
18 2004-11-09 12:10:00 2014-12-26 23:50:00 10.1 1 ZAMG 47.44 15.64  
19 2007-05-09 10:00:00 2014-12-26 23:50:00 7.6 2 ZAMG 47.03 16.08  
20 2007-05-08 08:40:00 2014-12-26 23:50:00 7.6 0.3 ZAMG 47.12 15.71  
21 2007-07-20 17:00:00 2014-12-26 23:50:00 7.4 0.9 ZAMG 47.20 14.29  
22 2007-07-24 12:00:00 2014-12-26 23:50:00 7.4 0.1 ZAMG 47.12 14.19  
23 2007-11-07 10:00:00 2014-12-26 23:50:00 7.1 0.2 ZAMG 47.05 15.41  
24 2008-09-05 14:50:00 2014-12-26 23:50:00 6.3 0.4 ZAMG 47.26 15.31  
25 2008-08-25 12:30:00 2014-12-26 23:50:00 6.3 0.3 ZAMG 46.99 15.45  
26 2008-11-10 15:40:00 2014-12-26 23:50:00 6.1 0.4 ZAMG 47.40 15.94  
27 2012-10-04 13:20:00 2014-12-26 23:50:00 2.2 0.6 ZAMG 47.38 15.09  
28 1982-06-01 07:00:00 2015-01-28 06:20:00 32.7 6.5 AHYD 47.33 15.81  
29 1990-04-04 08:00:00 2015-01-01 00:00:00 24.8 24.4 AHYD 47.57 14.24  
30 1999-01-01 07:00:00 2014-12-30 23:50:00 16 8.3 AHYD 46.65 15.50  
31 1999-06-19 08:00:00 2015-01-27 23:50:00 15.6 0.1 AHYD 47.48 14.53  
32 2000-01-01 07:00:00 2014-12-30 23:50:00 15 6.7 AHYD 47.14 15.06  
33 2000-01-01 07:00:00 2015-01-01 06:50:00 15 1.7 AHYD 47.35 15.69  
34 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0.6 AHYD 46.81 15.33  
35 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0.1 AHYD 47.38 14.71  
36 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0 AHYD 47.06 14.88  
37 2000-01-01 07:00:00 2015-01-01 06:50:00 15 0 AHYD 47.17 16.01  
38 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0 AHYD 46.90 15.26  
39 2000-01-01 07:00:00 2015-01-01 06:50:00 15 0 AHYD 47.38 16.00  
40 2000-07-01 07:00:00 2015-01-01 06:50:00 14.5 0.1 AHYD 47.49 15.92  
41 2000-08-01 00:00:00 2014-12-30 23:50:00 14.4 0.1 AHYD 47.55 15.79  
42 2000-08-01 00:00:00 2014-12-30 23:50:00 14.4 0 AHYD 47.15 15.24  
43 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 47.52 15.47  
44 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 46.79 15.45  
45 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 46.69 15.09  
46 2001-01-01 07:00:00 2015-01-01 06:50:00 14 0 AHYD 47.22 15.76  
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47 2000-01-02 07:00:00 2013-06-20 13:10:00 13.5 0 AHYD 47.11 14.95  
48 2001-10-01 07:00:00 2015-01-27 23:50:00 13.3 0 AHYD 47.74 15.48  
49 2001-07-26 11:10:00 2014-10-16 06:50:00 13.2 3.2 AHYD 47.61 14.85  
50 2002-01-01 07:00:00 2014-12-30 23:50:00 13 4.4 AHYD 47.20 14.28  
51 2002-01-02 00:00:00 2014-12-30 23:50:00 13 0.4 AHYD 47.28 14.93  
52 2002-01-01 07:00:00 2015-01-01 06:50:00 13 0 AHYD 46.85 15.97  
53 2002-06-19 08:00:00 2015-01-18 10:40:00 12.6 0.6 AHYD 47.38 14.12  
54 2002-06-19 08:00:00 2015-01-27 23:50:00 12.6 0.1 AHYD 47.51 14.83  
55 2003-07-17 17:10:00 2014-12-30 12:50:00 11.5 0 AHYD 47.41 13.89  
56 2003-10-01 00:00:00 2015-01-01 06:50:00 11.3 0 AHYD 46.92 15.68  
57 2003-12-31 07:00:00 2014-12-30 23:50:00 11 0.2 AHYD 47.39 15.44  
58 2003-12-31 07:00:00 2014-12-30 23:50:00 11 0 AHYD 47.17 14.66  
59 2004-01-01 07:00:00 2015-01-01 06:50:00 11 0 AHYD 47.15 15.66  
60 2004-01-01 07:00:00 2015-01-01 06:50:00 11 0 AHYD 47.29 16.05  
61 2004-04-30 07:00:00 2014-12-30 23:50:00 10.7 0 AHYD 47.27 15.32  
62 2004-10-01 07:00:00 2014-12-30 23:50:00 10.3 1.4 AHYD 47.11 14.60  
63 2005-06-19 08:00:00 2015-01-27 23:50:00 9.6 0.1 AHYD 47.43 14.49  
64 2005-07-01 07:00:00 2015-01-01 00:00:00 9.5 10.5 AHYD 47.66 14.98  
65 2005-11-01 07:00:00 2014-12-30 23:50:00 9.2 0.7 AHYD 46.80 15.76  
66 2005-12-31 07:00:00 2015-01-01 06:50:00 9 0.5 AHYD 47.06 16.01  
67 2006-01-01 07:00:00 2015-01-01 00:00:00 9 0 AHYD 47.39 13.66  
68 2006-06-19 08:00:00 2015-01-27 23:50:00 8.6 0 AHYD 47.59 14.63  
69 2007-01-01 07:00:00 2014-12-30 23:50:00 8 0.4 AHYD 46.92 13.88  
70 2007-09-17 13:50:00 2014-12-30 23:50:00 7.3 0 AHYD 47.11 15.42  
71 2010-01-01 07:00:00 2015-01-01 06:50:00 5 0 AHYD 47.49 15.67  
72 2010-11-16 15:40:00 2015-01-01 00:00:00 4.1 0 AHYD 47.37 13.72  
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Table S 3: Information rain gauges (daily precipitation). List includes 72 gauges from Table S 2, but record  

lengths are given for the daily observation records. Daily observations are available from an additional 80  

rain gauges.   

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1983-05-01 00:00:00 2017-02-07 00:00:00 33.8 0.3 ZAMG 47.55 15.24  
2 1999-04-01 00:00:00 2017-02-07 00:00:00 17.9 0.8 ZAMG 47.63 15.83  
3 2000-09-30 00:00:00 2017-02-06 00:00:00 16.4 0.3 ZAMG 47.52 14.95  
4 2008-09-08 00:00:00 2017-02-07 00:00:00 8.4 0 ZAMG 47.60 15.67  
5 1900-01-00 00:00:00 2014-12-31 00:00:00 115.1 0 AHYD 46.90 15.26  
6 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 14.3 AHYD 46.93 15.67  
7 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 5.3 AHYD 47.27 15.32  
8 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 4 AHYD 47.22 15.39  
9 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.79 15.45  
10 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.17 16.01  
11 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.46 14.68  
12 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.82 15.45  
13 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.10 15.83  
14 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.07 14.69  
15 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.69 15.26  
16 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.06 14.30  
17 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.02 14.92  
18 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.99 15.21  
19 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.07 15.07  
20 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.81 15.87  
21 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.53 15.78  
22 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.36 14.47  
23 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.20 14.44  
24 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.67 15.47  
25 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.47 15.50  
26 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.53 15.08  
27 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.58 15.50  
28 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.28 15.97  
29 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.47 15.79  
30 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.21 15.82  
31 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.40 15.89  
32 1902-01-01 00:00:00 2014-12-31 00:00:00 113.1 0 AHYD 47.40 14.82  
33 1901-01-01 00:00:00 2006-04-30 00:00:00 105.4 0 AHYD 47.31 14.94  
34 1913-01-01 00:00:00 2014-12-31 00:00:00 102.1 0 AHYD 47.27 14.71  
35 1927-07-01 00:00:00 2014-12-31 00:00:00 87.6 0 AHYD 47.43 15.01  
36 1929-06-01 00:00:00 2014-12-31 00:00:00 85.6 0 AHYD 46.80 15.76  
37 1930-01-01 00:00:00 2014-12-31 00:00:00 85.1 0 AHYD 46.98 14.99  
38 1930-01-01 00:00:00 2014-12-31 00:00:00 85.1 0 AHYD 46.93 15.01  
39 1933-01-01 00:00:00 2014-12-31 00:00:00 82.1 0 AHYD 47.15 15.24  
40 1936-01-01 00:00:00 2014-12-31 00:00:00 79.1 0 AHYD 46.65 15.46  
41 1946-01-01 00:00:00 2014-12-31 00:00:00 69 0 AHYD 47.10 15.41  
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42 1947-03-01 00:00:00 2014-12-31 00:00:00 67.9 0 AHYD 47.17 14.66  
43 1947-07-01 00:00:00 2014-12-31 00:00:00 67.5 0 AHYD 47.39 15.44  
44 1948-01-01 00:00:00 2014-12-31 00:00:00 67 1.7 AHYD 47.01 14.53  
45 1951-11-01 00:00:00 2014-12-31 00:00:00 63.2 0 AHYD 46.95 15.33  
46 1952-01-01 00:00:00 2014-12-31 00:00:00 63 0 AHYD 47.66 15.70  
47 1954-08-01 00:00:00 2014-12-31 00:00:00 60.5 4 AHYD 46.75 15.16  
48 1955-01-01 00:00:00 2014-12-31 00:00:00 60 0 AHYD 46.71 16.02  
49 1955-11-01 00:00:00 2014-12-31 00:00:00 59.2 0 AHYD 47.00 15.94  
50 1971-01-01 00:00:00 2014-12-31 00:00:00 44 4 AHYD 47.11 14.60  
51 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 47.14 15.33  
52 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 47.44 16.05  
53 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 46.72 15.91  
54 1961-01-01 00:00:00 2003-01-31 00:00:00 42.1 0 AHYD 47.20 14.28  
55 1974-01-01 00:00:00 2014-12-31 00:00:00 41 0 AHYD 47.07 15.13  
56 1974-07-01 00:00:00 2014-12-31 00:00:00 40.5 0 AHYD 47.07 13.98  
57 1961-01-01 00:00:00 2001-01-31 00:00:00 40.1 9 AHYD 47.58 15.14  
58 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 46.74 15.62  
59 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 47.31 15.84  
60 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 47.38 15.79  
61 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 46.93 16.02  
62 1977-01-01 00:00:00 2014-12-31 00:00:00 38 0 AHYD 47.07 16.00  
63 1977-05-01 00:00:00 2014-12-31 00:00:00 37.7 0 AHYD 46.72 15.26  
64 1971-01-01 00:00:00 2008-06-30 00:00:00 37.5 0 AHYD 47.35 14.31  
65 1979-01-01 00:00:00 2014-12-31 00:00:00 36 0 AHYD 47.23 15.15  
66 1980-01-01 00:00:00 2014-12-31 00:00:00 35 0 AHYD 47.08 15.21  
67 1981-01-01 00:00:00 2014-12-31 00:00:00 34 0 AHYD 47.30 15.51  
68 1981-01-01 00:00:00 2014-12-31 00:00:00 34 0 AHYD 46.82 15.72  
69 1957-07-01 00:00:00 1990-12-31 00:00:00 33.5 0 AHYD 47.57 15.23  
70 1982-01-01 00:00:00 2014-12-31 00:00:00 33 0 AHYD 47.46 15.99  
71 1984-01-01 00:00:00 2014-12-31 00:00:00 32.7 0 AHYD 47.33 15.81  
72 1971-01-01 00:00:00 2002-12-31 00:00:00 32 1.9 AHYD 46.85 15.97  
73 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.69 15.09  
74 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 47.20 15.17  
75 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.75 15.21  
76 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.67 15.17  
77 1985-01-01 00:00:00 2014-12-31 00:00:00 30 12 AHYD 46.82 15.14  
78 1975-01-01 00:00:00 2004-12-31 00:00:00 30 0 AHYD 46.76 15.37  
79 1985-01-01 00:00:00 2014-12-31 00:00:00 30 0 AHYD 46.86 15.08  
80 1986-10-01 00:00:00 2014-12-31 00:00:00 28.3 0 AHYD 46.83 15.31  
81 1987-01-01 00:00:00 2014-12-31 00:00:00 28 0 AHYD 46.71 15.46  
82 1987-01-01 00:00:00 2014-12-31 00:00:00 28 0 AHYD 46.92 15.10  
83 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 47.31 15.48  
84 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 46.74 15.09  
85 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 47.18 14.81  
86 1990-01-01 00:00:00 2014-12-31 00:00:00 25 0 AHYD 47.49 15.67  
87 1990-01-01 00:00:00 2014-12-31 00:00:00 25 0 AHYD 46.99 15.87  
88 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.11 14.95  
89 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.01 15.39  
90 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.37 15.34  
91 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.55 15.11  
92 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.65 15.50  
93 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.14 15.06  
94 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.22 15.33  
95 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.88 15.07  
96 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.82 15.25  
97 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.10 14.64  
98 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.15 14.85  
99 1996-01-01 00:00:00 2014-12-31 00:00:00 19 0 AHYD 47.15 15.66  
100 1997-01-01 00:00:00 2014-12-31 00:00:00 18 0 AHYD 47.35 15.69  
101 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 46.81 15.33  
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102 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 46.92 13.88  
103 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.06 15.42  
104 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.20 14.62  
105 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.62 15.27  
106 1999-03-01 00:00:00 2014-12-31 00:00:00 15.8 14.2 AHYD 47.49 15.92  
107 1994-01-01 00:00:00 2002-02-28 00:00:00 14.4 0 AHYD 47.55 15.79  
108 2011-12-01 00:00:00 2014-12-31 00:00:00 14 0 AHYD 47.52 15.45  
  

Table S 4: Information stream gauges (daily observations)  

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1951-01-01 00:00:00 2014-12-31 00:00:00 64 0 AHYD 47.21 14.54  
2 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.02 16.14  
3 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.96 15.89  
4 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.22 14.58  
5 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.38 15.09  
6 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.47 15.25  
7 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.96 15.35  
8 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.76 15.21  
9 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.72 15.27  
10 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.78 15.53  
11 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.21 16.09  
12 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.17 16.01  
13 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.28 15.69  
14 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.08 15.94  
15 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.11 14.21  
16 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.43 15.26  
17 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 46.81 15.52  
18 1966-01-01 00:00:00 2014-12-31 00:00:00 49 0 AHYD 47.03 15.45  
19 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.18 15.67  
20 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.38 16.00  
21 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.19 14.75  
22 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.39 14.91  
23 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.39 15.03  
24 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.53 15.47  
25 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.05 15.15  
26 1967-01-01 00:00:00 2013-12-30 00:00:00 47 0 AHYD 47.41 15.28  
27 1968-01-01 00:00:00 2013-12-30 00:00:00 46 0 AHYD 47.04 15.76  
28 1969-01-01 00:00:00 2013-12-30 00:00:00 45 0 AHYD 46.76 15.67  
29 1971-01-01 00:00:00 2013-12-30 00:00:00 43 0 AHYD 47.43 15.27  
30 1972-01-01 00:00:00 2013-12-30 00:00:00 42 0 AHYD 47.25 15.51  
31 1974-01-01 00:00:00 2013-12-30 00:00:00 40 0 AHYD 46.71 15.79  
32 1976-01-01 00:00:00 2013-12-30 00:00:00 38 0 AHYD 46.73 15.85  
33 1977-01-01 00:00:00 2013-12-30 00:00:00 37 0 AHYD 47.29 16.09  
34 1979-01-01 00:00:00 2013-12-30 00:00:00 35 0 AHYD 46.99 16.21  
35 1980-01-01 00:00:00 2013-12-30 00:00:00 34 0 AHYD 47.17 15.62  
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36 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.31 15.83  
37 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.29 15.84  
38 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.20 15.34  
39 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 46.72 15.41  
40 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 46.83 15.26  
41 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 47.33 16.05  
42 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 47.25 15.52  
43 1984-01-01 00:00:00 2013-12-30 00:00:00 30 0 AHYD 47.15 15.67  
44 1987-01-01 00:00:00 2013-12-30 00:00:00 27 4.7 AHYD 47.52 15.79  
45 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.37 16.12  
46 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.13 14.74  
47 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.16 15.32  
48 1989-01-01 00:00:00 2013-12-30 00:00:00 25 0 AHYD 46.84 15.38  
49 1989-01-01 00:00:00 2013-12-30 00:00:00 25 0 AHYD 46.83 15.26  
50 1990-01-01 00:00:00 2013-12-30 00:00:00 24 0 AHYD 46.85 15.37  
51 1990-01-01 00:00:00 2013-12-30 00:00:00 24 0 AHYD 46.90 15.49  
52 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 46.93 16.16  
53 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 47.48 15.47  
54 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 47.10 15.68  
55 1993-01-01 00:00:00 2013-12-30 00:00:00 21 0 AHYD 46.89 15.57  
56 1993-01-01 00:00:00 2013-12-30 00:00:00 21 0 AHYD 46.75 15.37  
57 1994-01-01 00:00:00 2013-12-30 00:00:00 20 0 AHYD 47.25 14.76  
58 1994-01-01 00:00:00 2013-12-30 00:00:00 20 0 AHYD 46.70 15.27  
59 1995-01-01 00:00:00 2013-12-30 00:00:00 19 0 AHYD 47.03 15.30  
60 2000-06-20 00:00:00 2013-12-30 00:00:00 13.5 0 AHYD 47.14 14.28  
61 2003-09-02 00:00:00 2013-12-30 00:00:00 10.3 0 AHYD 47.15 14.37  
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Supplementary information to Schroeer, K. and Tye, M.R.: Quantifying damage  

contributions from convective and stratiform weather types: how well do  

precipitation and discharge data indicate the risk?  
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1. Figure S1: Discharge anomalies associated with weather types  
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Figure 1: Average monthly discharge anomalies associated with the different weather types over all  
stream gauges. Horizontal green lines show the average weather-type specific deviation from the long- 
term climatological mean (horizontal black lines); green boxes denote the 90% confidence intervals of  
the sample means.  
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Table S 1: Summary statistics of gauge records  

 
Number 
gauges 

Median 
record 
length 

Record lengths 
5th and 95th 
percentile 

Median 
Missing data 
study period 

Missing data 
study period 
5th and 
95th 
percentile 

Sub-daily  
precipitation 

72 13 [6.2, 22.3] 0.4 [0.0, 6.6] 

Daily 
precipitation 

108 40 [17, 114] 0.0 [0.0, 4.0] 

Stream 
gauges 

61 40 [20, 63] 0.0 [0.0, 0.0] 
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Table S 2: Information rain gauges (sub-daily precipitation)  

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 6.3 ZAMG 46.69 15.98  
2 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.8 ZAMG 47.11 14.18  
3 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.7 ZAMG 47.07 15.59  
4 1992-08-29 00:10:00 2014-12-26 23:50:00 22.3 1.6 ZAMG 47.08 15.45  
5 1993-02-16 13:30:00 2014-12-26 23:50:00 21.9 3.3 ZAMG 47.20 15.47  
6 1993-07-29 11:10:00 2014-12-26 23:50:00 21.4 1.8 ZAMG 47.07 14.42  
7 1994-10-24 13:30:00 2014-12-26 23:50:00 20.2 1.6 ZAMG 46.82 15.23  
8 1994-10-24 13:10:00 2014-12-26 23:50:00 20.2 1.2 ZAMG 47.28 15.98  
9 1997-02-17 12:40:00 2014-12-26 23:50:00 17.9 1 ZAMG 47.45 15.30  
10 1997-09-01 00:10:00 2014-12-26 23:50:00 17.3 0.5 ZAMG 47.20 14.75  
11 1999-08-16 09:30:00 2014-12-26 23:50:00 15.4 0.4 ZAMG 46.95 15.88  
12 2001-11-08 16:10:00 2014-12-26 23:50:00 13.1 0.9 ZAMG 47.27 14.78  
13 2002-07-31 14:20:00 2014-12-26 23:50:00 12.4 0.7 ZAMG 47.18 15.49  
14 2003-04-08 16:10:00 2014-12-26 23:50:00 11.7 0.4 ZAMG 46.87 15.90  
15 2003-11-03 12:10:00 2014-12-26 23:50:00 11.2 0.3 ZAMG 46.77 15.55  
16 2004-10-28 14:50:00 2014-12-26 23:50:00 10.2 3.6 ZAMG 47.41 15.25  
17 2004-10-31 20:10:00 2014-12-26 23:50:00 10.2 3.3 ZAMG 47.07 15.09  
18 2004-11-09 12:10:00 2014-12-26 23:50:00 10.1 1 ZAMG 47.44 15.64  
19 2007-05-09 10:00:00 2014-12-26 23:50:00 7.6 2 ZAMG 47.03 16.08  
20 2007-05-08 08:40:00 2014-12-26 23:50:00 7.6 0.3 ZAMG 47.12 15.71  
21 2007-07-20 17:00:00 2014-12-26 23:50:00 7.4 0.9 ZAMG 47.20 14.29  
22 2007-07-24 12:00:00 2014-12-26 23:50:00 7.4 0.1 ZAMG 47.12 14.19  
23 2007-11-07 10:00:00 2014-12-26 23:50:00 7.1 0.2 ZAMG 47.05 15.41  
24 2008-09-05 14:50:00 2014-12-26 23:50:00 6.3 0.4 ZAMG 47.26 15.31  
25 2008-08-25 12:30:00 2014-12-26 23:50:00 6.3 0.3 ZAMG 46.99 15.45  
26 2008-11-10 15:40:00 2014-12-26 23:50:00 6.1 0.4 ZAMG 47.40 15.94  
27 2012-10-04 13:20:00 2014-12-26 23:50:00 2.2 0.6 ZAMG 47.38 15.09  
28 1982-06-01 07:00:00 2015-01-28 06:20:00 32.7 6.5 AHYD 47.33 15.81  
29 1990-04-04 08:00:00 2015-01-01 00:00:00 24.8 24.4 AHYD 47.57 14.24  
30 1999-01-01 07:00:00 2014-12-30 23:50:00 16 8.3 AHYD 46.65 15.50  
31 1999-06-19 08:00:00 2015-01-27 23:50:00 15.6 0.1 AHYD 47.48 14.53  
32 2000-01-01 07:00:00 2014-12-30 23:50:00 15 6.7 AHYD 47.14 15.06  
33 2000-01-01 07:00:00 2015-01-01 06:50:00 15 1.7 AHYD 47.35 15.69  
34 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0.6 AHYD 46.81 15.33  
35 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0.1 AHYD 47.38 14.71  
36 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0 AHYD 47.06 14.88  
37 2000-01-01 07:00:00 2015-01-01 06:50:00 15 0 AHYD 47.17 16.01  
38 2000-01-01 07:00:00 2014-12-30 23:50:00 15 0 AHYD 46.90 15.26  
39 2000-01-01 07:00:00 2015-01-01 06:50:00 15 0 AHYD 47.38 16.00  
40 2000-07-01 07:00:00 2015-01-01 06:50:00 14.5 0.1 AHYD 47.49 15.92  
41 2000-08-01 00:00:00 2014-12-30 23:50:00 14.4 0.1 AHYD 47.55 15.79  
42 2000-08-01 00:00:00 2014-12-30 23:50:00 14.4 0 AHYD 47.15 15.24  
43 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 47.52 15.47  
44 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 46.79 15.45  
45 2001-01-01 07:00:00 2014-12-30 23:50:00 14 0 AHYD 46.69 15.09  
46 2001-01-01 07:00:00 2015-01-01 06:50:00 14 0 AHYD 47.22 15.76  
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47 2000-01-02 07:00:00 2013-06-20 13:10:00 13.5 0 AHYD 47.11 14.95  
48 2001-10-01 07:00:00 2015-01-27 23:50:00 13.3 0 AHYD 47.74 15.48  
49 2001-07-26 11:10:00 2014-10-16 06:50:00 13.2 3.2 AHYD 47.61 14.85  
50 2002-01-01 07:00:00 2014-12-30 23:50:00 13 4.4 AHYD 47.20 14.28  
51 2002-01-02 00:00:00 2014-12-30 23:50:00 13 0.4 AHYD 47.28 14.93  
52 2002-01-01 07:00:00 2015-01-01 06:50:00 13 0 AHYD 46.85 15.97  
53 2002-06-19 08:00:00 2015-01-18 10:40:00 12.6 0.6 AHYD 47.38 14.12  
54 2002-06-19 08:00:00 2015-01-27 23:50:00 12.6 0.1 AHYD 47.51 14.83  
55 2003-07-17 17:10:00 2014-12-30 12:50:00 11.5 0 AHYD 47.41 13.89  
56 2003-10-01 00:00:00 2015-01-01 06:50:00 11.3 0 AHYD 46.92 15.68  
57 2003-12-31 07:00:00 2014-12-30 23:50:00 11 0.2 AHYD 47.39 15.44  
58 2003-12-31 07:00:00 2014-12-30 23:50:00 11 0 AHYD 47.17 14.66  
59 2004-01-01 07:00:00 2015-01-01 06:50:00 11 0 AHYD 47.15 15.66  
60 2004-01-01 07:00:00 2015-01-01 06:50:00 11 0 AHYD 47.29 16.05  
61 2004-04-30 07:00:00 2014-12-30 23:50:00 10.7 0 AHYD 47.27 15.32  
62 2004-10-01 07:00:00 2014-12-30 23:50:00 10.3 1.4 AHYD 47.11 14.60  
63 2005-06-19 08:00:00 2015-01-27 23:50:00 9.6 0.1 AHYD 47.43 14.49  
64 2005-07-01 07:00:00 2015-01-01 00:00:00 9.5 10.5 AHYD 47.66 14.98  
65 2005-11-01 07:00:00 2014-12-30 23:50:00 9.2 0.7 AHYD 46.80 15.76  
66 2005-12-31 07:00:00 2015-01-01 06:50:00 9 0.5 AHYD 47.06 16.01  
67 2006-01-01 07:00:00 2015-01-01 00:00:00 9 0 AHYD 47.39 13.66  
68 2006-06-19 08:00:00 2015-01-27 23:50:00 8.6 0 AHYD 47.59 14.63  
69 2007-01-01 07:00:00 2014-12-30 23:50:00 8 0.4 AHYD 46.92 13.88  
70 2007-09-17 13:50:00 2014-12-30 23:50:00 7.3 0 AHYD 47.11 15.42  
71 2010-01-01 07:00:00 2015-01-01 06:50:00 5 0 AHYD 47.49 15.67  
72 2010-11-16 15:40:00 2015-01-01 00:00:00 4.1 0 AHYD 47.37 13.72  
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Table S 3: Information rain gauges (daily precipitation). List includes 72 gauges from Table S 2, but record  

lengths are given for the daily observation records. Daily observations are available from an additional 80  

rain gauges.   

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1983-05-01 00:00:00 2017-02-07 00:00:00 33.8 0.3 ZAMG 47.55 15.24  
2 1999-04-01 00:00:00 2017-02-07 00:00:00 17.9 0.8 ZAMG 47.63 15.83  
3 2000-09-30 00:00:00 2017-02-06 00:00:00 16.4 0.3 ZAMG 47.52 14.95  
4 2008-09-08 00:00:00 2017-02-07 00:00:00 8.4 0 ZAMG 47.60 15.67  
5 1900-01-00 00:00:00 2014-12-31 00:00:00 115.1 0 AHYD 46.90 15.26  
6 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 14.3 AHYD 46.93 15.67  
7 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 5.3 AHYD 47.27 15.32  
8 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 4 AHYD 47.22 15.39  
9 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.79 15.45  
10 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.17 16.01  
11 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.46 14.68  
12 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.82 15.45  
13 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.10 15.83  
14 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.07 14.69  
15 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.69 15.26  
16 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.06 14.30  
17 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.02 14.92  
18 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.99 15.21  
19 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.07 15.07  
20 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 46.81 15.87  
21 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.53 15.78  
22 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.36 14.47  
23 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.20 14.44  
24 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.67 15.47  
25 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.47 15.50  
26 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.53 15.08  
27 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.58 15.50  
28 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.28 15.97  
29 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.47 15.79  
30 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.21 15.82  
31 1901-01-01 00:00:00 2014-12-31 00:00:00 114.1 0 AHYD 47.40 15.89  
32 1902-01-01 00:00:00 2014-12-31 00:00:00 113.1 0 AHYD 47.40 14.82  
33 1901-01-01 00:00:00 2006-04-30 00:00:00 105.4 0 AHYD 47.31 14.94  
34 1913-01-01 00:00:00 2014-12-31 00:00:00 102.1 0 AHYD 47.27 14.71  
35 1927-07-01 00:00:00 2014-12-31 00:00:00 87.6 0 AHYD 47.43 15.01  
36 1929-06-01 00:00:00 2014-12-31 00:00:00 85.6 0 AHYD 46.80 15.76  
37 1930-01-01 00:00:00 2014-12-31 00:00:00 85.1 0 AHYD 46.98 14.99  
38 1930-01-01 00:00:00 2014-12-31 00:00:00 85.1 0 AHYD 46.93 15.01  
39 1933-01-01 00:00:00 2014-12-31 00:00:00 82.1 0 AHYD 47.15 15.24  
40 1936-01-01 00:00:00 2014-12-31 00:00:00 79.1 0 AHYD 46.65 15.46  
41 1946-01-01 00:00:00 2014-12-31 00:00:00 69 0 AHYD 47.10 15.41  
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42 1947-03-01 00:00:00 2014-12-31 00:00:00 67.9 0 AHYD 47.17 14.66  
43 1947-07-01 00:00:00 2014-12-31 00:00:00 67.5 0 AHYD 47.39 15.44  
44 1948-01-01 00:00:00 2014-12-31 00:00:00 67 1.7 AHYD 47.01 14.53  
45 1951-11-01 00:00:00 2014-12-31 00:00:00 63.2 0 AHYD 46.95 15.33  
46 1952-01-01 00:00:00 2014-12-31 00:00:00 63 0 AHYD 47.66 15.70  
47 1954-08-01 00:00:00 2014-12-31 00:00:00 60.5 4 AHYD 46.75 15.16  
48 1955-01-01 00:00:00 2014-12-31 00:00:00 60 0 AHYD 46.71 16.02  
49 1955-11-01 00:00:00 2014-12-31 00:00:00 59.2 0 AHYD 47.00 15.94  
50 1971-01-01 00:00:00 2014-12-31 00:00:00 44 4 AHYD 47.11 14.60  
51 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 47.14 15.33  
52 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 47.44 16.05  
53 1971-01-01 00:00:00 2014-12-31 00:00:00 44 0 AHYD 46.72 15.91  
54 1961-01-01 00:00:00 2003-01-31 00:00:00 42.1 0 AHYD 47.20 14.28  
55 1974-01-01 00:00:00 2014-12-31 00:00:00 41 0 AHYD 47.07 15.13  
56 1974-07-01 00:00:00 2014-12-31 00:00:00 40.5 0 AHYD 47.07 13.98  
57 1961-01-01 00:00:00 2001-01-31 00:00:00 40.1 9 AHYD 47.58 15.14  
58 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 46.74 15.62  
59 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 47.31 15.84  
60 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 47.38 15.79  
61 1975-01-01 00:00:00 2014-12-31 00:00:00 40 0 AHYD 46.93 16.02  
62 1977-01-01 00:00:00 2014-12-31 00:00:00 38 0 AHYD 47.07 16.00  
63 1977-05-01 00:00:00 2014-12-31 00:00:00 37.7 0 AHYD 46.72 15.26  
64 1971-01-01 00:00:00 2008-06-30 00:00:00 37.5 0 AHYD 47.35 14.31  
65 1979-01-01 00:00:00 2014-12-31 00:00:00 36 0 AHYD 47.23 15.15  
66 1980-01-01 00:00:00 2014-12-31 00:00:00 35 0 AHYD 47.08 15.21  
67 1981-01-01 00:00:00 2014-12-31 00:00:00 34 0 AHYD 47.30 15.51  
68 1981-01-01 00:00:00 2014-12-31 00:00:00 34 0 AHYD 46.82 15.72  
69 1957-07-01 00:00:00 1990-12-31 00:00:00 33.5 0 AHYD 47.57 15.23  
70 1982-01-01 00:00:00 2014-12-31 00:00:00 33 0 AHYD 47.46 15.99  
71 1984-01-01 00:00:00 2014-12-31 00:00:00 32.7 0 AHYD 47.33 15.81  
72 1971-01-01 00:00:00 2002-12-31 00:00:00 32 1.9 AHYD 46.85 15.97  
73 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.69 15.09  
74 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 47.20 15.17  
75 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.75 15.21  
76 1984-01-01 00:00:00 2014-12-31 00:00:00 31 0 AHYD 46.67 15.17  
77 1985-01-01 00:00:00 2014-12-31 00:00:00 30 12 AHYD 46.82 15.14  
78 1975-01-01 00:00:00 2004-12-31 00:00:00 30 0 AHYD 46.76 15.37  
79 1985-01-01 00:00:00 2014-12-31 00:00:00 30 0 AHYD 46.86 15.08  
80 1986-10-01 00:00:00 2014-12-31 00:00:00 28.3 0 AHYD 46.83 15.31  
81 1987-01-01 00:00:00 2014-12-31 00:00:00 28 0 AHYD 46.71 15.46  
82 1987-01-01 00:00:00 2014-12-31 00:00:00 28 0 AHYD 46.92 15.10  
83 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 47.31 15.48  
84 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 46.74 15.09  
85 1988-01-01 00:00:00 2014-12-31 00:00:00 27 0 AHYD 47.18 14.81  
86 1990-01-01 00:00:00 2014-12-31 00:00:00 25 0 AHYD 47.49 15.67  
87 1990-01-01 00:00:00 2014-12-31 00:00:00 25 0 AHYD 46.99 15.87  
88 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.11 14.95  
89 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.01 15.39  
90 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.37 15.34  
91 1991-01-01 00:00:00 2014-12-31 00:00:00 24 0 AHYD 47.55 15.11  
92 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.65 15.50  
93 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.14 15.06  
94 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.22 15.33  
95 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.88 15.07  
96 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 46.82 15.25  
97 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.10 14.64  
98 1994-01-01 00:00:00 2014-12-31 00:00:00 21 0 AHYD 47.15 14.85  
99 1996-01-01 00:00:00 2014-12-31 00:00:00 19 0 AHYD 47.15 15.66  
100 1997-01-01 00:00:00 2014-12-31 00:00:00 18 0 AHYD 47.35 15.69  
101 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 46.81 15.33  
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102 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 46.92 13.88  
103 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.06 15.42  
104 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.20 14.62  
105 1998-01-01 00:00:00 2014-12-31 00:00:00 17 0 AHYD 47.62 15.27  
106 1999-03-01 00:00:00 2014-12-31 00:00:00 15.8 14.2 AHYD 47.49 15.92  
107 1994-01-01 00:00:00 2002-02-28 00:00:00 14.4 0 AHYD 47.55 15.79  
108 2011-12-01 00:00:00 2014-12-31 00:00:00 14 0 AHYD 47.52 15.45  
  

Table S 4: Information stream gauges (daily observations)  

 
First 
observation 

Last 
observation 

Record 
length 
(years) 

Missing 
data 
during 
study 
period 
(1990-
2015) 
[%] 

Provi-
der Lat Lon 

  
1 1951-01-01 00:00:00 2014-12-31 00:00:00 64 0 AHYD 47.21 14.54  
2 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.02 16.14  
3 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.96 15.89  
4 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.22 14.58  
5 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.38 15.09  
6 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 47.47 15.25  
7 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.96 15.35  
8 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.76 15.21  
9 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.72 15.27  
10 1951-01-01 00:00:00 2013-12-30 00:00:00 63 0 AHYD 46.78 15.53  
11 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.21 16.09  
12 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.17 16.01  
13 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.28 15.69  
14 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.08 15.94  
15 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.11 14.21  
16 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 47.43 15.26  
17 1961-01-01 00:00:00 2013-12-30 00:00:00 53 0 AHYD 46.81 15.52  
18 1966-01-01 00:00:00 2014-12-31 00:00:00 49 0 AHYD 47.03 15.45  
19 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.18 15.67  
20 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.38 16.00  
21 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.19 14.75  
22 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.39 14.91  
23 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.39 15.03  
24 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.53 15.47  
25 1966-01-01 00:00:00 2013-12-30 00:00:00 48 0 AHYD 47.05 15.15  
26 1967-01-01 00:00:00 2013-12-30 00:00:00 47 0 AHYD 47.41 15.28  
27 1968-01-01 00:00:00 2013-12-30 00:00:00 46 0 AHYD 47.04 15.76  
28 1969-01-01 00:00:00 2013-12-30 00:00:00 45 0 AHYD 46.76 15.67  
29 1971-01-01 00:00:00 2013-12-30 00:00:00 43 0 AHYD 47.43 15.27  
30 1972-01-01 00:00:00 2013-12-30 00:00:00 42 0 AHYD 47.25 15.51  
31 1974-01-01 00:00:00 2013-12-30 00:00:00 40 0 AHYD 46.71 15.79  
32 1976-01-01 00:00:00 2013-12-30 00:00:00 38 0 AHYD 46.73 15.85  
33 1977-01-01 00:00:00 2013-12-30 00:00:00 37 0 AHYD 47.29 16.09  
34 1979-01-01 00:00:00 2013-12-30 00:00:00 35 0 AHYD 46.99 16.21  
35 1980-01-01 00:00:00 2013-12-30 00:00:00 34 0 AHYD 47.17 15.62  
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36 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.31 15.83  
37 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.29 15.84  
38 1981-01-01 00:00:00 2013-12-30 00:00:00 33 0 AHYD 47.20 15.34  
39 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 46.72 15.41  
40 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 46.83 15.26  
41 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 47.33 16.05  
42 1982-01-01 00:00:00 2013-12-30 00:00:00 32 0 AHYD 47.25 15.52  
43 1984-01-01 00:00:00 2013-12-30 00:00:00 30 0 AHYD 47.15 15.67  
44 1987-01-01 00:00:00 2013-12-30 00:00:00 27 4.7 AHYD 47.52 15.79  
45 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.37 16.12  
46 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.13 14.74  
47 1987-01-01 00:00:00 2013-12-30 00:00:00 27 0 AHYD 47.16 15.32  
48 1989-01-01 00:00:00 2013-12-30 00:00:00 25 0 AHYD 46.84 15.38  
49 1989-01-01 00:00:00 2013-12-30 00:00:00 25 0 AHYD 46.83 15.26  
50 1990-01-01 00:00:00 2013-12-30 00:00:00 24 0 AHYD 46.85 15.37  
51 1990-01-01 00:00:00 2013-12-30 00:00:00 24 0 AHYD 46.90 15.49  
52 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 46.93 16.16  
53 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 47.48 15.47  
54 1991-01-01 00:00:00 2013-12-30 00:00:00 23 0 AHYD 47.10 15.68  
55 1993-01-01 00:00:00 2013-12-30 00:00:00 21 0 AHYD 46.89 15.57  
56 1993-01-01 00:00:00 2013-12-30 00:00:00 21 0 AHYD 46.75 15.37  
57 1994-01-01 00:00:00 2013-12-30 00:00:00 20 0 AHYD 47.25 14.76  
58 1994-01-01 00:00:00 2013-12-30 00:00:00 20 0 AHYD 46.70 15.27  
59 1995-01-01 00:00:00 2013-12-30 00:00:00 19 0 AHYD 47.03 15.30  
60 2000-06-20 00:00:00 2013-12-30 00:00:00 13.5 0 AHYD 47.14 14.28  
61 2003-09-02 00:00:00 2013-12-30 00:00:00 10.3 0 AHYD 47.15 14.37  
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Abstract: 
Research on extreme convective precipitation events (ECPEs) is crucial to avoid damage and 
to better understand the climate system, but a lack of area-covering long-term measurements 
of the short-lived and localized storms hamper climato- logical analyses. This thesis explores 
uncertainties associated with ECPEs in the Austrian south- eastern Alpine forelands using sub-
daily rain and stream gauge observations as well as damage data. Additional variables are 
used to define weather types and socioeconomic vulnerabilities. Different analytic and 
statistical methods are applied to quantify sampling biases and temperature sensitivities as 
well as damage contributions from ECPEs. 
Using a novel technique to systematically thin out the 1.4 km × 1.4 km WegenerNet Feldbach 
region climate station network (WegenerNet), it is demonstrated that conventional rain gauge 
networks lead to severe underestimation of extreme area rainfall in convective storms. The 
rate of underestimation follows a power law with exponent -0.5 over inter-station distances 
from 1 km to 30 km. It is shown that damage reported to the Austrian disaster fund under 
convective weather types is systematically less correlated with precipitation extremes, as 
compared to stratiform weather systems. These findings are particularly relevant, as higher 
daily mean temperature has been shown to robustly correlate with an increase in precipitation 
extremes. This indicates that ECPEs might become more intense with climate warming; 
however, temporal trends and the role of dynamic processes need further research. 
The thesis underlines the need for high resolution observations and strategies to implement 
sampling uncertainties into model evaluation and risk reduction strategies, as ECPEs 
significantly contribute to total damage and the risk from such events will likely increase. 
 
Zum Inhalt: 
Um das Klimasystem besser zu verstehen und Unwetterschäden zu begrenzen, ist die 
Erforschung kleinräumiger konvektiver Starkniederschlagsereignisse (KSNE) essenziell. Ein 
Mangel flächendeckender und lange zurückreichender Aufzeichnungen erschwert die Analyse 
dieser räumlich wie zeitlich hoch variablen Ereignisse. 
Diese Dissertation erforscht KSNE im südöstlichen Alpenvorraum Österreichs und mit ihnen 
verbundene Unsicherheiten. Hierzu werden unter-tägliche Niederschlagsmessungen, 
Schadensmeldungen und Daten zur Bestimmung von Wetterlagen und sozioökonomischen 
Vulnerabilitäten mittels verschiedener analytischer und statistischer Methoden ausgewertet. 
Ein innovativer Ansatz dünnt das Klimastationsnetzwerk WegenerNet systematisch aus und 
kann so nachweisen, dass konventionelle Messnetze eine Unterschätzung der maximalen 
Flächenniederschläge von KSNE erheblich begünstigen. Darüber hinaus wird gezeigt, dass 
Schäden, die während konvektiver Wetterlagen gemeldet werden, systematisch seltener mit 
extremen Niederschlagsmessungen in Zusammenhang gebracht werden können, als 
Schäden, die bei Wetterlagen mit flächigem Niederschlag auftreten. Die Ergebnisse sind 
besonders relevant, weil unter-stündliche bis unter-tägliche Niederschlagsextreme robust und 
stark positiv mit der Lufttemperatur in Zusammenhang stehen. KSNE könnten daher mit 
fortschreitendem Klimawandel und einhergehender Erwärmung intensiver werden, wobei 
zeitliche Trends und die Rolle dynamischer Prozesse weiterhin von vielen Unsicherheiten 
geprägt sind. 
Insgesamt zeigen die Ergebnisse dieser Dissertation, wie wichtig hochaufgelöste 
Beobachtungsdaten sind, um Strategien zu entwickeln, mithilfe derer Messunsicherheiten bei 
der Modellevaluierung und in der Naturgefahrenprävention besser berücksichtigt werden 
können. Vor dem Hintergrund steigender Durchschnittstemperaturen und einer 
wahrscheinlichen Zunahme der Intensität von KSNE ist dies besonders relevant. 
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