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Abstract

Water vapor is a major driver of climate and weather and plays a key role in many
atmospheric processes. While water is present in all three aggregation states in
the atmosphere, the gaseous one dominates and water vapor is the most important
natural greenhouse gas. Due to its large latent heat of vaporization/condensation,
water plays a major role in the energy transport of the atmosphere. To accurately
model weather and climate it is crucial to understand the distribution, transport,
and vertical structure of humidity. However, measuring water vapor accurately is a
challenge, as it is highly variable on both spatial and temporal scales. To this day,
no single observing system can provide global accurate tropospheric humidity data
with a resolution that captures its variability on all important vertical, horizontal,
and time scales.

The Global Positioning System (GPS) Radio Occultation (RO) method provides
high vertical resolution humidity profiles for the troposphere. This measurement
technique uses phase changes of GPS signals to derive atmospheric thermodynamic
parameters. In the troposphere, ancillary data are required to retrieve humidity
(or temperature).

The objective of this thesis is to assess the quality of RO-derived humidity
using other remote sensing techniques, in-situ observing techniques, and model
analyses and reanalyses. The structural uncertainty of RO-derived humidity is
determined from comparisons of multiple different RO humidity retrievals. Even in
challenging humidity conditions, such as high variability and extreme dryness, the
accuracy of RO-derived humidity data is similar to the one of other state-of-the-art
humidity measurements. Additionally, the RO technique features global coverage,
all-weather capability, and same data quality for day and night time measurements.
This shows the usefulness of RO for tropospheric humidity studies, as well as its
potential to contribute tropospheric data to NWP models via data assimilation.
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Zusammenfassung

Wasserdampf spielt eine wichtige Rolle in Wetter und Klima. Obwohl Wasser
in allen drei Aggretatzuständen in der Atmosphäre vorhanden ist, dominiert der
gasförmige Zustand und Wasserdampf ist das wichtigste natürliche Treibhausgas
der Erde. Gleichzeitig spielt Wasser durch seine hohe latente Wärme eine große
Rolle im atmosphärischen Energietransport. Wissen über die Verteilung und
die Vertikalstruktur der troposphärischen Feuchte ist notwendig um Wetter und
Klima korrekt modellieren zu können. Genaue Messungen stellen allerdings eine
Herausforderung dar, da Wasserdampf sowohl zeitlich als auch räumlich extrem
variabel ist. Keine einzige Messmethode kann Wasserdampf global mit einer
Auflösung messen, welche dessen Variabilität auf einer zeitlichen, horizontalen und
vertikalen Ebene widerspiegelt.

Die GPS Radiookkultationsmethode (RO) liefert die Möglichkeit, vertikal hoch
aufgelöste Information über die Feuchteverteilung in der Troposphäre zu gewin-
nen. Bei dieser Messmethode werden über die Phasenwegsverlängerung von GPS
Signalen thermodynamische Größen bestimmt. In der Troposphäre ist für die
Berechnung von Feuchte allerdings zusätzliche Information notwendig.
Das Ziel dieser Arbeit ist es, die Qualität von RO Feuchtedaten mithilfe von

anderen Fernerkundungsmethoden und in-situ Messungen sowie Modell-Analysen
und Reanalysen abzuschätzen. Die strukturelle Unsicherheit der von RO abgeleit-
eten Feuchteinformation wird über Unterschiede zwischen verschiedenen Feuchte-
Retrievals bestimmt. Sogar in Regionen mit starken Feuchteschwankungen ist die
Genauigkeit von RO Feuchte vergleichbar mit der von anderen Messmethoden.
Im Vergleich zu anderen Messmethoden und Modellen kann RO kurzzeitige und
kleinräumige Variabilität auflösen. Zusätzlich liefert RO globale Messungen unter
allen Wetterbedingungen bei Tag wie bei Nacht und zeigt daher durchaus Poten-
tial troposphärische Daten im Datenassimilationsprozess der Wettervorhersage
beizutragen.
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Part I.

Synopsis





1. Introduction

Despite its central importance, work to date has not led to a universally
accepted picture of the factors controlling water vapor amount, a solid
understanding of the mechanisms by which it influences atmospheric
processes, or even precise knowledge of its concentrations in many parts
of the atmosphere, to say nothing of its trends over time.

Sherwood et al. [2010]

Accurate and precise measurements of tropospheric water vapor are of high
importance for a variety of reasons. Firstly, water vapor is the most important
greenhouse gas in the troposphere [IPCC, 2007] and therefore a very important
driver of Earth’s climate. Climate models need high-quality measurements as a
baseline for comparisons with climate model output, to put current climate into
context, and to accurately model climate change. Secondly, humidity is an impor-
tant driver for many atmospheric processes, which together determine the current
state of the weather [Sherwood et al., 2010, Stevens and Bony, 2013]. Numerical
Weather Prediction (NWP) models depend upon high-quality measurements and
will provide both a better weather forecast as well as improved forecasts of ex-
treme events, such as cyclone intensity and path or extreme precipitation events.
Thirdly, since water vapor is involved in so many atmospheric processes, scientific
interest alone is a motivation study the distribution, variability, and transport
of water vapor throughout Earth’s atmosphere. High quality measurements of
atmospheric humidity products are therefore key for scientific progress related to
weather and climate, as well as model development and evaluation; however, the
strong spatial and temporal variability of water vapor as well as its change over
five orders of magnitude from surface to mesopause pose challenges on observing
systems. Measurement techniques therefore focus on specific altitudes to narrow
the concentration range. Within the troposphere, this range still covers three
orders of magnitude, and to this date, no single current observing technique can
provide unbiased and precise tropospheric humidity measurements of high vertical
resolution and global coverage.

The Global Positioning System (GPS) Radio Occultation (RO) technique fulfills
most of the above-mentioned criteria, featuring International System of Units (SI)
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1. Introduction

traceability, global coverage, high vertical resolution, and all-weather capability,
and high accuracy and precision for the parameters refractivity and temperature
[Melbourne et al., 1994, Hajj et al., 2002, Anthes, 2011]. In fact, RO has shown
the potential to provide data of climate benchmark quality for refractivity and
temperature between about 8 km and 25 km [Ho et al., 2009, 2012, Steiner et al.,
2013]. However, the quality of RO humidity is still an important subject of research.
Firstly, the uncertainty of RO products is relatively high in the lower and mid
troposphere, increasing the uncertainty of the retrieved humidity. Secondly, in
order to derive humidity from RO refractivity, ancillary (a-priori) data are required,
which are usually used from a model analysis or reanalysis. Two different methods,
a direct retrieval or a One-Dimensional Variational (1D-Var) retrieval can be used
to derive humidity. Both the choice of retrieval as well as the a-priori estimate
have an influence on the resulting humidity profile.
This thesis provides new results on the quality of troposheric humidity data

retrieved from GPS RO measurements. I used data from multiple models and
measurement techniques, in-situ as well as remotely sensed, to assess the ability
of RO to provide accurate humidity profiles in the troposphere, and to evaluate
its usefulness at different altitudes. This work discusses strengths and weaknesses
of using RO for deriving humidity products, compared to other state-of-the-art
measurement techniques.

The general setup for the study includes:

1. Use of multiple different RO humidity retrievals. At minimum, a direct
retrieval and a 1D-Var retrieval; but also comparisons of humidity retrievals
from different RO processing centers to determine the structural uncertainty
of RO-derived humidity.

2. Comparison of individual profiles rather than comparing data averaged over
large regions and time spans. This allows investigation of details of the profile
structure, variability on relatively small vertical scales, and bias detection
related to profile structure.

3. Comparisons in regions with complicated humidity conditions, including
regions with tropical cyclone activity, dry air intrusions, and atmospheric
conditions that favor super-refraction.

The synopsis is structured as follows: Chapter 2 gives a short overview of the
role of water and water vapor in weather and climate and introduces atmospheric
parameters that are commonly used to describe humidity. Various measurement
techniques are discussed in Chapter 3, with focus on the RO technique. Chapter 4
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introduces the combined setup of all studies and summarizes the results of the
publications.

7





2. Humidity in weather and climate

Water vapor plays key role in both driving weather and influencing climate, re-
sulting from the combination of its abundance in the troposphere and its physical
properties. Water is the most abundant liquid on Earth, and water vapor can
make up to 4 % of tropospheric composition. Water has a high latent heat of va-
porization/condensation, via which it can capture, transport, and release enormous
amounts of energy and drive major atmospheric events. The triple point of water
lies well within standard atmospheric conditions, allowing frequent phase changes.
Water influences Earth’s radiation balance in gaseous, liquid, and solid form. Water
vapor is sensitive to a continuous spectrum of thermal infrared radiation, making
it Earth’s most important greenhouse gas and accounting for 60 % of the natural
greenhouse effect [Kiehl and Trenberth, 1997]. Clouds influences Earth’s albedo
and therefore incoming radiation. Lastly, water vapor influences air quality and
visibility via chemical processes.

Water vapor is extremely variable on temporal, horizontal, and vertical scales.
Water vapor concentration varies over three orders of magnitude in the troposphere,
and over five orders from surface to the mesopause [Kämpfer, 2013]. Over 50 % of
Earth’s atmospheric water vapor is located within the lowest 2 km of the tropopshere
[Mockler, 1995]. In the Upper Troposphere – Lower Stratosphere (UTLS) region
water vapor concentrations are very small, but water vapor still plays a major role
in chemical and radiative processes.

2.1. Important physical properties of water

Bent molecular structure The oxygen atom has six valence electrons and shares
another two with the hydrogen atoms via covalent bonding. Therefore two
electron pairs are not bonded with another atom (“lone pairs”), which leads
to the tetrahedral shape of the molecule. Since lone pairs occupy more space
than bonding pairs, the bond angle is 104.5°, smaller than the one of a perfect
tetrahedral molecule.

Electronegativity difference Oxygen has a much higher electronegativity than
hydrogen (3.44 versus 2.2 on the Pauling scale), meaning that the bonding
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2. Humidity in weather and climate

electrons are more attracted to the oxygen atom [Housecroft and Sharpe,
2008]. Together with the bent shape, this causes the molecule to be partially
positively and partially negatively charged, i.e. a permanent dipole moment.

Permanent dipole moment The permanent dipole moment allows intermolecular
forces in water called hydrogen bonding. Hydrogen bonding is responsible for
a number of important properties of water, e.g. its increased volume in the
solid state compared to liquid state, large heat capacity in the liquid state,
and high cohesiveness and resulting high surface tension.

Large heat capacity The large heat capacity of liquid water, resulting from its
permanent dipole moment, moderates Earth’s climate as it requires a large
amount of energy (or energy release) to raise (or lower) its temperature.

Large latent heat The large latent heat of vaporization/condensation of water
allows to capture and release large amounts of energy via phase changes,
which also facilitates energy transport.

The triple point The triple point of water, where all three phases can coexist,
is at a temperature of 273.16 K and a partial pressure of water vapor of
6.112 hPa [Sherwood et al., 2010]. This point lies within typical atmospheric
conditions, thus water can be found in all three states (solid, liquid, gaseous)
in the atmosphere. However, the gaseous state dominates [>99 %, Stevens
and Bony, 2013].

Greenhouse gas The complex water molecule can experience the following modes
as a response to incoming radiation of the right wavelength: three modes of
translation of the center of mass, three modes of rotation around the center
of mass, three modes of vibration of the molecule; as well as combinations
of these modes. For water vapor, this leads to a continuous spectrum of
absorption lines in the near-infrared and thermal infrared (see Fig. 2.1). This
makes water vapor the most important absorber of solar radiation in the
lower atmosphere [Stevens and Bony, 2013]. Any kind of condensed water
(i.e. hydrometeors) cools the atmosphere by scattering shorter wavelengths
of incoming radiation and warm the atmosphere via absorption of the longer
ones. Therefore clouds affect Earth’s radiative balance both via their large
albedo and via their strong greenhouse effect, where the former cooling rate is
roughly twice as large as the latter heating rate at the top of the atmosphere
[Stevens and Bony, 2013].

10



2.2. Vertical humidity structure and circulation

Figure 2.1.: (a) Hydrometeors: the condensed forms of water in the atmosphere come in
several sizes and shapes. (b) The near- and thermal infrared regions of the spectrum excite
the water molecule and produce its rotational–vibrational (or ro-vibrational) and rotational
bands. Specific lines λ1, λ2, and λ3 mark the symmetric stretching mode, bending mode,
and asymmetric stretching mode, respectively. Figure and caption (adapted) taken from
Stevens and Bony [2013].

2.2. Vertical humidity structure and circulation

Idealized simulations show that the influence of water on the atmosphere’s structure
and circulation patterns is comparable to or larger than the influence from Earth’s
rotation, presence of continents, and poleward gradients of solar insolation [Stevens
and Bony, 2013]. The latent heat of water vapor accounts for about half of
the poleward and most of the upward heat transport within Earth’s atmosphere.
Furthermore, water vapor dominates net radiative cooling of the troposphere,
which drives convection [Sherwood et al., 2010].

The vertical structure of water vapor pressure e is restricted by the saturation
vapor pressure es, which in turn depends on temperature T . The relationship
is described by Clapeyron’s equation, which relates pressure of a substance to
temperature in a system with both phases in equilibrium. For meteorology, this
equation is expressed as:

1
es

des
dT = Lv

RvT 2 (2.1)
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2. Humidity in weather and climate

Figure 2.2.: Schematic of the overturning circulation in the tropics and subtropics. Figure
taken from Sherwood et al. [2010].

where Lv is the latent heat of vaporization (2.501× 106 J kg−1 at 0 ◦C) (or latent
heat of sublimation (2.834× 106 J kg−1) for es with respect to ice) and Rv is the
gas constant for water vapor (461.5 J kg−1 K−1). Equation 2.1 can be integrated
(assuming Lv constant) and es is given as:

es = es0 exp
(
Lv
Rv

( 1
T0
− 1
T

))
(2.2)

with T0=273.15 K and es0=6.11 hPa.
The saturation vapor pressure es roughly doubles for every 10 K of temperature

increase. Because 1) T decreases with altitude, 2) es decreases with decreasing T ,
and 3) the upper limit for e is es (supersaturation with respect to water is rare in
the troposphere because condensation nuclei are plentiful [Sherwood et al., 2010]),
temperature constrains the vertical structure of e. If e exceeds es, water vapor
will condense into liquid or ice clouds, which will eventually either precipitate or
re-evaporate in warmer temperatures.
The global hydrological cycle traces the largest movement of any substance on

Earth [Foelsche, 1999]. Figure 2.2 shows a simple schematic of the overturning
circulation for the tropics and subtropics, where most of the water vapor feedback
takes place. Water enters the troposphere via surface evaporation, with its max-
imum over trade wind regions in the subtropical oceans [Sherwood et al., 2010].
Overall, the water vapor in the Planetary Boundary Layer (PBL) gets transported
towards the Intertropical Convergence Zone (ITCZ), where it gets lifted within
convective clouds, and transported to the upper-air subtropical regions. In re-
gions of subsidence, air is compressed, warmed, and mixed with surrounding air
[Sherwood et al., 2010].
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2.3. Water vapor parameters

2.3. Water vapor parameters

Atmospheric humidity can be described by a variety of parameters. Most commonly
used are the following definitions.

2.3.1. Mixing ratio r or w

The mixing ratio describes the amount of water in the air and is given as the ratio
of the mass of water mw to the mass of dry air mdry. In the troposphere it is
usually given in either g kg−1 or kg kg−1.

r = w = mw
mdry

(2.3)

It is related to pressure and water vapor pressure via:

r = w = 0.622 · e
p− e

(2.4)

The mixing ratio r can be approximated by specific humidity q.

2.3.2. Specific humidity q

Specific humidity q (in the troposphere also usually given in g kg−1) is the ratio of
the mass of water mw to the total air mass m and can also be expressed via the
mixing ratio r.

q = mw
m

= mw

mdry +mw
= r

r + 1 (2.5)

Specific humidity q is related to p and e via:

q = 0.622 · e
p− 0.378 · e (2.6)

2.3.3. Water vapor pressure e

Water vapor pressure e (usually given in hPa) denotes the partial pressure of water
in the atmosphere. It is commonly used when handling Radio Occultation (RO)
data because of its connection to refractivity N , temperature T , and pressure p in
the Smith–Weintraub equation (see Chapter 3). Water vapor pressure e can be
derived from the above equations as:

e = q · p
0.622 + 0.378 · q (2.7)
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2. Humidity in weather and climate

2.3.4. Relative humidity RH

Relative Humidity (RH) is defined as the fraction of water vapor pressure e to
saturation water vapor pressure es:

RH = 100 · e
es

(2.8)

where RH is given in percent. At higher altitudes below freezing, RH can be
defined using saturation pressure either with respect to water or with respect to
ice. The definition with respect to water is more commonly used because air can
easily become supersaturated with respect to ice. Most hygrometers are sensitive
to relative humidity with respect to water also at temperatures below freezing.

2.3.5. Dew point temperature Td

Dewpoint temperature is the temperature to which an air parcel needs to be cooled
to (while keeping pressure constant) to saturate the parcel (RH = 100 %):

e = es(Td) (2.9)

Using Eq. (2.2) and T = Td, the dew point temperature can be computed for a
given water vapor pressure:

1
Td

= 1
T0
−
(
Rv
Lv

)
ln
(
e

es0

)
(2.10)
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3. Tropospheric humidity measurement
techniques

Generally, tropospheric humidity can be measured by both in-situ and remote
sensing techniques. In-situ techniques measure humidity directly and are usually
used on aircraft, radiosondes, and dropsondes. In-situ data are point measurements,
hence they can provide high vertical resolution profiles of localized humidity features.
A disadvantage of in-situ techniques is that they tend to cover small spatial regions
and are generally not available at locations which are difficult or expensive to
reach (such as polar regions or over oceans). Remote sensing techniques do not
measure humidity directly, but rather derive it from another, measurable quantity.
Active sensors transmit radiation and measure the signal scattered back to the
receiver. Passive sensors derive information on humidity via the radiation emitted
or scattered by the atmosphere. Sensor platforms include satellites, airplanes,
and the ground. An advantage of remote sensing is the large area covered — it
is possible to observe the entire globe with only a few satellites. In contrast to
in-situ techniques, data can easily be gathered in remote places. However, these
advantages are offset to some degree by much coarser horizontal and vertical
resolution, from sub-kilometer to several kilometer (vertical) to several hundreds
of kilometers (horizontal).
Discussing all current observation techniques is well outside the scope of this

introduction. Details on tropospheric water vapor observation techniques can be
found in Kämpfer [2013] and references therein. The following sections give a short
introduction on the subset of tropospheric humidity measurement techniques which
are used in the papers in Part II, and a more detailed description of the Radio
Occultation (RO) technique, as these data are the core of this work.

3.1. Radiosonde measurements

Radiosondes are a relatively simple method to collect tropospheric and stratospheric
data. The first device that closely resembled the modern radiosonde – a meteograph
with a radio transmitter – was launched as early as in 19291. Temperature, humidity,

1http://radiosondemuseum.org
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and pressure data were transmitted to a ground station, and the first prototype
of the modern radiosonde was born. The principle is still the same today: a
gas-filled balloon carries the instrument upwards, usually with an ascending rate
of about 4 m s−1 to 6 m s−1. Data are transmitted to a ground station during the
ascent and reported on so-called “mandatory pressure levels”. Mandatory pressure
levels are the 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30,
20, and 10 hPa levels2; however, radiosondes can also have a cut-off altitude at
which they stop reporting. Additionally, data are reported on so-called “significant
thermodynamic levels” if strong humidity or temperature changes occur at that
level. Since radiosondes provide point measurements, the resulting profile can
show strong variability in the vertical, especially if clouds and strongly changing
humidity conditions are present. When the radiosonde reaches an altitude where
the surrounding air pressure gets too low, the balloon bursts and the radiosonde is
lowered to the ground via a small parachute. Recovery of the sonde is not necessary
since data are transmitted throughout the ascent.

Although the principle is still the same, radiosonde layout, sensors, and handling
have undergone significant improvement (Fig. 3.1). Radiosondes have become
smaller and cheaper, and sensors have become more accurate3. Since 1957, all global
radiosonde stations launch their sondes at 00 and 12 UTC [Lazante et al., 2002].
Specialized sondes have been developed, such as dropsondes and ozonesondes.
Dropsondes are dropped out of planes and collect data while descending on a
parachute, and are frequently used to collect data withing tropical and subtropical
cyclones. Ozonsondes are launched with a much lower frequency and measure
tropospheric and lower stratospheric ozone concentration.
Radiosonde measurements provide the longest record of tropospheric humidity

data, however, the long record comes with discontinuities in the data [Dai et al.,
2011]. Instrument development has overall greatly improved sensor accuracy,
but different sensor types still each have their unique bias, known or unknown
[Miloshevich et al., 2006, Vömel et al., 2007, Ho et al., 2010]. Many different
sensor types are used globally, and sensor types are often switched over time. If
not properly documented (which has been rather the rule than the exception), a
switch in sensor type can lead to an artificial trend or jump in the station’s record.
While those data are still useful in operational weather forecasting, climate change
monitoring and detection studies cannot be performed without detailed knowledge
about a station’s record regarding sensor development and changes. The Integrated
Global Radiosonde Archive (IGRA) collects and provides global radiosonde data
and information about each station’s history and changes, such as sensor type and

2http://glossary.ametsoc.org/wiki/Mandatory_level
3http://radiosondemuseum.org
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3.2. Aircraft measurements

Figure 3.1.: A radiosonde from 1929 (left) compared to a modern-day radiosonde. Figures
from http://radiosondemuseum.org.

updates, location changes, and measured atmospheric parameters. Conclusions
about the data can be drawn to some extent from the historical information.
Another recent effort to address discontinuities in radiosonde records is made

by the Global Climate Observing System (GCOS) Reference Upper-Air Network
(GRUAN). The aim is to provide high-quality long-term vertical profiles of selected
essential climate variables, including an estimate of the measurement uncertainty,
while monitoring all changes a station has undergone [Bodeker et al., 2016]. The
number GRUAN radiosonde stations keeps expanding and currently has 9 certified
stations and 17 more to be certified (status: February 2018). The individual
station’s record is still relatively short (less than 4 years for certified stations),
but these data are valuable for calibration and evaluation of global measurement
networks.

3.2. Aircraft measurements

Research aircraft are the most flexible measurement techniques since they have
the capacity to measure many different tropospheric parameters at once (given the
availability of the according instruments). Applications for aircraft data include
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studies of tropospheric chemistry, chemical cycles, clouds and aerosols, radiative
transfer in clear air and clouds, Upper Troposphere – Lower Stratosphere (UTLS)
processes, turbulence and boundary layer processes, mesoscale weather systems,
and more [see e.g. Jensen et al., 2013, Pan et al., 2017].
As such, research aircraft can provide high-quality, high-resolution humidity

profiles in the troposphere, but are also highly constrained in both time and space.
Both manned and unmanned research aircraft missions are expensive and thus
infrequent, restricted to altitudes from the surface to lower edge of the stratosphere,
and often confined to a geographic region, studying a particular event or area of
interest. Globally applicable conclusions can hardly be drawn from solely research
aircraft measurements, but aircraft measurements are important verification tools
of weather models and ground-based and satellite-based measurements [e.g. Randel
et al., 2016, Rieckh et al., 2017].

3.3. Thermal infrared nadir sounders: AIRS

Data from both active and passive (microwave and infrared) nadir-sounders are
available globally and in large amounts, which makes them valuable for data
assimilation. Roughly 80 % of all assimilated data in ECMWF Reanalysis Interim
(ERA-Interim) are radiances [Poli et al., 2010]. However, as an inherent feature
of a nadir sounder, vertical resolution of the profiles is low. An overview of
various active and passive infrared and microwave sounders can be found at
https://earthdata.nasa.gov/user-resources/remote-sensors.

Atmospheric Infrared Sounder (AIRS) is a thermal infrared grating array spec-
trometer that measures radiances of Earth’s surface and atmosphere and provides
humidity profiles as Level 2 products. AIRS measures the infrared brightness
on 2378 spectral channels in the 3.7 µm to 15.4 µm range4. Each wavelength is
sensitive to temperature and water vapor over a certain altitude range in the
atmosphere. Thus profiles of atmospheric parameters (temperature, humidity)
can be derived by using multiple infrared detectors, each of which are sensing a
particular wavelength. However, the vertical resolution of these profiles is around
2 km to 3 km, which is finer than other infrared or microwave nadir sounders,
but also large compared to the variability of water vapor in the vertical. Thus
nadir sounders fail to detect the majority of smaller scale vertical variability of
tropospheric humidity. Since AIRS is an infrared based system, it cannot provide
data within or below clouds.

4https://airs.jpl.nasa.gov/
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3.4. Radio Occultation

Figure 3.2.: Number of daily processed RO profiles at the WEGC over time. The number
of available RO profiles increased strongly in 2006 when the six COSMIC satellites were
launched. Even though many COSMIC satellites still performed years after their expected
life time, the number of profiles has decreased over time, and MetOp-A and MetOp-B have
provided the majority of profiles in recent years. Figure taken from Angerer et al. [2017].

3.4. Radio Occultation

Global Positioning System (GPS) RO is a limb sounding technique that makes use
of the signals emitted by GPS satellites to derive atmospheric parameters. The
GPS L1 and L2 signals are delayed and refracted when traveling through Earth’s
atmosphere and received on-board a Low-Earth Orbit (LEO) satellite. The altered
signals are processed to bending angles α, from which atmospheric parameters
such as refractivity N , pressure p, temperature T , and water vapor pressure e can
be derived.
Features of the RO technique are global coverage, all-weather capability, SI-

traceability, and high accuracy and precision of near-vertical profiles with high
vertical resolution [Melbourne et al., 1994, Hajj et al., 2002, Anthes, 2011]. After
the successful proof-of-concept mission GPS/MET in 1995 [Ware et al., 1996], a
number of RO research missions have provided over six million RO profiles globally
since mid 2001 (Fig. 3.2) .

The RO technique makes use of the readily available GPS satellite constellation
and their transmitted signals. GPS L-band frequencies were chosen for a number
of reasons, including a minimum effect of weather on the GPS signal propagation.
However, the residual influence of the atmosphere on the L1 and L2 signals
yields accurate and precise profiles of atmospheric parameters with high vertical

19



3. Tropospheric humidity measurement techniques

resolution on a global scale. The 24 GPS satellites that orbit the Earth at about
55° inclination continuously transmit signals at the L1 and L2 frequencies (L1:
λ=19.0 cm, f=1575.2 MHz); L2: (λ=24.4 cm, f=1227.6 MHz).

When the GPS signals travel through Earth’s atmosphere, they are delayed and
refracted in the ionosphere and neutral atmosphere because the refractive index
n is not unity. Furthermore, the signals are bent due to the gradients of n (air
density changes with altitude). The altered signals are received at a LEO satellite
as a phase change, function of time. Due to the motions of the satellites, the
atmosphere is scanned from top to bottom (setting occultation) or from bottom
to top (rising occultation), which yields profiles of phase changes between the
intrinsically transmitted and the received delayed signals. Measurement duration
for one such profile is about 3 min.
The profiles of phase changes are combined with precise orbit information,

geometric delay, and clock correction to retrieve bending angles α, as a function of
the impact parameter a. The bending angle is given by the integral of incremental
bending along the ray path [see e.g. Foelsche, 1999]. Since bending angles are
frequency-dependent, ionospheric influence on the measurement can be removed
by linearly combining the L1 and L2 bending angles. The result is one bending
angle profile that describes the neutral atmosphere.
The impact parameter is the perpendicular distance between the center of

refraction (which is roughly at Earth’s center) and any of the ray asymptotes. It
is given as:

a = nr sin(ϕ) (3.1)

where n is the refractive index, r is the radius of the ray path, and ϕ is the angle
between r and the tangent of the ray. Due to the dependence of a on n, the
impact parameter is always occultation-specific, but constant along the ray path.
A schematic of an occultation is shown in Fig. 3.3.

Bending angle profiles can be converted to profiles of refractive index n (and
refractivity N) by applying the inversion of the so-called Abel integral, which is
given as:

n(rt) = exp

− 1
π

∞∫
at

α(a)√
a2 − a2

t

da

 (3.2)

with the impact parameter a (and impact parameter at the tangent point at),
the radius of the tangent point rt, and the refractive index n [Kursinski et al.,
1997]. The upper boundary of the integral is infinity and requires initialization.
Initialization varies among the RO processing centers [see e.g. Ho et al., 2012].
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φ

Figure 3.3.: Schematic of the occultation geometry for a setting event (LEO satellite
setting with respect to GPS satellite). The GPS signal is refracted by the ionosphere and
neutral atmosphere and received at a LEO satellite. TP is the tangent point, r the radius
of the ray path, a is the impact parameter, ϕ is the angle between r and the ray tangent,
α is the bending angle, and ~rGPS and ~rLEO are the position vectors of the GPS and LEO
satellite, respectively. Figure taken and adapted from Pirscher [2010].

Since vertical changes in the refractive index n are small, refractivity N is
computed from n as:

N = (n− 1) · 106 (3.3)

N is related to several atmospheric parameters via the Smith–Weintraub equation
[Smith and Weintraub, 1953]:

N = 77.6 p
T

+ 3.73 · 105 e

T 2 − 4.03 · 107ne
f2 + 1.4W (3.4)

with atmospheric pressure p (hPa), temperature T (K), partial pressure of water
vapor e (hPa), electron density ne (electronsm−3), transmitter frequency f (Hz),
and mass of condensed water in the atmosphere W (g m−3). The first and second
term on the Right Hand Side (RHS) describe the contributions of the dry and wet
atmosphere, respectively. The third term describes ionospheric influence and can
be neglected since ionospheric influence is handled earlier in the retrieval. The
last term describes influence due to scattering on liquid water and can also be
neglected.
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If humidity is negligible, computation of T and p is straightforward. Only the
first term on the RHS remains, and combining it with the ideal gas law, density
can be derived:

Ndry = 77.6pdry
Tdry

= 77.6ρdry
R

Mdry
(3.5)

where ρdry is density, R is the universal gas constant (8.314 J K−1 mol−1) [Mohr
et al., 2008] and Mdry is the mean molecular mass of dry air (28.964 kg kmol−1)
[Khélifa et al., 2007]. Using the hydrostatic equation and the ideal gas law, pressure
and temperature can be computed:

pdry(h) =
∞∫

h

g(Φ, h′)ρdry(h′)dh′ (3.6)

Tdry(h) = Mdrypdry(h)
Rρdry(h) (3.7)

where g(Φ, h′) is the latitude and altitude dependent gravitational acceleration.
This retrieval can be used to retrieve T and p in the stratosphere and above.

At altitudes where humidity is significant (i.e. in the troposphere), neglecting
the second term in the Smith–Weintraub equation will lead to large errors in T
and p and also does not provide any humidity information. This became more
relevant with the development of open-loop tracking [Sokolovskiy et al., 2006],
which enabled signal tracking at lower altitudes and thus lower penetration depths
for RO profiles. About one third of the profiles reach below the lowest kilometer,
and two thirds below the lowest two kilometers Mean Sea Level (MSL), enabling
the use of RO data to study features of the lower troposphere, such as Planetary
Boundary Layer (PBL) height [Ao et al., 2012, Xie et al., 2012, Ho et al., 2015].

To retrieve correct tropospheric parameters, the first and second terms in Eq. (3.4)
remain and N is given as:

N = 77.6 p
T

+ 3.73 · 105 e

T 2 (3.8)

Auxiliary information is required to retrieve temperature and humidity. There are
two common approaches to derive physical T , p, and e: applying a direct retrieval,
or a One-Dimensional Variational (1D-Var) retrieval. Several RO processing
centers currently provide water vapor profile retrievals: University Corporation
for Atmospheric Research (UCAR), Jet Propulsion Laboratory (JPL), Danish
Institute for Meteorology (DMI), and WEGC. These centers vary in their choice
of humidity retrieval and details (i.e. choice of a-priori, magnitude of prescribed
errors, etc).
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3.4.1. The direct retrieval

The direct retrieval combines T from an external source (e.g. model forecast,
re-analysis, or different measurement technique) with RO N to directly compute
water vapor pressure e. The direct retrieval is commonly used because of its
simplicity and independence from first guess humidity. Errors in RO humidity
derived via the direct retrieval include errors of the RO refractivity and of the
input temperature.
The error in e due to errors in T can be directly computed by taking the first

derivative of Eq. (3.4):

δe = 1
k2

(2NT − k1p) δT (3.9)

where k1 and k2 are 77.6 K hPa−1 and 3.73 105 K2 hPa−1, respectively (see Eq. (3.8)).
Figure 3.4 shows the approximate specific humidity q errors due to T errors for
several pressure levels and different latitudes. The impact of T uncertainty is
smaller when humidity is higher, such as at low altitudes (Fig. 3.4, blue, purple,
and red lines) and in the tropics (Fig. 3.4, panel A).

A second source of errors of RO derived humidity stems from refractivity uncer-
tainty, which mainly comes from atmospheric multipath, receiver tacking errors,
and Super Refraction (SR). Atmospheric multipath occurs in the lower tropo-
sphere where strong humidity variability in the vertical leads to sharp vertical
refractivity gradients, which results in interference in the phase measurements.
Radio-holographic methods reduce or eliminate this effect [Gorbunov, 2002]. Signal
tracking errors can occur under complicated signal dynamics, typically in the
moist troposphere [Beyerle et al., 2002] and can be minimized by the use of open
loop tracking [Sokolovskiy, 2001]. SR occurs when bending of the ray becomes
locally so large that its curvature is smaller than the curvature of the Earth
(dN/dz < −157 N-units km−1) and is often caused by sharp humidity gradients in
the vertical. It results in a negative N bias below the layer of SR [Sokolovskiy,
2003].

Advantages of the direct retrieval are its flexibility, simplicity, and high quality
in the lower and mid troposphere in the absence of SR. The direct retrieval only
requires auxiliary T information, which has a number of advantages: 1) T is a
commonly measured parameter, so RO N can be combined with T from many
different observation techniques; 2) temperature in the troposphere is relatively
stable in both time and space, so errors are expected to be smaller; 3) model T
(often used in the direct retrieval) are very reliable at this point in time. Errors in
the direct retrieval are dominated by RO N errors in the lower troposphere and
by a-priori T errors in the upper troposphere.
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Figure 3.4.: RO specific humidity retrieval errors resulting from temperature T uncertainty
for the (a) tropics (30°S to 30°N), (b) mid latitudes (30° to 60°), and (c) high latitudes
(60° to 90°) for different pressure levels. Generally, the impact of T uncertainty is smaller
when humidity is higher, such as at low altitudes and in the tropics. Note the different
y-axis range for (a), (b), and (c). Figure taken from Vergados et al. [2014].

Disadvantages of the direct retrieval are its poor performance in the upper
troposphere (starting at temperatures lower than 250 K [Kursinski et al., 1997]) and
its inability to allow adjustment for the RO refractivity and a-priori temperature.

3.4.2. The One-Dimensional Variational retrieval

The 1D-Var retrieval combines RO refractivity or bending angle with a given priori
atmospheric state (auxiliary T and e) to find the statistically optimal solution for
p, T , and e. The goal is to find the maximum likelihood solution for x (the state
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of the atmosphere) given the observations yo and the background state xb. The
statistically optimal solution is obtained by minimizing the cost function

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2 (H(x)− yo)T R−1 (H(x)− yo) . (3.10)

The cost function is the summed difference of the current state (x) to the background
state (xb) and the observation (yo). The modeled observations y are given by
y = H(x) where H is the forward operator to map from model state to observation
space. xb and yo have associated uncertainties described by their respective error
covariances B−1 and R−1. The errors are assumed unbiased and uncorrelated, and
the distribution is assumed Gaussian.
The gradient of the cost function J indicates the direction of the minimum

solution and is given as

5xJ = B−1(x− xb) + HTR−1 (H(x)− yo) (3.11)

where HT is the adjoint operator of H = ∂H
∂x , the tangent linear approximation

of the observation operator H. The minimum of the cost function can be found
iteratively, using helper parameters such as stepsize and number of iterations.
A disadvantage of this method is the potential termination of the minimization
algorithm at a local minimum of J .
A second method is the incremental formulation, where the cost function is

defined as

J(δx) = 1
2δx

TB−1δx + 1
2 (Hδx− d)T R−1 (Hδx)− d) (3.12)

with the increment δx and the innovation vector d = yo −Hxb.
An advantage of the incremental formulation is decreased computational cost

and the uniqueness of the minimum of J [COSMIC Project Office, 2005]. A
disadvantage is that unlike Eq. (3.10), which uses the full state to provide the coef-
ficients of the tangent linear model and adjoint model, the incremental formulation
determines the coefficients only using the background. Therefore the coefficients
for the tangent linear and adjoint calculations from the previous minimization
must be used for a second run of minimizing J .

The 1D-Var retrieval has the potential for much better results in the mid and
upper troposphere than the direct retrieval, but it is also much more complex.
A toy model for the 1D-Var is shown in Figure 3.5 (taken and adapted from
Lauritsen et al. [2017]). The total RO observed refractivity (O, blue) is given by
the combination of the “dry” refractivity Nd and the “wet” refractivity Nw (i.e.
the first and second term in Eq. (3.8)). The a-proiri refractivity (or background
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B 

Nd 
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Figure 3.5.: 1D-Var toy model: RO observed refractivity O is a combination of the dry
(Nd) and wet (Nw) refractivity, with assigned error (solutions all on the blue line, error
indicated by blue shading). Background refractivity B and its error is shown by green dot
and shaded area around. Depending on the errors allowed for each parameter (N , T , e),
the solution can lie anywhere in the triangle determined by the boundaries given through
O (blue solid line) and B (red dashed lines), assuming no biases and no correlation of the
data sets. E.g., CDAAC assigns a very small error to RO N and forces the result onto the
blue line, while DMI allows a large error for RO N and the solution can be very close to
B. Figure taken and adapted from Lauritsen et al. [2017].

refractivity B and its uncertainty, green) has a different value. In a 1D-Var retrieval,
O and B are combined for an optimal solution S. The errors assigned to any
of the variables vary among the centers. E.g., while the DMI 1D-Var assigns a
fairly larger error to O at lower levels and allows the solution S to approach the
background B [Nielsen, 2016], the UCAR 1D-Var assigns only a very small error
to O and forces it to stay close to the originally derived refractivity O. The former
trusts the a-priori forecast and the refractivity output from the 1D-Var retrieval
will be highly influenced by the a-priori. The latter keeps the refractivity output
from the 1D-Var close to its original value while allowing a potential bias for
refractivity in the lower troposphere.

While a 1D-Var retrieval is much more complex than a direct retrieval, it has the
advantage of leaving room for adjustment for all involved variables. Thus errors
for multiple variables can be minimized. With a correct setup, refractivity errors
in the lower troposphere (as described in Section 3.4.1) can be minimized in the
combined final a-priori and RO products.
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4. Conclusions and summary

Humidity in the atmosphere plays a key role in many processes determining weather
and climate, from the surface to the mesopause. The strong spatial and temporal
variability of water vapor as well as its concentration change over several orders
of magnitude in the vertical are a challenge for observing systems and thus make
water vapor a relatively poorly monitored atmospheric constituent. There are
many in-situ and remote sensing techniques that observe atmospheric humidity,
but all of them leave gaps of uncertainty regarding accuracy, global availability,
vertical resolution, and monitoring within and under cloudy regions. The Global
Positioning System (GPS) Radio Occultation (RO) technique fills some of these
gaps, as data are provided globally in all weather conditions with high vertical
resolution and high accuracy and precision for the parameters temperature and
refractivity. In recent years, focus has shifted also towards RO-derived humidity
and its accuracy in the troposphere. Several factors influence the derived RO
humidity: 1) the choice of the retrieval (direct versus One-Dimensional Variational
(1D-Var)), 2) choice and quality of the auxiliary data required for the retrieval,
and 3) quality of the RO refractivity in the retrieval. Atmospheric super-refraction
causes a negative refractivity bias which translates into a negative humidity bias
in the lowest few kilometers of the troposphere.
This thesis presents new results on the quality of tropospheric humidity data

retrieved from RO measurements. Several other, state-of-the-art humidity data
sets from in-situ and remote sensing techniques as well as two model analyses and
reanalyses provide a baseline for the assessment. Strengths and weaknesses of all
involved data sets are discussed.
The general setup for all studies includes:

1. Comparison of multiple different RO humidity retrievals. Different RO
processing centers use different ways of implementing the retrieval of their
choice, along with the choice of a-priori data, and (in the case of the 1D-Var)
background error, observation error, and other tuning parameters. Differences
among several retrievals demonstrate the structural uncertainty of RO-derived
humidity.
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4. Conclusions and summary

2. Comparison of individual profiles or within tight co-location criteria rather
than comparing data averaged over large temporal and spatial scales and ver-
tical layer averaging. The vertical resolution of RO allows to resolve detailed
humidity variability, and individual profile comparison avoids cancellation of
opposite signs.

3. Evaluation in regions with challenging humidity conditions, including regions
with cyclone activity, dry air intrusions, and atmospheric conditions that
favor super-refraction.

Overall our results show that, in the absence of super-refraction, RO humidity
retrievals can compete with other state-of-the-art humidity measurement techniques
in the lower and mid troposphere, while also featuring high vertical resolution (a
weakness of infrared and microwave sounders) and global coverage (a weakness of
radiosonde and research aircraft observations).
Paper I demonstrates that RO reliably detects so-called “dry air intrusions”,

layers with very low humidity (relative humidity < 10 %) in the lower and mid
troposphere. Both structure and intensity of dry layers are captured quite accurately
by RO, as comparisons with high vertical resolution profiles from the National
Science Foundation (NSF)/National Center for Atmospheric Research (NCAR)
Gulfstream V research aircraft field experiment in the tropical western Pacific show.
This comparison demonstrates the ability of RO to provide accurate humidity data
also in these unfavorable dry conditions, where water vapor pressure is only a small
fraction of the measured refractivity. Analyzing dry air intrusion occurrence on a
global scale yields similar results for ECMWF Reanalysis Interim (ERA-Interim),
Global Forecast System (GFS), and the independent RO technique.

In Paper II, high-resolution time series at four radiosonde stations in the tropi-
cal and subtropical western Pacific demonstrate the high quality of RO-derived
humidity and the good agreement among four different RO humidity retrievals.
Both observational and model data are compared among each other and to RO.
The results validate the stability of the four retrievals and demonstrate that RO
retrieved humidity has equal or better accuracy than both the standard radiosonde
and Atmospheric Infrared Sounder (AIRS) at these specific locations in the lower
and mid troposphere in the absence of super-refraction. Paper II shows the poten-
tial of RO to contribute valuable information on tropospheric humidity in data
assimilation, especially when high-quality radiosonde data are unavailable (e.g., in
the southern hemisphere and over oceans). In contrast to infrared or microwave
sounders, the backbone of humidity data assimilation, RO can resolve strong
vertical gradients of humidity and provide data below clouds.
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Paper III takes a more mathematical approach to evaluate the quality of RO-
derived humidity. We use the “N-corned hat method” with three data sets (i.e.
Three-Cornered Hat (3CH) method) to estimate vertical profiles of error variances
for several observational and model data sets. The computed error variances are
smallest for ERA-Interim, which is a reasonable result considering ERA-Interim
uses a thoroughly developed model and data assimilation system, and includes
many independent, quality controlled observations [Dee et al., 2011]. For the
studied four locations, RO data generally have smaller errors than the radiosonde
data, which agrees with results from Paper II. The vertical error variance profiles
show major differences for the RO direct retrieval and 1D-Var retrieval above
600 hPa.
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Abstract. We use GPS radio occultation (RO) data to in-
vestigate the structure and temporal behavior of extremely
dry, high-ozone tropospheric air in the tropical western Pa-
cific during the 6-week period of the CONTRAST (CON-
vective TRansport of Active Species in the Tropics) experi-
ment (January and February 2014). Our analyses are aimed
at testing whether the RO method is capable of detecting
these extremely dry layers and evaluating comparisons with
in situ measurements, satellite observations, and model anal-
yses. We use multiple data sources as comparisons, including
CONTRAST research aircraft profiles, radiosonde profiles,
AIRS (Atmospheric Infrared Sounder) satellite retrievals,
and profiles extracted from the ERA (ERA-Interim reanaly-
sis) and the GFS (US National Weather Service Global Fore-
cast System) analyses, as well as MTSAT-2 satellite images.
The independent and complementary radiosonde, aircraft,
and RO data provide high vertical resolution observations of
the dry layers. However, they all have limitations. The cover-
age of the radiosonde data is limited by having only a single
station in this oceanic region; the aircraft data are limited
in their temporal and spatial coverage; and the RO data are
limited in their number and horizontal resolution over this
period. However, nearby observations from the three types
of data are highly consistent with each other and with the
lower-vertical-resolution AIRS profiles. They are also con-
sistent with the ERA and GFS data. We show that the RO
data, used here for the first time to study this phenomenon,
contribute significant information on the water vapor content
and are capable of detecting layers in the tropics and subtrop-
ics with extremely low humidity (less than 10 %), indepen-

dent of the retrieval used to extract moisture information. Our
results also verify the quality of the ERA and GFS data sets,
giving confidence to the reanalyses and their use in diagnos-
ing the full four-dimensional structure of the dry layers.

1 Introduction

Water vapor is the most important greenhouse gas in the
troposphere, yet it is still the parameter with the highest
uncertainty in weather and climate models. All current hu-
midity observation techniques have limitations for analyz-
ing global water vapor fields. For example, nadir-viewing
satellite instruments (e.g., infrared (IR) or microwave (MW)
sensors in space) are restricted by their low vertical resolu-
tion. IR sounders cannot observe within and under clouds.
Radiosonde (RS) coverage is sparse or nonexistent over the
open oceans. The radio occultation (RO) method does not
suffer from these limitations, but water vapor information
can only be derived by using a combination of RO data and
information on temperature from another source (observa-
tions or model). In addition, RO observations have signif-
icant errors in the lower tropical troposphere under super-
refraction conditions (Sokolovskiy, 2003).

A number of studies have shown good agreement between
RO and RS moisture profiles (e.g., Kishore et al., 2011; Ho
et al., 2010). These climatological studies focus on compar-
isons of RO with the global radiosonde network rather than
extremely dry air (relative humidities less than 10 %). In this
paper we study the ability of RO to measure extremely dry
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air in the tropics and subtropics, using for comparison high-
resolution aircraft profiles, radiosondes, IR satellite data, and
the ERA (Berrisford et al., 2011).

Dry regions of the tropical and subtropical lower and
mid-troposphere have a strong radiative impact on the cli-
mate system through their ability to radiate heat to space,
preventing a “runaway greenhouse effect” (Pierrehumbert,
1995). Furthermore, they suppress deep convection (Brown
and Zhang, 1997), are connected to cumulus congestus cloud
top heights (Johnson et al., 1996), and affect boundary layer
height and humidity (Parsons et al., 2000).

A number of studies have addressed the so-called dry in-
trusions in the normally moist mid- and lower troposphere of
the tropical western Pacific. They were first investigated dur-
ing TOGA-COARE, the Coupled Ocean–Atmosphere Re-
sponse Experiment of the Tropical Ocean and Global At-
mosphere project (Webster and Lukas, 1992). Mapes and
Zuidema (1996), using soundings from TOGA-COARE,
found that dry layers are generally too dry and not warm
enough to be interpreted as adiabatic displacements within
the tropics. Instead they suggest a subtropical origin. Dry
layers typically have strong horizontal and vertical moisture
gradients and sharp temperature inversions at the lower edge.
They are stabilized by radiative cooling of the underlying
moist air and heating of the dry air layer, thus inhibiting con-
vection.

Cau et al. (2005) investigated the radiative impact and ori-
gin of dry intrusions observed by RS profiles in the tropical
western Pacific using 40-year European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis (ERA-40)
wind and humidity data. They showed an outgoing longwave
radiation increase of 3 W m−2 per 100 hPa for dry intrusions
with relative humidities of less than 20 %, almost indepen-
dent of altitude. They pointed out the importance of the hu-
midity distribution in a climate change scenario, considering
that outgoing longwave radiation is more sensitive to small
humidity perturbations in dry environments than in moist re-
gions. Cau et al. (2005) also pointed out that cloud occur-
rence above or below the dry intrusion reduces the radiative
impact. Furthermore, they used back trajectories to show that
most dry events were associated with air descending from
the extratropics. In their follow-up study, Cau et al. (2007)
evaluated the origins of dry air in the tropics and subtrop-
ics using trajectory simulations for ERA-40 data for January
1993. They found four major transport mechanisms: (1) the
descending branch of extratropical baroclinic waves; (2) the
equatorial flank of the jet around subtropical anticyclones;
(3) transport at regions of minimum subtropical jet strength
via equatorward descent across the jet exit; and (4) dry air
centering in the upper troposphere between regions of deep
convection (see also Fig. 9 in Cau et al., 2007).

Regarding dry layer occurrence, Casey et al. (2009) cre-
ated a 5-year climatology on dry layers between 600 and
400 hPa over deep convective regions of the tropical oceans
using AIRS (Atmospheric Infrared Sounder) data. Their re-

sults show large spatial and seasonal variability for different
ocean basins, pointing out the limits of applying case study
trends to the whole basin.

Finally, Randel et al. (2016) performed a detailed compar-
ison between aircraft measurements from the CONvective
TRansport of Active Species in the Tropics (CONTRAST)
experiment and GFS meteorological analyses, demonstrating
that the analyses accurately capture the behavior of subtrop-
ical dry layers. A global climatology from GFS data shows
that the dry layers are a ubiquitous feature of the subtrop-
ics, with maximum occurrence frequency in the winter hemi-
sphere (linked to the strongest subtropical jets). The subtrop-
ical dry layers are highly correlated with enhanced ozone in
both hemispheres, arguing for a source in the extratropical
upper troposphere–lower stratosphere (UTLS).

A number of studies confirmed the capability of RO mea-
surements to monitor the dry atmosphere (above around
8 km; Foelsche et al., 2008, 2009) and for climate change
detection (Leroy et al., 2006; Ho et al., 2009; Steiner
et al., 2011; Ho et al., 2012). RO data feature inherent
high accuracy and precision, high vertical resolution (100 to
200 m), all-weather capability, and long-term stability (An-
thes, 2011), making them highly valuable for studying a large
number of atmospheric phenomena. Vergados et al. (2015)
studied the spatial variability of relative humidity (RH) from
RO compared to ECMWF and MERRA (Modern-Era Ret-
rospective analysis for Research and Applications), focus-
ing on time-averaged seasonal behavior; these comparisons
suggest an overall reliable behavior of RO-derived humidity
fields. So far no study has focused on RO and extreme dry-
ness (RH < 10%).

RH is computed from measured water vapor pressure and
saturation water vapor pressure over liquid or ice, depending
on the temperature. The liquid formulation is used according
to Murphy and Koop (2005).

This paper is structured as follows: in Sect. 2 we summa-
rize the RO technique, the CONTRAST field campaign, and
all other data sets we used. In Sect. 3 we show some exam-
ple profile comparisons, explain features of dry layers, and
discuss the contributions of a priori (first-guess) data and RO
observations in the one-dimensional variational (1D-Var) re-
trieval. Section 4 focuses on one specific case in detail. In
Sect. 5, we give a short overview of the results using all col-
location pairs available. Section 6 discusses the global occur-
rence of dry layers derived from RO data. Section 7 provides
a summary and conclusions.

2 Data and methods

2.1 The RO method

The RO method (Melbourne et al., 1994; Hajj et al., 2002;
Kuo et al., 2004) is a limb-sounding technique that provides
near-vertical profiles of atmospheric refractivity N . The re-
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lation of N to atmospheric temperature T , pressure p, and
water vapor pressure e can be approximated by the Smith
and Weintraub (1953) formula:

N = 77.6
p

T
+ 3.73× 105 e

T 2 + [. . .]. (1)

Additional terms accounting for contributions from liquid
water and the ionosphere can be neglected or are accounted
for earlier in the retrieval. In the so-called dry air retrieval,
the “dry temperature” is computed using Eq. (1) under the
assumption e = 0. For a detailed retrieval description, see
Kursinski et al. (1997).

Water vapor pressure e in Eq. (1) cannot be determined
from an observed N without ancillary temperature data from
some other source (either observations, a model, or analy-
sis). The two common techniques for this calculation are dis-
cussed in Appendix A, as well the influence of the ancillary
data in the 1D-Var retrieval (Appendix B).

For this study, we downloaded data from CDAAC1 (COS-
MIC Data Analysis and Archive Center) for the RO mis-
sions COSMIC (Constellation Observing System for Me-
teorology, Ionosphere and Climate; reprocessed data cos-
mic2013), GRACE (Gravity Recovery and Climate Ex-
periment; post-processed), Metop-A (Meteorological Oper-
ational Polar Satellite A; reprocessed data metopa2016),
Metop-B (Meteorological Operational Polar Satellite B;
post-processed), and TerraSAR-X (post-processed).

CDAAC provides profiles of physical parameters, which
are derived by using a 1D-Var retrieval (COSMIC, 2005)).
In the 1D-Var, ERA profiles (interpolated to the location
and time of the RO measurement) are used as the initial
(first-guess or a priori) temperature and moisture profiles in
the iteration procedure. Furthermore, CDAAC also provides
these a priori profiles, and collocated profiles from other (re-
)analyses. In this study we use these RO-collocated profiles
from ERA and GFS for comparisons. ERA vertical profiles
are provided at 25 hPa steps between 1000 and 750 hPa and at
50 hPa steps between 750 and 300 hPa, yielding a total of 19
levels below 300 hPa. GFS analyses are given at 50 hPa steps
from 1000 to 300 hPa and at 975 and 925 hPa additionally,
yielding a total of 16 levels below 300 hPa.

2.2 The CONTRAST experiment

The CONTRAST experiement was conducted over the west-
ern Pacific warm pool region during the season character-
ized by intense convective storms to study the impact of deep
convection on chemical composition and ozone photochemi-
cal budget (Pan et al., 2017). The experiment was conducted
from Guam (13.5◦ N, 144.8◦ E) using the NSF/NCAR Gulf-
stream V (GV) research aircraft during January and February
2014. During the campaign, 16 research flights were con-
ducted. Most research flights included several vertical pro-

1http://cdaac-www.cosmic.ucar.edu/cdaac/

files (covering altitudes from 0.1 to 15.2 km), and together
with take-offs and landings at Guam there were over 80 ver-
tical profiles obtained during the experiment. We use the air-
craft observations of temperature, pressure, and water vapor
pressure to derive high-resolution vertical profiles of RH.

Water vapor was measured by the Vertical Cavity Surface
Emitting Laser (VCSEL) hygrometer (absolute concentra-
tion of water vapor in molecules per cubic centimeter). It
is designed to work throughout the troposphere (and also
the lower stratosphere) and has an accuracy of ±6% mix-
ing ratio +0.3 ppmv and a precision of ≤ 3% (see Zondlo
et al., 2010, for details). Temperature was measured by two
Harco heated total air temperature sensors (estimated accu-
racy: 0.5 ◦C; precision: < 0.01 ◦C), pressure was measured
using the Paroscientific, Ltd. sensor model 1000 transducer
(accuracy: 0.1 hPa, precision: < 0.01 hPa)2. From the CON-
TRAST netcdf files, the variables used for T , e, and p are
ATX, EW_VXL, and PSXC.

2.3 ERA-Interim reanalysis

In addition to the RO-collocated ERA profiles (as described
in Sect. 2.1), we downloaded ERA-Interim reanalysis fields
from European Centre for Medium-Range Weather Fore-
casts (2009) for the time range of the CONTRAST exper-
iment. They are available every 6 h at 00:00, 06:00, 12:00,
and 18:00 UT. We use the data on the lowest 27 levels, from
1000 to 100 hPa. ERA uses a 4D-Var method and assimilates
RS observations, AIRS radiances, and RO bending angles,
among other in situ and satellite data (Dee et al., 2011).

2.4 Radiosonde, AIRS, and MTSAT-2 observations

RS data from Guam were downloaded from NOAA3. Data
are available at approximately midnight and noon UT (10:00
and 22:00 local times, respectively). Measurements are taken
at standard pressure levels and significant thermodynamic
levels. To convert the pressure grid to altitude, we used a con-
stant temperature gradient of 6.5 K km−1.

AIRS is a cross-track scanning instrument on the NASA
Aqua satellite. Its sun-synchronous, near-polar orbit is de-
signed to cross the Equator from south to north at 13:30 lo-
cal time. The NASA Goddard Sciences Data and Informa-
tion Center provides AIRS retrieved data products, such as
profiles of physical parameters (temperature, humidity) and
trace gas constituents, on a daily basis. We downloaded the
version 6 level 2 standard retrieval data4.

MTSAT-2 is a geostationary satellite located over Aus-
tralia, East Asia, and the western Pacific, operated by the

2https://www2.acom.ucar.edu/sites/default/files/seac4rs/
StateParameters.pdf

3https://www.ncdc.noaa.gov/data-access/weather-balloon/
integrated-global-radiosonde-archive

4ftp://airsl2.gesdisc.eosdis.nasa.gov/ftp/data/s4pa/Aqua_AIRS_
Level2/AIRS2RET.006/
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Japan Meteorological Agency. Detailed information can be
found at Knapp (2008). MTSAT-2 carries an imaging tele-
scope, backed by detectors for five wavelength channels.

We use data from the infrared channel (10.3 to 11.3 µm)
and the water vapor channel (6.5 to 7 µm). We downloaded
MTSAT-2 data from NOAA5.

The sampling characteristics of the different observation
and model data sets compared in this study vary greatly.
The radiosonde and aircraft data are essentially point mea-
surements. Radiosonde measurements are taken on standard
pressure levels and significant thermodynamic levels, which
results in the vertical resolution varying strongly within the
profile (from less than 20 to almost 1000 m). The vertical res-
olution of the aircraft measurements is around 10 m. The hor-
izontal footprint of the radio occultation profiles is ∼200 km
while the vertical resolution is 100 to 300 m (Anthes, 2011).
The AIRS level 2 products are reported on 28 standard pres-
sure levels between 1100 and 0.1 hPa. They have a horizontal
resolution of 50 km6 and a vertical resolution of ∼1 km for
temperature and ∼2 km for humidity7. For the two models
used in this study, we used GFS and ERA interpolated to the
time and location of the RO profile. Furthermore, we used
the ERA field, for which the horizontal footprint is given by
the horizontal grid size (0.7◦ × 0.7◦, about 78 km× (68 to
78) km, depending on the latitude). The vertical resolution is
given by the model pressure levels every 25 or 50 hPa (result-
ing in a vertical resolution between 200 to 1000 m).

Because both radiosondes and the aircraft measurements
are essentially rapid-response point values and have high ver-
tical resolution, they are capable of measuring turbulence and
small-scale horizontal features (such as individual clouds).
AIRS, RO, and models, in contrast, represent averages over
much larger horizontal and vertical scales of observation
(larger horizontal and vertical footprints). Thus different vol-
umes of air are sampled and compared, leading to representa-
tiveness errors or differences due to their different horizontal
and vertical footprints, especially when measuring fields with
high temporal and spatial variability such as water vapor and
relative humidity.

In addition, all the observations and model data occur at
different locations and times. The RS, RO, and aircraft ob-
servations occur at different horizontal positions in the verti-
cal (can be ∼100 to 200 km) as the balloons, satellites, and
aircraft move during the “vertical” sounding. All of these dif-
ferences make comparisons challenging, adding to the uncer-
tainties associated with each individual data set, and must be
considered when interpreting the results.

5http://www.ncdc.noaa.gov/gibbs/availability/2014-02-20
6http://disc.gsfc.nasa.gov/uui/datasets/AIRS2RET_V006/

summary
7http://airs.jpl.nasa.gov/data/physical_retrievals

Figure 1. Profiles extracted from the CONTRAST flights during the
experiment.

2.5 Collocating CONTRAST and RO profiles

From the 16 research flights, we extracted 75 profiles that ex-
tend over at least 6 km altitude and are within the region 5◦ S
to 20◦ N latitude, 130 to 170◦ E longitude (Fig. 1). We tried
different criteria for maximum time and distance for collo-
cating RO with CONTRAST profiles. We made these com-
parisons only for the lowest 10 km, since RO observations
do not provide reliable moisture values at altitudes above
about 8 km (Kishore et al., 2011). Aircraft–RO profile pairs
with less than 4 km overlap in the vertical were discarded
(CONTRAST profiles are mostly limited by their maximum
altitude; RO profiles are limited by their minimum altitude).
The time and space coincidence criteria tested included 3 h
and 600 km, 12 h and 300 km, and 24 h and 200 km, yielding
37, 41, and 24 profile pairs, respectively. Note that the short-
est time windows in these criteria correspond to the longest
spatial intervals; this is done to ensure enough pairs in sets
matching each of the criteria. Using a criterion of the short-
est time and space separation would not yield enough pairs
to make the results as meaningful. As shown in Sect. 5 be-
low, all three of our criteria gave similar results; thus we only
show results for the 3 h and 600 km criteria.

3 Individual profile comparisons

Figure 2 shows an example of a dry layer sampled by the
CONTRAST research flight 2 profile d (rf02d) and the col-
located RO profile (Metop-A) for the parameters RH, T , q,
and N . RH (upper left) shows a typical dry layer structure.
There is a strong drop in RH at the bottom of the layer (at
∼2.5 km) from > 80 to < 10%. All profiles (CONTRAST,
RO, ERA, and GFS) show extremely dry air above 4 km. This
layer is particularly thick and the RH remains below 20 % up
to 10 km. The RO profile shows a remarkably similar shape
when compared to CONTRAST, including the sharp humid-
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Figure 2. RH, T , N , and q profiles for CONTRAST (solid orange), RO (solid black), and RO-collocated profiles (ERA: dashed-dotted black;
GFS: dotted black). Profile times and locations: CONTRAST on 14 January 2014, 00:58–01:11 UT, at 19.2◦ N, 166.5◦ E; RO on 13 January
2014, 22:18 UT, at 17.7◦ N, 164.4◦ E. The profiles are about 3 h and 390 km apart.

ity gradient at the bottom of the dry layer. Both ERA and
GFS show a less sharp vertical moisture gradient, partly due
to lower vertical resolution (RO provides 80 levels between
the surface and 8 km, while ERA and GFS provide 18 and
15 levels, respectively). Profile differences are largest in the
lowest 2.5 km, where RO and ERA RH are up to 20 % lower
than the CONTRAST and GFS RH.

The aircraft T profile (Fig. 2, upper right) shows a strong
inversion at the altitude of the bottom of the dry layer, as
has been described by, e.g., Mapes and Zuidema (1996). Nei-
ther ERA and GFS nor RO not detect this strong inversion.
RO generally has the capability to resolve such strong inver-
sions in the middle and upper troposphere (Anthes, 2011).
We conclude that RO not showing the T inversion could be
explained by two factors: (1) CONTRAST and RO have dif-
ferent N values at this altitude (see Fig. 2, lower left). This
implies that there has to be a difference in T and/or e at this
altitude, too. (2) The 1D-Var retrieval generally produces an
RO T close to the first-guess T , which does not show the in-
version, and changes mainly e in the adjustment of the first-
guess N towards the measured RO N .

Specific humidity q (lower right) shows extremely dry
conditions above 2.5 km, but in less extreme cases dry layers
are harder to detect using this parameter since it generally de-

creases exponentially with altitude. Thus we mainly use RH
to investigate dry layers.

Figure 3 shows two more examples for CONTRAST–RO
pairs (Metop-B and COSMIC-FM6). In the left panel, CON-
TRAST depicts a dry layer from 2.5 to 5.5 km, a relatively
moist layer from 5.5 to 6.5 km, and very dry air from 6.5
to 8 km. The RO RH shows a very similar overall structure.
Major differences are again in the lowest 2 km, where CON-
TRAST, GFS, and ERA RH are up to 20 % higher than RO
RH, and between 2.5 and 4 km, where CONTRAST RH is
up to 20 % lower. Furthermore, both GFS and ERA miss the
1 km thick moist layer around 6 km.

Figure 3, right, shows profiles with two drier layers in the
mid-troposphere (at 3 and 5 km), but no extreme dryness.
Both ERA and GFS show the correct overall shape of the
RH profile, but they are often 20 to 30 % drier or moister
than the CONTRAST RH. Again, RO captures more vertical
structure than the models.

Generally both of these examples show how well the RO
RH profile structure agrees with the one from CONTRAST.
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Figure 3. RH profile for CONTRAST (solid orange), RO (solid black), and RO-collocated profiles (ERA: dashed-dotted black; GFS: dotted
black). Profile times and locations: CONTRAST (left) on 8 February 2014, 00:17–00:32 UT, at 13.5◦ N, 144.8◦ E; RO (left) on 7 February
2014, 22:57 UT, at 13.9◦ N, 148.1◦ E. CONTRAST (right) on 22 February 2014, 09:09–09:35 UT, at 13.5◦ N, 144.8◦ E; RO (right) on 22
February 2014, 12:06 UT, at 15.6◦ N, 148.1◦ E.

4 Case study: research flight 13

We found that many CONTRAST vs. RO profile pairs
matched very closely, but some of the pairs showed RH dif-
ferences of more than 60 % at certain levels. In this section
we look into one of these cases in more detail to help explain
these strong discrepancies. We consider two specific profiles,
one measured by CONTRAST starting at Guam on 19 Febru-
ary 2014, 17:00 UT (Fig. 4, top), and one landing at Guam a
few hours later (20 February 2014, 00:22 UT; Fig. 4, bottom).

For both cases, the left side shows the profiles for CON-
TRAST, the closest collocated RO, the RO-collocated ERA
and GFS profiles, a RS launched at Guam (RSG), and two
AIRS profiles (one closest to Guam, labeled as AIRSG; and
one closest to the RO profile, labeled as AIRSRO). Table 1
lists the time differences and distances between these pro-
files.

The right plots show the ERA RH field at 500 hPa, closest
in time to the respective CONTRAST profiles. Also shown
are the ERA ozone values and winds. The location of Guam
is marked by a white X. CONTRAST, RO, RS, and AIRS
profiles are labeled. Additional squares indicate other RO
measurements. The color filling of the RO symbols (white
squares) varies with the RH of the RO observation at this
level, with the same color code as the ERA RH analysis
(color bar). It is noteworthy that in almost all the cases the
colors (and hence RH) of the RO observations agree very
closely with the ERA values.

In Fig. 4, top left, all profiles show a deep dry layer. The
depth of the layer varies slightly between the data sets. For
CONTRAST, RS, and RO the depth with RH≤ 10% varies
between 5 and 6.5 km. Both the ERA and GFS profiles and
both AIRS profiles show a less sharp transition from moist
to dry. The models also show a generally thinner dry layer.
Major differences between the data sets occur below 2 km,
where RO is significantly drier than all other data sets. The

GFS profile agrees with the drier RO profile down to about
1 km and then strongly increases in RH. Sometimes super-
refraction can cause a dry bias in RO profiles in the lowest
few kilometers, which is probably the case in this particular
RO profile.

Figure 4, top right, shows the ERA RH field at 500 hPa for
the whole region. The large-scale region of very dry air ex-
tends from 110 to 180◦ E with a width of 1600 to 2200 km.
It also shows the high horizontal variability of moisture. In
some areas, extremely strong horizontal RH gradients occur,
which clearly mark the edge of the dry air mass. In these ar-
eas RH can increase from less than 20 % to more than 70 %
within 100 km. And since this is a model field, in which the
gradients are likely to be smoother than the real atmosphere,
the actual gradient could be even sharper. In this figure, it
is also clearly visible that all the profiles from the left panel
are located in the same air mass. Although ozone is not a fo-
cus of this study, we include contour lines of ozone in Fig. 4
(right panels) to illustrate that the ERA ozone fields show, in
general, a coincidence of high ozone values with very dry air,
suggesting the origin of at least some of the dry air from the
lower stratosphere.

Next we consider the same region about 6 h later (Fig. 4,
bottom panels). The profiles (left) show that the dry layer
persists at Guam and is even deeper for CONTRAST. The
RS profile and the AIRS profile at Guam still show a very
deep dry layer. However, the RO shows only a very shal-
low dry layer, and RH increases from less than 20 % to more
than 80 % between 3.5 and 4.5 km. The RO-collocated ERA
and GFS profiles lack the dry layer entirely, having their RH
minima at 45 and 50 %, respectively. They also both increase
above 3.5 km to around 80 %. The AIRS profile at the RO
location starts much drier than RO, ERA, or GFS at the sur-
face. Overall, the AIRS profile has the same shape as RO,
ERA, and GFS. It has weaker dry–moist transitions, similar
to the (re-)analyses, and it stays drier than the other data sets
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Figure 4. Two snapshots of the troposphere for (top) 19 February 2014 around 18:00 UT and (bottom) 20 February 2014 around 00:00 UT.
Left panels: profiles for CONTRAST, RO, ERA, GFS, RS, and AIRS for the 2 days. Right panels: ERA RH (%, color shading) at 500 hPa,
ozone values (white contours: values ≥ 50 ppbv are solid, otherwise dashed), and winds (black arrows). The white X marks the location
of Guam. The locations of CONTRAST, RO, RS, and AIRS profiles are marked. Additional squares indicate other RO measurements. The
squares marking the locations of the RO and CONTRAST locations are colored according to the RH of each profile at the 500 hPa level
(matching the color bar).

Table 1. Distances and time differences between different the collocated profiles of rf13a and rf13d at the lowest point for each profile. Note
that both the aircraft and RS profile will move away from Guam with higher altitudes and that RO profiles are also not completely vertical,
especially in the lower and mid-troposphere.

Profile 13a

RO–CON RSG–CON AIRSG–CON AIRSRO–CON AIRSRO–RO

Distance (km) 345 4 16 331 18
Time diff (min) −117 −289 −70 −70 47

Profile 13d

RO–CON RSG–CON AIRSG–CON AIRSRO–CON AIRSRO–RO

Distance (km) 599 4 34 588 128
Time diff (min) 87 1 236 234 147

above 4 km. Comparing the two AIRS profiles confirms the
credibility of both RO and ERA: the strong difference be-
tween the aircraft profile and RO profile is neither an ERA
nor an RO error, but caused by the combination of an imper-
fect collocation and strong spatial variability.

The lower right panel in Fig. 4 shows that the RO (and thus
also the RO-collocated ERA and GFS) profiles are located in
the moist air mass, just a few tens of kilometers from the
edge of the moist–dry boundary, with much higher moisture
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Figure 5. MTSAT-2 satellite images of brightness temperatures for 20 February 2014 around 00:00 UT. Left: MTSAT-2 IR (10.3 to 11.3 µm);
right: MTSAT-2 IR water vapor (6.5 to 7 µm).

Table 2. Mean, RMS, and Pearson R coefficients for differences in relative humidity of RO–CONTRAST, ERA–CONTRAST, and GFS–
CONTRAST for three different collocation criteria.

3 h 600 km 12 h 300 km 24 h 200 km
644 points 687 points 419 points

mean −4.0 −6.5 −0.2
RO–CONTRAST RMS 21.3 23.4 22.5

Pearson R 0.782 0.758 0.751

mean −3.9 −5.4 0.6
ERA–CONTRAST RMS 20.0 20.5 21.8

Pearson R 0.807 0.807 0.760

mean −5.0 −6.3 −0.1
GFS–CONTRAST RMS 20.7 21.4 21.9

Pearson R 0.799 0.798 0.757

values above 3 km. This explains the very different profiles
in the left panel.

Finally, Fig. 5 shows satellite images from MTSAT-2 for
approximately the same time as the ERA field in Fig. 4, bot-
tom right. The satellite images are cropped to the latitude and
longitude range as ERA (as much as the different projections
allowed). The Guam and RO locations are marked by an X.

The left panel depicts the brightness temperatures from IR
in an atmospheric window (at 10.3 to 11.3 µm). It is derived
from terrestrial IR radiation emitted by the Earth, cloud tops,
and the atmosphere. Color enhancement shows the high, cold
cloud tops south of Guam. Conditions are clear around Guam
and the CONTRAST profile, but the RO profile is located in
cloudy air.

The right panel shows the image from the MTSAT-2 wa-
ter vapor channel. It depicts brightness temperatures derived
from the water vapor emission spectrum between 6.5 and
7 µm. Higher amounts of water vapor absorb more radiation,
which is re-emitted. Thus regions with high amount of water
vapor, especially in the upper troposphere or above clouds,
will have a higher brightness temperature. When compared
to ERA (Fig. 4, bottom right), we see that the low RH re-

gion has a much lower brightness temperature than the moist
region south of Guam.

5 Results of all collocations

To get a general overview of profile pair differences we
computed statistics (not shown) and created scatter plots for
all collocated profiles. Since humidity has a strong spatial
variation (as seen in Fig. 4, right) and also varies strongly
with time, we tested different sets of collocation criteria (de-
scribed in Sect. 2.5). CONTRAST profiles are smoothed
by taking 60 s averages in each profile (resulting in about
300–500 m vertical resolution). The RO profiles are interpo-
lated to the related CONTRAST altitude grid. We did com-
parisons for RO and CONTRAST, ERA and CONTRAST,
and GFS and CONTRAST. Generally, all three sets of col-
location criteria and all data set comparisons show simi-
lar results for both the profile statistics and scatter plots.
To illustrate the similarities, we show the mean, root mean
square (RMS), and Pearson R correlation coefficient for
RH for RO–CONTRAST, ERA–CONTRAST, and GFS–
CONTRAST differences for all three criteria in Table 2. We

Atmos. Meas. Tech., 10, 1093–1110, 2017 www.atmos-meas-tech.net/10/1093/2017/

40



T. Rieckh et al.: Tropospheric dry layers in the tropical western Pacific 1101

Figure 6. Scatter plots for N (top left), T (top right), q (bottom left, logarithmic scale), and RH (bottom right) for all 3 h 600 km collocation
pairs for RO and CONTRAST. The color indicates the altitude of the measurement.

chose RH due to our focus on tropospheric moisture in this
paper. Furthermore, RH is the only parameter without some
inherent vertical correlation due to a general decrease with
altitude (i.e., N , T , and q).

Figure 6 shows the scatter plots for refractivity N , temper-
ature T , specific humidity q, and RH for RO compared to
CONTRAST. The color of the dot indicates the altitude from
0 to 10 km as shown in the color bar. The black solid line
is the fitted linear regression, and the dashed black line indi-
cates perfect agreement between the two data sets (slope= 1,
intercept= 0).

The upper left panel depicts the N comparison between
RO and CONTRAST. N decreases exponentially with alti-
tude, so the spread is larger at lower altitudes (blue) than at
higher altitudes (red). Overall, there is a high correlation be-
tween the two data sets, and the fitted regression (solid black
line) agrees well with the line of perfect agreement (dashed
black line).

T (top right) also shows very good agreement (high corre-
lation and little spread). We found a small warm bias of 0.5
to 1.5 K in CONTRAST temperatures when compared to any
of the other data sets (RO, ERA, GFS). To test how much
influence the collocation criteria have, we interpolated the

ERA field to the CONTRAST profile location (spatial differ-
ence for latitude and longitude < 0.5◦; time difference less
than 30 min), which yielded a slightly smaller, more uniform
bias. We conclude that there is likely a small T bias in the
aircraft temperatures, possibly because of the effects of solar
radiation as most of the flights occurred during the daytime.

The specific humidity q is depicted in the bottom left
panel. The spread appears larger for low values (very dry
air, < 1 g kg−1), but the scales in this panel are logarithmic,
which makes small differences of dry values appear larger.
RO q values are biased positively compared to CONTRAST
for low q values and biased negatively for high q values.
Comparison on q between CONTRAST and GFS in Randel
et al. (2016) shows a similar bias. Because of the highly accu-
rate aircraft water vapor and temperature measurements and
the very small scale of the observation (essentially a point
observation), the CONTRAST measurements are capable of
detecting extremes of dry and moist air more frequently than
RO observations or model estimates, whose data represent
averages over larger scales.

RH plots (bottom right) are highly scattered and have a
lower correlation coefficient of around 0.78 with a bias and
large spread in the data sets. The moist bias of RO for very
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Figure 7. Scatter plots for RH for all 3 h 600 km collocation pairs for (left) ERA and CONTRAST on the 60 s smoothed CONTRAST altitude
grid and (right) GFS and ERA on the ERA (pressure) grid. The color indicates the altitude of the measurement (left: km; right: hPa).

dry air was already noted in the paragraph above. Thus CON-
TRAST shows a much higher frequency of very low RH val-
ues than both RO (Fig. 6 lower right) and ERA (Fig. 7, left).
The large spread can be explained by several factors: (1) RH
is sensitive to both small variations in T and q, and thus rep-
resentativeness differences or errors of both T and q con-
tribute to differences in RH; (2) RH does not have a vertical
profile with a mean structural or climatological variation in
the vertical as N , T , q do (with an overall decrease with al-
titude); and (3) RH can undergo extremely strong changes
in the vertical (80 % RH change over 1 km in Fig. 2), which
leads to strong differences between two data sets if they do
not capture this jump of RH at exactly the same altitude.

Furthermore, comparisons using 8 years of RS (two sta-
tions) and RO data using very tight collocation criteria (1 h,
100 km; figure not shown) also showed highly scattered data
for RH, which indicates that collocation errors are not the
dominant factor in the large scatter between RO and CON-
TRAST relative humidities.

Figure 7, left, compares ERA and CONTRAST RH, which
shows a similar strong scatter as RO and CONTRAST. This
suggests that the high variability in the CONTRAST data set
also plays a role in the strong scatter of RH. Both the RO
and ERA data sets are horizontally smoothed: RO shows an
average over about 200 km (limb-sounding), and ERA is in-
terpolated from the nearest grid points to the location of the
profile (horizontal resolution is < 0.7◦ in latitude and lon-
gitude). Finally, Fig. 7, right, compares GFS to ERA (this
comparison is done on the ERA pressure grid). The correla-
tion between the two analyses is high, but the scatter is sur-
prisingly large considering these are smooth model data sets.
This shows how highly variable RH is.

6 Global distribution

Having shown that the RO observations are capable of de-
tecting extremely dry layers in the tropical western Pacific
region, we carried out a global climatology of dry lay-
ers using only RO data. AIRS data have been used be-
fore to find tropical dry regions within areas of convec-
tion (OLR < 240 W m−2; Casey et al., 2009); however, AIRS
cannot provide reliable measurements below clouds.

Figure 8 shows the global occurrence (percentage of ob-
servations) for RH < 10% on the 320 K potential tempera-
ture level for December–January–February (DJF) and June–
July–August (JJA) 2014. We use the 320 K level because dry
air travels from the stratosphere into the troposphere along
isentropes. The 320 K level is at about 600 hPa or 4.5 km in
the tropics and slopes to higher altitudes (∼9 km) in the ex-
tratropics. So the 320 K level represents the mid-troposphere
in the tropics and the lower stratosphere in the extratropics.

Figure 8, left, shows the months DJF. Between 5 and
25◦ N, almost the entire latitude band shows an occurrence
of dry air for 50 % of the time or more. The only break in
the band is off the west coast of North and Central Amer-
ica. In some regions, dry layer occurrence is as high as 75 %,
e.g., in parts of the Atlantic or near India and the Arab penin-
sula. Guam is located just on the edge of the band of high
frequency of dry layer occurrence. In the SH, two regions
with very strong occurrence are easy to identify: one off the
west coast of South America, and one in the southern At-
lantic Ocean.

In JJA (Fig. 8, right), dry layers occur over smaller regions
of the world, but with a much higher frequency. In the SH,
the entire region from mid-Atlantic via Africa and the Indian
Ocean to Australia shows a frequency of occurrence of 80 to
100 % of the time. In the NH, only a region in the northern
east Pacific and the northeast Africa/eastern Mediterranean
region show moderate to high occurrence.
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Figure 8. Frequency for RH < 10 % at the potential temperature level 320 K for DJF and JJA 2014.

Overall, dry layers occur throughout the year in some re-
gions of the SH, but there is also a seasonal cycle with higher
occurrence in the winter hemisphere. This behavior is consis-
tent with the dry layer climatology derived from ERA (results
not shown) and from GFS data in Randel et al. (2016).

7 Conclusions

In this study we compared GPS RO profiles with multiple
data sets to examine their ability to detect extremely dry lay-
ers in the lower and mid-troposphere in the tropics and sub-
tropics. The comparisons were made in the tropical west-
ern Pacific, making use of the field experiment in that re-
gion during January and February 2014. We used data from
the NSF/NCAR GV research aircraft as a reference for RO
profiles. This is a challenging comparison, since the aircraft
provides high-resolution profiles consisting of point mea-
surements (capturing a lot of variability), whereas the RO
technique is a limb-sounding technique (measuring the limb-
integrated value at each profile level). Furthermore, we used
RS and AIRS profiles, as well as data from the GFS model
and ERA reanalysis. Our main findings and conclusions are
as follows:

1. Radio occultation is capable of detecting layers with
very low humidity in the lower and mid-troposphere,
despite the fact that the water vapor pressure is only
a small fraction of the measured refractivity in dry
air. Comparing RO to other types of observations also
shows that the structure and intensity of dry layers are
captured quite accurately.

2. Both simple and 1D-Var RO water vapor retrievals yield
similar results, demonstrating the ability of RO to re-
trieve water vapor profiles with fine-scale vertical struc-
ture similar to that of the aircraft profile (Appendix A).

3. There is significant information content in the RO wa-
ter vapor retrievals, and the 1D-Var retrieval does not
depend strongly on an accurate first-guess (a priori) in-
formation (such as from ERA). However, poor a priori

information for water vapor may have an effect of sev-
eral Kelvin on the retrieved temperature (Appendix B).

4. When compared to CONTRAST, RO has a moist bias
for low humidity values and a dry bias for high humid-
ity values. Similar results are found when comparing
RO to long records of tropical RS measurements (Ap-
pendix A).

5. Both the GFS and ERA analyses show the overall cor-
rect structure when compared with CONTRAST air-
craft observations and RO. They often exhibit less
small-scale vertical variations or sharp vertical gradi-
ents, probably due to lower vertical resolution.

6. A detailed case study illustrated how strong horizontal
moisture gradients (more than 50 % RH change within
100 km) can yield nearby profile pairs that strongly dis-
agree, even though they are close in space and time.

7. Globally, dry layers occur throughout the year, mainly
between 10 and 30◦ N and S. Occurrence frequency is
stronger in the winter hemisphere. The independent RO
data confirm results from both ERA and GFS, which
show a very similar seasonal occurrence of dry layers.

In summary, these diverse data sets show generally good
agreement in spite of their large differences in sampling char-
acteristics and technologies.

8 Data availability

For this study, we downloaded data from CDAAC (http://
cdaac-www.cosmic.ucar.edu/cdaac/; COSMIC Data Analy-
sis and Archive Center) for the RO missions COSMIC (Con-
stellation Observing System for Meteorology, Ionosphere
and Climate; reprocessed data cosmic2013), GRACE (Grav-
ity Recovery and Climate Experiment; post-processed),
Metop-A (Meteorological Operational Polar Satellite A; re-
processed data metopa2016), Metop-B (Meteorological Op-
erational Polar Satellite B; post-processed), and TerraSAR-X
(post-processed).
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The CONTRAST data are available at https:
//data.eol.ucar.edu/dataset/383.012. The ERA data are
available at the NCAR Research Data Archive: http://rda.
ucar.edu/datasets/ds627.0/. The radiosonde data are available
at https://www.ncdc.noaa.gov/data-access/weather-balloon/
integrated-global-radiosonde-archive. The AIRS data have
been downloaded from ftp://airsl2.gesdisc.eosdis.nasa.
gov/ftp/data/s4pa/Aqua_AIRS_Level2/AIRS2RET.006/.
MTSAT-2 data have been downloaded from http:
//www.ncdc.noaa.gov/gibbs/availability/2014-02-20.
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Appendix A: RO water vapor retrievals

The two common techniques to retrieve physical temperature
and water vapor profiles from RO are the so-called simple re-
trieval (Kursinski and Hajj, 2001) and the 1D-Var retrieval.
For the simple retrieval, e is derived via Eq. (1) using the RO
observed N , and T and p from an independent source (e.g.,
radiosonde, model, or analysis). Advantages of the simple
retrieval are its simplicity and ease of calculation, and its in-
dependence of model moisture (and thus independence from
errors in model moisture). Vergados et al. (2015) used the
simple method for this reason, using ECMWF temperatures
for the independent temperatures. Ware et al. (1996) (Eqs. 3
and 4) noted that for a perfect N and p, the error (difference)
in e related to an error (difference) in T can be approximated
by

1e =
2T N − 77.6p

3.73× 105 ×1T. (A1)

The simple method provides good results (1e <

0.25 hPa) in the lower troposphere if the ancillary temper-
ature data are reasonably accurate (1T < 1 K). In the 1D-
Var procedure, a priori (first-guess or background) profiles
of T and e are obtained from independent observations and
adjusted toward the RO measurements by a statistical opti-
mization procedure (Poli et al., 2002; COSMIC, 2005). The
1D-Var procedure considers the statistics of errors in the RO
observations as well as the statistical errors in the a priori
information, to achieve a consistent temperature and water
vapor profile that minimizes, in a statistical sense, the errors
in T and e.

Because both the 1D-Var and simple method are used in
different studies to estimate water vapor, it is important to
understand how the results from the two methods compare.
In this Appendix we compare the two methods using the data
in our study by first showing an example and then statistics
using a large number of data pairs. Figure A1 shows the pa-
rameters RH, T , q, and e for the first-guess (ERA, solid) and
retrieved from RO with the 1D-Var (dashed) and the simple
retrieval (dotted) for an example profile.

The RH (top left) is very low between 4 and 9 km. The
simple retrieval and the 1D-Var agree very well up to 4 km.
At 4.2 and 6 to 9 km, the simple retrieval produces a nega-
tive RH (due to negative e values). In the simple retrieval,
any error in T will produce an error in e, and for dry air
(e close to zero) this error may lead to an unphysical neg-
ative value for e, q, and RH. The 1D-Var can theoretically
also produce negative values in these situations, but it is ar-
tificially set to a very small positive value (10−6 hPa) in the
COSMIC CDAAC 1D-Var retrieval.

The RO 1D-Var and first-guess (ERA) T (top right) agree
very well; temperature differences are within 1.5 K through-
out the profile. (The RO T in the simple retrieval assumes

ERA T to be the truth, so it is identical to the ERA T in this
figure.)

The bottom panels show q and e. Both parameters become
negative above 4.2 km in the simple retrieval.

Generally, the moisture profiles derived from both the sim-
ple retrieval and the 1D-Var show much more vertical struc-
ture than the ERA profile; this structure comes from the ver-
tical structure of the RO refractivity profile. The above ex-
ample shows that the simple and 1D-Var methods give very
similar results for temperature, specific humidity, water va-
por pressure, and even relative humidity up to the bottom of
the very dry layer (a little above 4 km) where the water va-
por pressure becomes less than 0.1 hPa. The close agreement
in this example is typical, as shown by a comparison of the
simple and 1D-Var method over a large number of cases.

We compared values of T , q, and RH computed from the
two methods, using ERA T directly for the simple retrieval
and ERA T and q as the first guess for the 1D-Var estimates,
against RS data from Vacoas, Mauritus (20.3◦ S, 57.5◦ E),
which is located in a region that frequently contains very dry
layers. We used the period 2006 to 2014, using collocation
criteria of 2 h and 200 km. Because of large uncertainties in
radiosonde humidity measurements above 10 km (Miloshe-
vich et al., 2006), we focus on comparisons over 1000 to
200 hPa.

Scatter plots of q from the 1D-Var retrieval (left) and the
simple retrieval (right) versus the independent radiosonde
observations are shown in Fig. A2. The results are very sim-
ilar with a correlation of 0.914 for the 1D-Var retrieval and
0.908 for the simple method.

Figure A3 uses the same data as above but shows the scat-
ter plot of specific humidities from the 1D-Var versus simple
retrieval. The retrieved values from the two methods are very
similar with a correlation of 0.994. Approximately 15 points
(blue, i.e., pressure altitudes of about 800 hPa) show 1D-Var
values that are significantly higher than the simple values. We
suspected that these points were from profiles where super-
refraction occurs. In the case of super-refraction, N is bi-
ased negatively (Sokolovskiy, 2003) and e from the simple
retrieval, which uses an accurate estimate of T , will be too
low. In 1D-Var, the negative RO N bias will be mitigated to
some extent and the resultant 1D-Var temperature will be too
high and the water vapor pressure too low, but not as low as
in the simple retrieval. Thus e from the simple method will be
significantly lower than the e from the 1D-Var method under
conditions of super-refraction.

To test this hypothesis, we checked all radiosonde profiles
in the pairs for the criterion for super-refraction (dN /dz <

−157 N km−1). If a profile contained this critical value at
some pressure level, we marked all data points of that profile
with an X in Fig. A3. Indeed, most of the points with strong
differences between 1D-Var and simple appear to occur with
super-refraction.

We note that neither the 1D-Var nor the simple method
for computing water vapor pressure at high altitudes
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Figure A1. T , RH, q, and e profiles for ERA (solid, a priori), RO 1D-Var (dashed), and RO simple retrieval (dotted).

Figure A2. Specific humidity from the RO 1D-Var retrieval (left) and simple retrieval (right) versus radiosonde data. Collocation criteria: 2 h
200 km, altitude range 1000 to 200 hPa.

(p <200 hPa) from observed RO refractivity N will provide
reliable estimates, because at these altitudes water vapor con-
tributes very little to the refractivity; i.e., the so-called “wet”
term in Eq. (1) is less than 1 % of the first, or “dry” term as
noted by Wang et al. (2013). There is simply not enough in-
formation on water vapor pressure in refractivity at these alti-
tudes to retrieve accurate estimates of water vapor. For exam-
ple, the mean hurricane-season tropical atmosphere (Dunion
and Marron, 2008) gives the following value of T at 200 hPa
(about 12.4 km altitude): T =−54.6 ◦C (218.6 K). The sat-

uration vapor pressure at this temperature is 0.04 hPa; thus
for 100 % relative humidity, the dry term for N is 71.0 and
the wet term is 0.31, or 0.4 % of the refractivity value. For
the above values, the relationship between errors in e and T

(Eq. A1) gives 1e = 0.0421T (hPa). So a temperature er-
ror (difference) of 0.5 K gives a difference in e of 0.021 hPa,
which is more than 50 % of the saturation vapor pressure at
this temperature. This example illustrates the difficulty in cal-
culating water vapor pressure and relative humidity in the
upper troposphere. Vergados et al. (2014) estimated the re-
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Figure A3. Specific humidity from the RO 1D-Var retrieval com-
pared to the RO simple retrieval, using the same profiles as in
Fig. A2. Points from profiles for which the collocated radiosonde
profile experiences super-refraction are marked by an X.

trieval errors in specific humidity at different pressure levels
(925, 850, 700, 500, and 400 hPa). They estimated that in the
lower troposphere (925, 850, and 700 hPa) the percentage er-
ror in specific humidity for a temperature uncertainty of 1 K
was less than 3 % in the tropics, 6 % in middle latitudes, and
10 % in high latitudes. At 400 hPa, the percent errors grew
to 18 % in the tropics, 45 % in middle latitudes, and 67 % in
high latitudes.

Appendix B: Contribution of RO in the 1D-Var

The simple retrieval of water vapor from NRO and Tmodel is
strongly dependent on an accurate Tmodel but completely in-
dependent from the a priori model water vapor. The 1D-Var,
however, uses the a priori moisture from ERA. In this sec-
tion we investigate how the 1D-Var retrieval reacts to a poor
humidity first guess and how much information the RO re-
fractivity contributes in the 1D-Var.

As an experiment to test the sensitivity of the 1D-Var
method to the first-guess water vapor profile, we change e

of the first guess such that the RH is greater than 20, 40, or
60 % within the lowest 10 km (leaving T unchanged). Then
we use these fictitious a priori “high moisture” data in the
1D-Var retrieval. Figure B1 shows the results for the original
RO and first guess and for the “high moisture” cases.

The top left panel shows RH: the three changed a pri-
ori profiles are clearly different from the original profile. At
4 km, the original profile shows a RH of < 5 %, while the
changed ones are 20 (dark red), 40 (red), and 60 % (orange).
Using these a priori in the 1D-Var yields the original (solid
blue) RO and the “high moisture” ROs (solid, shades of red).
The solid red lines all decrease strongly between 2.5 and
3 km and follow the shape of the original RO at all levels.
Up to 5.5 km, the difference is between 2 and 6 %. Above
that, the RH profiles begin to fan out and differences up to
20 % occur between 5.5 and 8 km. Overall, the results show
that RO refractivity contributes significant information to the
water vapor in the 1D-Var retrieval and strongly corrects for
the artificially high moisture from the a priori profiles.

The top right panel in Fig. B1 shows that the RO T pro-
files show some differences due to the erroneous a priori wa-
ter vapor profiles at all levels. Differences are < 1 K for the
original and the 20 % a priori case and ∼ 3 K for the original
and the 60 % a priori case.

The lower panels of Fig. B1 depict q and e. They show
how much the 1D-Var adjusts the high humidity values from
the first guess towards the low, realistic humidity values.
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Figure B1. RH, T , q, and e profiles with the original ERA first guess (dashed blue), the original 1D-Var output (solid blue), the “high
moisture” first guess (dashed, shades of red), and the 1D-Var output for the modified first guess (solid, shades of red).
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Abstract. While water vapor is the most important tropo-
spheric greenhouse gas, it is also highly variable in both
space and time, and water vapor concentrations range over
3 orders of magnitude in the troposphere. These properties
challenge all observing systems to accurately measure and
resolve the vertical structure and variability of tropospheric
humidity. In this study we characterize the humidity mea-
surements of various observing techniques, including four
separate Global Positioning System (GPS) radio occultation
(RO) humidity retrievals (University Corporation for Atmo-
spheric Research (UCAR) direct, UCAR one-dimensional
variational retrieval (1D-Var), Wegener Center for Climate
and Global Change (WEGC) 1D-Var, Jet Propulsion Labo-
ratory (JPL) direct), radiosonde, and Atmospheric Infrared
Sounder (AIRS) data. Furthermore, we evaluate how well the
ERA-Interim reanalysis and NCEP Global Forecast System
(GFS) model perform in analyzing water vapor at different
levels. To investigate detailed vertical structure, we analyzed
time–height cross sections over four radiosonde stations in
the tropical and subtropical western Pacific for the year 2007.
We found that the accuracy of RO humidity is comparable to
or better than both radiosonde and AIRS humidity over 800
to 400 hPa, as well as below 800 hPa if super-refraction is
absent. The various RO retrievals of specific humidity agree
within 20 % in the 1000–400 hPa layer, and differences are
most pronounced above 600 hPa.

1 Introduction

Tropospheric humidity is one of the key parameters driving
weather and climate, and it plays an important role in the de-
velopment of many extreme events. To accurately model cur-
rent and future climate, it is crucial to understand the distri-
bution, transport, and vertical structure of tropospheric water
vapor. However, measuring water vapor accurately is a great
challenge, as it is highly variable on both spatial and tem-
poral scales, and its tropospheric concentration varies over 3
orders of magnitude between the tropical planetary boundary
layer (PBL) and the tropopause. At present, no single observ-
ing system can provide accurate tropospheric humidity data
on a global scale with high vertical resolution.

Passive (microwave and infrared) nadir-sounding systems
provide data globally, but with relatively low vertical reso-
lution. Weighting functions are used to quantify vertically
resolved humidity information, and these vertical scales are
large (2 to 3 km) compared to the variability of water vapor
in the vertical. Furthermore, infrared-based systems cannot
provide data within or below clouds.

Radiosonde (RS) balloon measurements are launched
globally, although with sparse coverage in many areas, such
as over oceans or in the Southern Hemisphere. They can have
a high vertical resolution, but data quality varies strongly de-
pending on the sensor type (Miloshevich et al., 2006; Ho
et al., 2010). Operational weather forecasting still benefits
greatly from RS measurements, but the current global RS
network is neither designed nor suitable for detecting and
monitoring climate change. First, many different sensor types
are used globally, each with their unique known and un-
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known biases. Second, sensor types at different locations
change over time, and these changes have been poorly doc-
umented in the past, which can lead to artificial trends or
jumps in the station’s record (Dai et al., 2011). The GCOS
(Global Climate Observing System) Reference Upper-Air
Network (GRUAN) aims to address this issue by providing
long-term high-quality vertical profiles of selected essential
climate variables, including an estimate of the measurement
uncertainty (Bodeker et al., 2016). GRUAN will play an im-
portant role for calibrating data from other global networks;
however, at this point in time certified data are available at
only a few locations with a relatively short time range (less
than 4 years).

Research aircraft can provide high-quality, high-resolution
profiles, but these missions are infrequent and cannot pro-
vide a complete global picture continuously over time by
themselves. They are, however, important to evaluate mea-
surements from other observing systems or models (Rieckh
et al., 2017).

The Global Positioning System (GPS) radio occultation
(RO) technique provides near-vertical profiles of refractivity
with high vertical resolution and high accuracy and precision.
Other features of the RO technique are global coverage, all-
weather capability, and SI traceability. Profiles penetrating
down into the lower troposphere became available with open-
loop tracking (Sokolovskiy et al., 2006). Since refractivity
depends on temperature and water vapor pressure, tropo-
spheric specific humidity can be derived from refractivity via
a so-called direct retrieval (using ancillary temperature infor-
mation) or a one-dimensional variational retrieval (1D-Var),
which finds the optimal solution for water vapor pressure,
temperature, and refractivity, taking their prescribed errors
into account. Thus the RO water vapor retrievals and their
quality vary depending on the a priori (and the accuracy of
the prescribed data) and inversion method used. Several RO
processing centers currently provide RO water vapor profile
retrievals: University Corporation for Atmospheric Research
(UCAR), Jet Propulsion Laboratory (JPL), Danish Meteoro-
logical Institute (DMI), and Wegener Center for Climate and
Global Change (WEGC).

The above observing techniques have been used to inves-
tigate the global humidity distribution, trends, and radiative
impact. RO, despite being a relatively young observing tech-
nique, has shown the potential to provide data of climate
benchmark quality for refractivity and temperature between
about 8 and 25 km (Ho et al., 2009, 2012; Steiner et al.,
2013). The quality of RO humidity is subject to research
since ancillary data are required to retrieve humidity from re-
fractivity. Kursinski et al. (1995) provided a first estimate for
water vapor accuracy of less than 5 % for individual profiles
in the boundary layer and 20 % up to about 7 km. Chou et al.
(2009) found humidity differences smaller than 40 % below
7 km for individual profile comparisons between dropsondes
and RO. For observations near strong typhoons, they found
differences up to 100 % in the mid- and upper troposphere.

Regarding global specific-humidity distributions, Chou et al.
(2009) found good agreement within 15 % between RO and
Atmospheric Infrared Sounder (AIRS) but significant dis-
crepancy between NCEP/NCAR reanalysis and RO humid-
ity. Ho et al. (2010) showed that UCAR COSMIC (Con-
stellation Observing System for Meteorology, Ionosphere,
and Climate) water vapor profiles agree well with those
of European Centre for Medium-range Weather Forecasts
(ECMWF) analysis over different regions, demonstrating the
quality of the RO humidity data. Furthermore, they used
RS and RO co-located data to identify biases of various RS
types. Wang et al. (2013) also used UCAR COSMIC wa-
ter vapor products and global RS data with very strict co-
location criteria (1 h, 100 km) to verify the quality of UCAR
RO humidity and found a mean specific-humidity bias of
−0.012 g kg−1, with a standard deviation of 0.666 g kg−1

over the 925–200 hPa layer. Ladstädter et al. (2015) com-
pared WEGC RO profiles from multiple missions to a 5-year
record of GRUAN RS profiles (both of which have the poten-
tial to serve as reference observations in the GCOS) and to
a standard 11-year record of RS profiles (Vaisala RS90/92).
Vaisala RS90/92 shows a dry bias of 40 % in the troposphere
compared to RO, whereas GRUAN, with an elaborate humid-
ity bias correction scheme, agrees within 5 % with RO below
300 hPa. Ladstädter et al. (2015) state that the good agree-
ment of the RO and GRUAN RS data sets strongly encour-
ages further development and advancement of both systems
for the benefit of future climate monitoring and research. Ver-
gados et al. (2015) compared relative humidity (RH) of JPL
RO, ECMWF ERA-Interim reanalysis, and Modern-Era Ret-
rospective analysis for Research and Applications (MERRA)
in the tropics and showed that, from a climatological stand-
point, MERRA and JPL RO are in agreement, whereas the
ECMWF reanalysis is drier. Vergados et al. (2018) compared
JPL and UCAR RO humidity data sets to MERRA, ERA-
Interim, and AIRS from 2007 to 2015 for the ±40◦ latitude
range between 700 and 400 hPa. They found that both RO hu-
midity retrievals agree well with MERRA and ERA-Interim,
but the JPL retrieval is overall moister than all other data sets,
while both the UCAR retrieval and AIRS are overall drier
than all other data sets.

All of the above work considered differences averaged
over large geographical regions and long time periods (a
month or longer). While useful for climate and error estima-
tions, these averages obscure variability that takes place on
smaller temporal and spatial scales. Case studies fill this gap,
but they often focus on a single particular event that occurs
over only a few days.

In this study we focus on the water vapor variability in
both a temporal and spatial sense by comparing data from
multiple observing techniques (RO, RS, AIRS) and model
(re)analyses (ERA-Interim, Global Forecast System (GFS))
at particular locations in the tropics and sub-tropics over
an entire year. We chose the year 2007, when the maxi-
mum number of COSMIC RO profiles was available (COS-
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MIC was launched in 2006; Anthes et al., 2008). We com-
pare each of these individual data sets with co-located ERA-
Interim humidity results for (a) the surface to the upper tro-
posphere, (b) four locations, (c) four seasons, and (d) during
typhoon passages. We quantify the structural uncertainty of
RO-derived humidity profiles in the troposphere, which re-
sults from different inversion implementations and a priori.
To understand how the RO humidity data sets are different
from other humidity products, we collected RS–ERA pairs,
AIRS–ERA pairs, and GFS–ERA pairs near the four RS sta-
tions. Although these data pairs may not sample the same
local times, the errors due to local time sampling differences
are probably small over these oceanic regions.

As humidity varies strongly in time and space, this study
allows us to show in detail how humidity conditions change
over time, both daily and seasonally, and how atmospheric
conditions affect the ability of these data sets to provide accu-
rate and precise humidity information. We can identify high-
frequency variability and patterns at selected locations that
would be obscured if only statistical parameters were ana-
lyzed.

We focus on several challenging locations in the tropics
and sub-tropics where water vapor is highly variable. We
show the entire 1000–400 hPa range to show how data quality
for different observing and modeling systems varies with al-
titude. For example, the humidity data from many RS sensors
are biased in the mid- and upper troposphere. RO-derived hu-
midity can be biased in the lowest few kilometers (due to
super-refraction in the atmosphere) and is unreliable once
temperatures get as low as 250 K in the upper troposphere
(around 350 hPa in the tropics). Using data from 1000 to
400 hPa without layer averaging allows us to identify details
in the vertical humidity structure as measured by these sys-
tems.

ERA-Interim reanalysis (hereafter ERA) is used as a ref-
erence for all comparisons. Although all data sets used in
this comparison are assimilated in the ERA, comparisons are
still valuable since (i) data from a large number of differ-
ent observing techniques are assimilated (number of assimi-
lated observations more than 107 per day in 2010 (Dee et al.,
2011), thus lowering the impact of any single observation),
and (ii) the RO uncertainties used in data assimilation are
large in the mid- and lower troposphere, and hence RO makes
a relatively small contribution in the ERA reanalysis. In the
ERA, the standard deviation of the RO observation error dis-
tribution (in bending angle space) is assumed to decrease lin-
early with increasing height, from 20 % at the surface to 1 %
at 10 km impact height (Poli et al., 2010).

In a companion paper (Anthes and Rieckh, 2018), these
data sets are compared statistically in different ways to esti-
mate the error variances of each data set. This method indi-
cates that the ERA-Interim data set has the smallest errors in
refractivity, temperature, specific humidity, and relative hu-
midity from 1000 to 200 hPa. The current paper sets the stage
for this statistical comparison by describing the data sets in

detail and showing how they vary over the year at the four
locations.

The structure of this paper is as follows: Sect. 2 explains
the data sets used in this study. Section 3 shows an overview
of the results for the different observing systems, which are
analyzed in greater detail in Sect. 4. Section 7 provides a
summary and conclusions.

2 Data and method

2.1 Radio occultation

Radio occultation (RO) is a limb-sounding technique that
provides near-vertical profiles with high vertical resolution
of bending angles (Melbourne et al., 1994; Hajj et al., 2002),
which can be used to retrieve atmospheric refractivity N .
N can be related to atmospheric temperature T , pressure p,
and water vapor pressure e via the Smith–Weintraub formula
(Smith and Weintraub, 1953):

N = 77.6
p

T
+ 3.73× 105 e

T 2 + [. . .]. (1)

The contribution toN from liquid water (the terms in [. . . ] in
Eq. 1) can be neglected in most conditions (Ho et al., 2018).
When e is negligible (at temperatures lower than 250 K;
Kursinski et al., 1997), the second term is assumed zero and
atmospheric temperature can be computed using Eq. (1).

In the troposphere, where water vapor content is signif-
icant, Eq. (1) is ambiguous and ancillary temperature data
from another data source (usually model or analysis tem-
perature) are required to solve for e. Direct retrievals use a
prescribed T from another source to derive e. In a 1D-Var
retrieval, a cost function is minimized to find the optimal so-
lution for e, T , andN with their prescribed errors (Poli et al.,
2002). In this study, three different RO retrievals and four dif-
ferent humidity retrievals are compared in order to provide an
indication of the uncertainty in RO-derived water vapor.

GPS RO humidity accuracy varies depending on the
choice of retrieval (direct versus 1D-Var retrieval). For a di-
rect retrieval, humidity accuracy is determined by both the
quality of the a priori temperature (Vergados et al., 2014,
Fig. 1) and the refractivity accuracy. For the 1D-Var retrieval,
humidity accuracy depends on the a priori temperature and
humidity quality, the GPS RO refractivity accuracy, and the
error variances for the input parameters. A general estimate
for RO specific-humidity accuracy is given in Vergados et al.
(2018) (and references therein) as ∼ 10–20 %.

2.1.1 UCAR 1D-Var

A one-dimensional variational (1D-Var) retrieval generally
uses an a priori state of the atmosphere (background verti-
cal profile), an observable (RO refractivity or bending angle),
and their specified associated errors to minimize a quadratic
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cost function. At COSMIC Data Analysis and Archive Cen-
ter (CDAAC), ERA profiles of temperature and humidity are
used as background, which are interpolated to the time and
location of the RO (accounting for tangent point drift during
the occultation). The humidity retrieval allows specified er-
rors for both T and e, but only a very small error for bending
angle/refractivity. CDAAC provides the resulting profiles of
N , T , e, and p (wetPrf1), hereafter called UCAR 1D-Var.

2.1.2 UCAR direct

A direct retrieval uses background temperature and RO re-
fractivity to compute humidity using Eq. (1). The influence
of a T error on e (i.e., the relation between δT and δe) can be
directly derived from Eq. (1) (Ware et al., 1996), under the
assumption that N and p are constant:

dN =
δN

δT
δT +

δN

δe
δe = 0−→ (2)

δe =
1

3.73× 105 (2NT − 77.6p)δT . (3)

Ware et al. (1996) showed that e could be estimated to
within 0.25 hPa in the lower troposphere if temperature were
known to within 1 K. Vergados et al. (2014) depict the re-
trieval errors of specific humidity q due to temperature un-
certainty for several latitude bands and pressure levels and
show that humidity errors increase with increasing altitude
and latitude, since humidity, and thus its contribution to at-
mospheric refractivity, decreases. In the tropics (relevant for
this study), the q uncertainty for 1 K T uncertainty is less
than ±3 % below 700 hPa and increases to 18 % at 400 hPa
(cutoff altitude in this study).

We use the RO variable “N_obs” (observed N before go-
ing through the 1D-Var) from the UCAR CDAAC wetPrfs.
We chose T from the co-located GFS profiles as prescribed
temperatures in the humidity retrieval for a greater indepen-
dence between RO and ERA. For the four locations in this
study, the maximum T difference between GFS and ERA
occurs at Guam, with up to 2 K in the 800–500 hPa layer
for the individual profiles. Comparisons of the UCAR di-
rect retrieval using GFS T versus ERA T as background
temperature shows specific-humidity differences of less than
3.5 % for seasonal and 200 hPa layer averages within the
800–300 hPa layer.

2.1.3 WEGC 1D-Var

The Wegener Center for Climate and Global Change
(WEGC) developed a simplified version of a 1D-Var method.
As a background, they use ECMWF 24 or 30 h forecast
fields, which are spatially interpolated to the location of the
RO (Schwärz et al., 2016). Combining the Smith–Weintraub

1http://cdaac-www.cosmic.ucar.edu/cdaac/ (last access: 17
September 2017)

equation and the hydrostatic equations for dry and moist air,
they are solved for e and p with prescribed T , and for T and
p with prescribed e. Iteration continues until the retrieved e
and T converge within a set tolerance. Then the results are
combined to get the optimally estimated T and e profiles.
More information about the retrieval and error characteris-
tics can be found in Ladstädter et al. (2015) and references
within.

2.1.4 JPL direct

JPL’s direct retrieval is similar to the UCAR direct but
uses the ECMWF Tropical Ocean and Global Atmosphere
(TOGA) T as a priori. Humidity is only derived below the
level of tropospheric T = 250 K (Kursinski et al., 1997). JPL
RO data were downloaded via the Atmospheric Grid Analy-
sis and Profile Extraction tool2.

2.2 ERA-Interim reanalyses

We use the ERA as a reference (or baseline) for our com-
parisons3. We do not consider the ERA as “truth”, but we
do consider the ERA to be the most accurate data set (An-
thes and Rieckh, 2018) because it uses quality-checked ob-
servations with a 4D-Var data assimilation scheme and an
accurate forecast model in a research mode to produce the
variables of interest here (temperature and water vapor) on
a 0.7◦× 0.7◦ grid. In 2007 ERA assimilated measurements
from many different observing techniques, including RS ob-
servations, AIRS radiances, and RO bending angles (Dee
et al., 2011). Thus, when using the word “bias” for a data set
in a comparison, we refer to the bias difference with respect
to ERA.

Apart from using ERA as a reference, we also created two
baseline data sets from ERA for comparison to the observa-
tions. The first one is the climatology (hereafter CLIMO) for
2007, which is simply the ERA 2007 annual mean. The sec-
ond one is the persistence (PERSIST) value of each variable
from the value of the time series 24 h earlier. It represents
a measure of the day-to-day variability in the ERA data set.
These two simple data sets represent a baseline against which
the value of observations can be compared. A minimum re-
quirement for an observation type to be useful is that it must
contribute additional information above those contributed by
these baseline data sets; i.e., they must be more accurate than
these data sets.

2.3 Radiosonde, AIRS, and GFS

RS data for Guam (13.5◦ N, 144.8◦ E) and three Japanese
stations (Ishigakijima: 24.2◦ N, 124.5◦ E; Minamidaitojima:

2https://genesis.jpl.nasa.gov/agape/ (last access: 18 September
2017)

3https://rda.ucar.edu/datasets/ds627.0/ (last access: 26 June
2017)
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25.6◦ N, 131.5◦ E; Naze: 28.4◦ N, 129.4◦ E) (Fig. S1, in the
Supplement) were downloaded from the National Oceanic
and Atmospheric Administration4. The RS are given on six
standard pressure levels between 1000 and 400 hPa, plus ad-
ditional levels if there is higher-resolution vertical structure.
The RS at the four stations are generally launched twice daily
during the hour before midnight and noon (UTC). The four
stations use the following sensors: Guam: Sippican VIZ-B2;
Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92; and
Naze: Meisei5. The Sippican VIZ-B2 humidity sensor has a
nighttime wet bias (Wang and Zhang, 2008; Ho et al., 2010)
and performs poorly in dry conditions (Holger Vömel, per-
sonal communication, 2017). Ho et al. (2010) found no ob-
vious bias for the Meisei sensor. The Vaisala RS92 sensor is
known for its dry bias (Vömel et al., 2007) of ∼ 9 % at sur-
face, and up to 50 % at 15 km altitude, and several correction
schemes have been developed to address this (Miloshevich
et al., 2006; Vömel et al., 2007).

AIRS is a nadir-looking instrument aboard the National
Aeronautics and Space Administration (NASA) Aqua satel-
lite, which was launched in May 2002. AIRS provides at-
mospheric variables on 28 standard pressure levels between
1100 and 0.1 hPa (8 levels between 1100 and 400 hPa)6. The
vertical resolution is ∼ 1 km for temperature and ∼ 2 km for
humidity7. The horizontal resolution8 is 50 km. We use the
AIRS Version 6 Level 2 (AIRS2RET) data with a quality flag
of “BEST” or “GOOD”.

The AIRS retrieval is a cloud-clearing retrieval. Susskind
et al. (2003) describe the cloud-clearing process that yields
the “clear” radiances from which all parameters except
clouds are retrieved (Kahn et al., 2014). The humidity re-
trieval of Version 6 is basically the same as in Version 5
but still yields improved humidity results due to the im-
proved first guess provided by the Neural-Net start-up sys-
tem, improvements in the determination of other atmo-
spheric variables, and improvements in cloud-cleared radi-
ances (Susskind et al., 2014).

RO co-located profiles for GFS are added in the compar-
ison to show results from an analysis that is different from
ERA. GFS profiles are given on a 25 or 50 hPa grid (depend-
ing on altitude) and are linearly interpolated to the time and
location of the UCAR 1D-Var profiles.

4https://www.ncdc.noaa.gov/data-access/weather-balloon/
integrated-global-radiosonde-archive (last access: 7 June 2017)

5https://www1.ncdc.noaa.gov/pub/data/igra/history/
igra2-metadata.txt (last access: 2 June 1017)

6ftp://airsl2.gesdisc.eosdis.nasa.gov/ftp/data/s4pa/Aqua_AIRS_
Level2/AIRS2RET.006/ (last access: 13 December 2017)

7http://airs.jpl.nasa.gov/data/physical_retrievals (last access: 13
December 2017)

8http://disc.gsfc.nasa.gov/uui/datasets/AIRS2RET_V006/
summary (last access: 13 December 2017)

2.4 Design of the comparisons

Since we are investigating humidity differences of various
observing systems, we chose regions where humidity con-
ditions are highly variable in both space and time with
extremely high and low values during the year. We use
the tropical location Guam, which frequently experiences
dry air intrusions from the subtropical upper troposphere–
lower stratosphere (UTLS) region from December to March
(Rieckh et al., 2017). This leads to sharp vertical humid-
ity gradients (relative humidity changes from less than 10
to about 80 % within a small vertical layer), conditions that
are favorable for RO super-refraction (Garratt, 1992). Super-
refraction, in turn, will lead to a negative bias in the RO-
observed N and q. See Fig. S3 for the ERA 2007 time series
of specific humidity, relative humidity, temperature, and re-
fractivity at Guam.

The other RS locations are subtropical stations around
Japan, which experience a large seasonal variability as well
as extreme conditions associated with occasional typhoons.
See Fig. S4 for the ERA 2007 time series of specific humid-
ity, relative humidity, temperature, and refractivity at Ishi-
gakijima.

To increase the number of co-located profiles, we picked
the year 2007 for our analysis, when all COSMIC satellites
were operating reliably. Since the measurement techniques
for RO, RS, and AIRS are different, we use different co-
location criteria to get a maximum number of high-quality
co-locations. For the ERA reference grid points matched to
the RS stations, the distance between any of the RS stations
and the respective ERA grid point is between 15 and 35 km,
and the time difference less than an hour from the 00:00 and
12:00 UTC ERA data. RO observations are co-located within
3 h and 300 km, and a co-location correction as described by
Gilpin et al. (2018) is applied:

1XSC = (XRO−XRS)SC

= (XRO−XRS)−
(
XRO loc

ERA −X
RS loc
ERA

)
, (4)

where 1XSC denotes the spatially corrected difference of
X, X is a variable measured by RO and RS, and the co-
location correction is the difference in the ERA values of
X at the RS and RO locations. Gilpin et al. (2018) show
that double-differencing correction significantly reduces the
mean and root mean square (rms) differences of the RO and
RS observations. Since our reference location is an ERA grid
point, we replace RS with ERA in Eq. (4), which simplifies
to 1XSC =XRO−X

RO location
ERA .

AIRS profiles are extracted within 30 km from the ERA
reference point; the maximum time difference is 3 h. Fig-
ure S2 depicts the co-location process for all data sets and
one time.

Due to the restrictions as explained above, the resulting
profile pairs (and number of profile pairs) between ERA and
any of the data sets are different. Furthermore, the four RO
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retrievals have different quality control schemes, which espe-
cially lowers the number of available JPL profiles. The pen-
etration depths also vary for the RO data sets and retrievals;
for example, the UCAR 1D-Var data are available on lower
levels than UCAR direct because the bottom height is given
as zOB−eCL, where zOB is the bottom height of observation,
and eCL is the background error correlation length (which is
500 m in the UCAR 1D-Var).

All data sets are interpolated to a common 25 hPa grid. We
chose this grid as a compromise between the effective reso-
lutions of all data sets used. The effective resolution of RO
is estimated to be higher than 100 m in the troposphere (Gor-
bunov et al., 2004). The RS has observations on additional
levels (significant levels) if there are significant changes in
the vertical profile. ERA and GFS are provided on a pres-
sure grid with 25 or 50 hPa increments. AIRS is sampled on
a sparser vertical grid and thus does not resolve small-scale
features in the vertical. But any biases over deep layers will
be evident, and if interpolation leads to biases in certain pres-
sure layers, a pattern will be clearly visible in the individual
profiles.

The horizontal scale (footprint) of each data set varies.
The horizontal resolutions of the ERA and GFS mod-
els (grid size) are approximately 80 km× 80 km and
28 km× 28 km, respectively. The AIRS footprint is approx-
imately 50 km× 50 km. The RO observations have a hori-
zontal length scale along the ray path of order 200 km (An-
thes, 2011). Finally, the RS is essentially a point measure-
ment. These differences can lead to representativeness errors,
or differences, because the finer-scale data sets can resolve
horizontal variability on smaller scales than the lower reso-
lution of the RO (200 km). Some of this representativeness
difference is reduced by the vertical averaging to 25 hPa lay-
ers. The remaining differences tend to cancel in the mean
because the ERA, RS, and RO observations are located ran-
domly with respect to each other, and the smaller-scale struc-
tures that they resolve vary randomly within the model grid
volumes. However, these differences in representative scale
will contribute to the rms differences from the ERA data set.

Profile pairs of ERA and each data set are extracted, and
the computed differences are normalized by the ERA 2007
mean value (CLIMO) at each level: normalized difference
(ND) = 100 · (dataset−ERA)/CLIMO (expressed as %). To
make it easier to transfer results from normalized to actual
differences, the constant value CLIMO is used to normalize
all data sets. The values for CLIMO are shown in Fig. 1, and
the exact values are provided in the Supplement in Table S1
for an easy reproduction of the original values.

3 Results

3.1 Overview: general agreement and correlation
between the data sets

Figure 2 shows values of q for UCAR direct, UCAR 1D-
Var, WEGC 1D-Var, JPL direct, RS, AIRS, and GFS (left
to right) versus ERA from high- to low-pressure layers (top
to bottom), depicting the correlation between the observa-
tional data sets and ERA at Guam (log–log correlation coef-
ficients in the title of each panel). Additionally, the mean and
standard deviation values of the differences for each pressure
layer are depicted in each panel (since values are not normal-
ized, values from the lower levels will have a larger influence
on the result).

There is good agreement and high correlation for all data
sets in the 1000–400 hPa layer (Fig. 2, bottom panels). The
RS shows the largest difference (∼ 1 order of magnitude) for
generally low humidity values. Some larger differences can
also be seen for the UCAR direct, UCAR 1D-Var, JPL direct,
and GFS when these data sets are much drier than ERA (pri-
marily happening in the DJF season). The large differences
occur generally for q values less than 1 g kg−1, with many
lower than 0.1 g kg−1, which indicates dry higher altitudes
(i.e., above 500 hPa). RO refractivity becomes less sensitive
to water vapor at these higher altitudes, and the RO retrievals
of water vapor, whether direct or 1D-Var, are less reliable
at these levels (Kursinski et al., 1995). The UCAR 1D-Var
can also have difficulties retrieving very low humidity values
(which is the case in the DJF season at Guam). If the a priori
temperature is too low, it can happen that the UCAR 1D-Var
humidity values are set to zero, which would lead to a dry RO
bias overall for low values of specific humidity. The data sets
look similar in the 400–300 hPa layer, and a dry bias for the
RS becomes visible. In the 300–200 hPa layer, the UCAR di-
rect spread becomes very large (indicating limited usefulness
for RO direct retrievals at this level), while the UCAR 1D-
Var and WEGC 1D-VAR agree very well with ERA, since
they are using ERA and ECMWF short-range forecast pro-
files as background in the retrieval, respectively. JPL direct
humidity data are not available at these pressure levels. Both
RS and AIRS show a dry bias. Finally, in the 200–100 hPa
layer the UCAR direct data are useless, the UCAR 1D-Var is
practically identical to ERA (simply recovering ERA a pri-
ori values), and the RS and AIRS data both have a strong
dry bias. The GFS agrees fairly well with ERA in the upper
layers and has no obvious bias.

3.2 Time series at Guam

Figure 3a shows the time–height cross section of RH over
2007 from 1000 to 400 hPa at Guam. Overall, the conditions
at Guam are moist (RH> 80 % and q ∼ 17 g kg−1) year-
round in the boundary layer and in the mid-troposphere from
July to November, and dry in the mid-troposphere during
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Figure 1. ERA annual average profiles on the 25 hPa grid for (a) refractivity, (b) specific humidity, (c) relative humidity, and (d) temperature
at all four locations.

the rest of the year. The changing humidity pattern above
800 hPa results from the alternation of the high-humidity
tropical conditions and dry air intrusions from the subtropical
UTLS in December to June (Randel et al., 2016). These dry
intrusions (relative humidity as low as a few percent) are very
stable and suppress convection. The sharp humidity gradient
between the very dry lower mid-troposphere and the moist
boundary layer around 800 hPa often leads to conditions of
super-refraction, which results in a negative bias of N and
thus q in the RO profiles (Xie et al., 2010).

The ND of specific humidity q between the PERSIST data
set and ERA (which represents the day-to-day variability of
ERA) shows that q has almost no day-to-day variability in
the 1000–800 hPa layer during the entire year and in the 800–
600 hPa layer in August and September (Fig. 3b). Above,
day-to-day variability is significant. Exceptions occur in the
600–400 hPa layer during December through May, when per-
sistent dry air intrusions occur. This shows just how stable
and persistent these layers can be, suppressing major changes
in humidity for up to 20 days in a row.

The ND of q between GFS and ERA (Fig. 3c) shows that
the differences between the two model values of q are much
smaller than the differences between PERSIST and ERA, as
might be expected. GFS is up to 50 % moister than ERA
in the 800–600 hPa layer in the dry season, and in the 800–
550 hPa layer in the wet season. This is essentially the layer
of strong humidity variability above the bottom layer of con-

stant (about 80 %) relative humidity. This behavior may be
due to GFS difficulties in capturing the sharp transition be-
tween dry and wet conditions on the bottom of dry layers in
December to June. This is supported by individual profiles
(e.g., Randel et al., 2016, Fig. 4), as well as our comparison
of ERA with RS (Fig. 4a), which supports the ERA in this
respect.

The ND show a small wet bias of the RS relative to ERA
in the lower troposphere and large wet and dry biases in the
middle and upper troposphere throughout the year (Fig. 4a).
The large biases are likely caused by RS sensor malfunctions
(Holger Vömel, personal communication, 2017), which can
start as low as at 800 hPa. At some point during the ascent,
the sensor gets stuck and keeps reporting the same humidity
value, which manifests itself as a dry or wet bias compared
to ERA, depending on if tropospheric conditions are drier
(December through May) or wetter (June through November)
than the incorrect reported value.

AIRS shows an overall dry bias compared to ERA
throughout the entire troposphere in all seasons (Fig. 4b).
The dry bias appears to be less during the dry-air-intrusion
events in the 600–400 hPa layer in the dry season (December
to June). This indicates that AIRS is less biased if the over-
all atmospheric conditions are dry. The AIRS dry bias agrees
well with the findings of Wong et al. (2015), who studied the
uncertainties of AIRS Level 2 Version 6 q and T depending
on cloud types. They found reduced dry biases in the middle
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Figure 2. Guam: scatterplots of q for seven data sets versus ERA for four pressure layers. Left to right: UCAR direct, UCAR 1D-Var,
WEGC 1D-Var, JPL direct, RS, and AIRS. Correlation coefficients as well as mean and standard deviation of the differences are given for
each panel. Note that both axes are on a logarithmic scale and that axis limits vary for different pressure layers.

troposphere under thin clouds, but large dry biases (> 30 %)
in the lower troposphere with low thick clouds, and dry bi-
ases throughout the troposphere in the presence of high thick
clouds.

The normalized differences of the four RO retrievals to
ERA show similar patterns in the 1000–800 hPa layer but
larger differences in the mid- and upper troposphere (Fig. 5).
The UCAR direct data develop a wet bias above 600 hPa
in the wet season and alternate between dry and wet during
the other seasons. The UCAR 1D-Var data show an overall
dry bias throughout the troposphere with a few exceptions.
Both JPL and WEGC data develop a strong wet bias above
600 hPa in the wet season. Common features of all four RO
retrievals include the very small differences to ERA in the
wet season in the 1000–800 hPa layer and a dry bias and/or
frequent reduced penetration depth (loss of signal) in the dry
season. The latter is a signature of super-refraction, which it-
self is caused by strong humidity gradients, usually between
the planetary boundary layer and the free troposphere.

Figure 5 also shows that all RO data sets are biased dry
with respect to ERA in December through February in the
800–600 hPa layer, which is clearly above the layer of strong
humidity gradients (compare to Fig. 3a). We found similar
behavior in previous work. In Rieckh et al. (2017), Fig. 2,
lower right panel, ERA data are given on the 775, 750, 700,
and 650 hPa pressure levels (about 2.3, 2.6, 3.1, and 3.8 km,
respectively). The 775 and 650 hPa levels agree well with the
aircraft and RO measurements; however, the two levels in be-
tween smear the sharp profile, and the ERA shows humidity
values 1.5 to 2.5 g kg−1 (20 to 35 %) larger than the observa-
tions. Thus we conclude that the bias in Fig. 5 may not be a
dry bias in RO but could be a wet bias in ERA in the layer
just above the strong humidity transition from wet (PBL)
to dry (above). The assumed errors for assimilating RO in
ERA are large in the lower troposphere, and all assimilated
nadir-viewing instruments only provide vertical resolutions
of about 2 to 3 km. Unless a nearby approved RS contributes
information locally, ERA does not have any vertically well-
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Figure 3. 2007 time series at Guam: (a) ERA relative humidity (%) with blue representing moist air and red representing dry air; (b) normal-
ized difference of q (%) between PERSIST and ERA; (c) normalized difference of q (%) between GFS and ERA. The bottom panel shows
that there are significant (±50%) differences in the two model data sets. The color bar on the right indicates relative humidity (%) in (a) and
specific-humidity normalized differences (%) in (b) and (c).

resolved humidity data that will cause the ERA analysis to
develop such sharp humidity gradients.

The 2007 time series of the q normalized difference for all
data sets are depicted for a Japanese station (Minamidaito-
jima) in Figs. S5 and S6.

The 2007 time series of the refractivity N normalized dif-
ference for all data sets are depicted for Guam in Figs. S7
and S8.

3.3 Mean and rms differences from ERA at Guam

We compute the mean and root mean square (rms) of the
normalized differences at Guam to get a statistical overview
of the differences from the ERA for all data sets for three
pressure layers (1000 to 400 hPa in 200 hPa layers) and four
seasons (Fig. 6).

Some general aspects of the different data sets seen in the
individual time series are clearly visible in the mean (Fig. 6,
top), such as the large negative (dry) difference of RO com-

pared to ERA (green and blue bars) in DJF for the 1000–
600 hPa layer. In the 1000–800 hPa layer, a dry bias for RO
exists throughout the year. The dry bias is largest in DJF, but
it is smaller than and comparable in magnitude to the biases
of the RS and AIRS in MAM, JJA, and SON. RO retrievals
show the greatest differences from each other in the 600–
400 hPa layer year-round and in the 800–600 hPa layer in the
wet season. AIRS shows an overall dry bias at all pressure
layers and seasons. As expected, PERSIST has essentially
no bias at any pressure layer or season. Because of the large
seasonal variation in water vapor, CLIMO has large seasonal
positive and negative biases above 800 hPa that are much
larger than the biases of any other data set. GFS shows sig-
nificant differences from ERA, especially in the dry season
(DJF and MAM) in the 800–600 hPa layer.

Since the mean of the paired normalized differences is no
indicator of their variability, we also show the rms (Fig. 6,
bottom). The magnitude of the rms is a measure of the ac-
curacy and scatter of the data compared to the reference.
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Figure 4. 2007 time series of the q normalized difference between (a) RS and ERA, and between (b) AIRS and ERA at Guam. The color
bar on the right indicates specific-humidity normalized differences (%).

All data sets have a rms comparable to (below 800 hPa) or
considerably smaller than (above 800 hPa) both CLIMO and
PERSIST in all seasons (Fig. 6, bottom). The former is ex-
pected, considering how little humidity changes throughout
the year in the 1000–800 hPa layer. The latter indicates the
value (over persistence and climatology) of all observation
techniques above 800 hPa. As for the individual data sets,
we see that the RO rms for all retrievals is comparable to
or lower than RS and AIRS rms for all seasons and pressure
layers. This increases our confidence regarding the value of
RO mid- and lower-tropospheric humidity data.

3.4 Statistics at the subtropical Minamidaitojima

At Minamidaitojima all data sets have a smaller bias com-
pared to ERA (Fig. 7, top) than at Guam. The strong RO
humidity bias in the dry-season lower troposphere (as seen at
Guam) is not present, and biases of all observational data sets
(with the exception of AIRS) are less than 5 % in the 800–
600 hPa layer. Biases are larger in the 600–400 hPa layer,
especially for the RS. The rms values at Minamidaitojima
(Fig. 7, bottom) show a similar pattern to the one at Guam,
with the RO and GFS rms differences being smaller than
the RS and AIRS differences. The statistics of the other two
Japanese stations (Ishigakijima and Naze) are similar (not
shown).

4 Differences from ERA in dry versus wet atmospheric
conditions

In Sect. 3 we saw how the general atmospheric humidity con-
ditions (wet versus dry) can have an influence on the biases in
the data sets with respect to ERA, especially for RO (super-
refraction with strong vertical humidity gradients) and AIRS
(smaller bias in dry conditions). In this section, we investi-
gate the different error characteristics for dry and wet con-
ditions in more detail at both the tropical and subtropical
locations. We created a “dry” and “wet” data set. For ev-
ery profile pair, we computed the average relative humidity
(RH) of the ERA (background) profile for the 800–400 hPa
layer (RH800−400). This layer was chosen according to the
humidity distribution throughout the year (see Fig. 3, top).
If RH800−400 ≤30 %, the entire profile is added to the dry
data set. If RH800−400 ≥ 70 %, the entire profile is added to
the wet data set. Then the mean and rms are computed for
both these data sets separately. These statistical values are de-
picted for the 1000–800 hPa layer and the 800–400 hPa layer
(Fig. 8).

The mean of the normalized differences shows different
patterns for the dry and wet data sets at both Guam and Mi-
namidaitojima. At Guam, we see a dry bias of 6 to 14 % in the
1000–800 hPa layer for all RO retrievals for the dry data set
(Fig. 8, left). We assume that the dry air intrusions and sharp
humidity transitions above the PBL with associated super-
refraction conditions are primarily responsible for the nega-
tive N and thus negative q bias at Guam. The RO biases in
the 800–400 hPa layer vary around zero (−4 to 2 %). For the
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Figure 5. The 2007 time series of the q normalized difference at Guam for the (a) UCAR direct, (b) UCAR 1D-Var, (c) WEGC 1D-Var, and
(d) JPL direct retrieval. The color bar on the right indicates specific-humidity normalized differences (%).

wet data set, the mean RO differences from ERA vary sig-
nificantly in the 800–400 hPa layer from 0 to 16 %, while the
bias in the 1000–800 hPa layer is between 0 and−5 % for the
RO retrievals. At Minamidaitojima, the RO data sets show
smaller and similar biases for both pressure layers (Fig. 8,
right). The dry RO data set has no bias in the 800–400 hPa
layer and very small biases (2 to 5 %) in the 1000–800 hPa
layer. The bias with respect to ERA of the wet RO data set
ranges from−4 to 4 % in the 800–400 hPa layer and from−4
to 2 % in the 1000–800 hPa layer. Overall, we conclude that
there are no major differences in the RO error characteristics
between the dry and wet data sets or between the two pres-

sure layers at Minamidaitojima, in contrast to Guam, where
background humidity conditions clearly matter for the differ-
ent error characteristics.

AIRS clearly shows a strong dry bias for both pressure
layers for wet background conditions. The bias is stronger
at Minamidaitojima, reaching more than −30 % in the 800–
400 hPa layer and −20 % in the 1000–800 hPa layer. For dry
conditions, the AIRS bias ranges from −8 to 2 % for all lo-
cations and pressure layers. This agrees well with the small
bias seen in the regions of dry air intrusions (December to
June) in the profile time series (Fig. 4, bottom).
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Figure 6. Guam: The mean (a) and rms (b) of the q normalized difference for all data sets, three pressure layers, and four seasons. Data sets
from top to bottom (per pressure layer): JPL direct, WEGC 1D-Var, UCAR direct, UCAR 1D-Var, RS, AIRS, GFS, PERSIST, CLIMO.

Finally, the RS shows a small wet bias in the 1000–800 hPa
layer for both the dry and wet data sets and both locations. In
the 800–400 hPa layer, the dry data set shows a large wet
bias, which is likely due to the Sippican VIZ-B2 sensor’s
poor performance in dry conditions (see Sect. 2.3). At Mi-
namidaitojima, both the dry and wet data sets show a dry
bias in the 800–400 hPa layer, as described in Vömel et al.
(2007) for the Vaisala RS92 sensor for higher altitudes due
to a radiation bias.

5 Variability during typhoon passages

We used the subtropical RS station Ishigakijima to investi-
gate how the different data sets perform during the extreme
conditions of typhoon passages. In 2007, six typhoons passed
Ishigakijima within 350 km (the tracks and other details of
the typhoons can be found online9):

– typhoon #4, 6–16 July, date of closest approach
(320 km): 12 July, as typhoon category 4;

9http://weather.unisys.com/hurricane/w_pacific/2007/ (last ac-
cess: 10 December 2017)

– typhoon #7, 4–10 August, date of closest approach
(260 km): 7 August, as typhoon category1;

– super typhoon #9, 11–19 August, date of closest ap-
proach (300 km): 17 August, as typhoon category 4;

– typhoon #12, 11–17 September, date of closest ap-
proach (330 km): 14 September, as typhoon category 4;

– super typhoon #13, 14–20 September, date of closest
approach (40 km): 18 September, as typhoon category
3;

– super typhoon #17, 1–8 October, date of closest ap-
proach (110 km): 6 October, as typhoon category 4.

The time series of differences to ERA q for Ishigakijima
do not show a specific bias during typhoon passages, which
indicates that all data sets as well as ERA report a signal
similar in magnitude during the typhoon passages.

We computed the ERA average over the July–October
time range (CLIMOJulOct) to create a typhoon season clima-
tology. We then compared all data sets to CLIMOJulOct to see
how q and T deviate from the summer average during the
passage of a typhoon. All data sets show a rapid increase in
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Figure 7. Mina: Mean (a) and rms (b) of the q normalized difference for all data sets, three pressure layers, and four seasons

Figure 8. Mean differences for dry versus wet atmospheric conditions based on RH800−400 at Guam (a) and Minamidaitojima (b). The
different colors represent the different data sets. Circles and stars represent the data sets for dry and wet conditions in the mid-troposphere,
respectively.
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Figure 9. The q difference from CLIMOJulOct for (a) GFS, (b) UCAR direct, (c) RS, and (d) AIRS shows increased humidity during typhoon
passages near Ishigakijima. Typhoon passages are marked by vertical lines (dashed: closer than 110 km; dash-dotted: closer than 330 km).

humidity (Fig. 9) and higher temperature values (not shown)
as the typhoons approach and pass close to Ishigakijima. The
signal is strongest above 600 hPa, where deep convection as-
sociated with the typhoons transports large amounts of water
vapor and releases latent heat in the middle and upper tropo-
sphere (Emanuel, 1991).

GFS, RS, and all RO retrievals show similar results. The
AIRS moist deviation during a passage is much weaker than
for any other data set, likely because of all the cloud cover as-
sociated with the typhoons, which limits the AIRS retrievals.

All data sets show increased temperature during the ty-
phoon event (not shown), especially in the upper troposphere.
The UCAR and WEGC 1D-Var show a similar T structure.
The signal also agrees well with the GFS T signal. Neither
of the direct retrievals (UCAR and JPL) provides physical
temperature information on the troposphere.

The signals in q, T , and N during a typhoon passage
are similar for Minamidaitojima and Naze (not shown), but
fewer typhoons passed in close proximity to these two sta-
tions.

6 Structural uncertainty of RO

Since we have data from several RO retrievals available, we
have the opportunity to compute the structural uncertainty
of RO humidity for our data set, following the methods of
Steiner et al. (2013) and Ho et al. (2009, 2012). The structural

uncertainty is computed to get an estimate of the variability
among the various RO retrievals.

First we create sub-data-sets, which are limited to the
profiles and pressure levels that are available for all four
RO humidity retrievals. The sub-data-set for Guam con-
sists of 141 profiles, and the sub-data-set for the combined
Japanese stations (since atmospheric conditions are very sim-
ilar among them) consists of 543 profiles. For each retrieval,
the normalized deviation for N and q from the inter-center
mean is computed (per pressure level):

1X =
1
k

∑

k

(
Xk −X

inter-center
k

) 100

X
ERA
annual

, (5)

where k indicates the profile number, X
inter-center
k is the

inter-center average for the kth profile (1/4(XUCAR direct
k +

XUCAR 1D−Var
k +XJPL direct

k +XWEGC 1D−Var
k ), and 1X is the

deviation (of q or N ) of one particular RO retrieval from the
inter-center average.

Figure 10 shows the mean deviations of the four RO re-
trievals from the inter-center mean for Guam (left) and all
three Japanese stations combined (right) for N (top) and q
(bottom). Cutoff pressure is 350 hPa since JPL does not pro-
vide humidity data above that level. For N (Fig. 10a, b), the
absolute value of the mean deviation from the inter-center
mean is largest between 900 and 700 hPa for all data sets
(maximum of 0.7 %) and decreases to about 0.1 % at 350 hPa
(about 8 km) at both locations. The latter result agrees well
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Figure 10. Deviations for four RO retrievals from the inter-center mean for refractivity (a, b) and specific humidity (c, d) at Guam (a, c)
and the Japanese stations (b, d). The mean (and standard deviation) of each data set is shown by line style (and as shaded and hatched area):
UCAR direct: black solid (and o o o, blue); UCAR 1D-Var: black dash-dotted (and · · ·, blue); WEGC 1D-Var: black dashed (and ///, gray);
JPL direct: black dotted (and r r r, gray). Red horizontal lines indicate the number of profile pairs at that pressure level.

with the estimate of Ho et al. (2009), who showed that the
absolute values of fractional N anomalies among four cen-
ters (UCAR, WEGC, JPL, and GFZ (German Research Cen-
tre for Geosciences)) are 0.2 % from 8 to 25 km altitude. The
larger differences between the various RO processing centers
at lower altitudes primarily come from different handling of
profiles experiencing (1) atmospheric multipath, (2) receiver
tacking errors, and (3) super-refraction (see Ho et al., 2009,
for details on the RO processing center procedures). This is
especially true for direct retrievals (such as the UCAR direct
and JPL direct), where both RON and a priori T are assigned
zero error, and the differences in Fig. 10a and b are dom-
inated by the previously mentioned conditions. For 1D-Var
retrievals, another potential source of differences is the N er-
ror model in the respective 1D-Var retrieval. All these factors
vary with latitude and general atmospheric conditions.

For q (Fig. 10c, d), the structural uncertainty generally in-
creases with increasing altitude (since the impact of water
vapor on N decreases with increasing altitude). At Guam,
it is about 2 % in the PBL, increases sharply to 5 % around

800 hPa, and stays around 5 to 8 % above. At the Japanese
stations, the structural uncertainty increases constantly with
increasing altitude, from 2 % close to the surface to 5 % at
400 hPa. At both locations, the center anomalies increase
sharply at 350 hPa, which indicates again that RO-derived
humidity has high uncertainty at and above that level.

7 Conclusions

We compared three observational data sets (RO, RS, and
AIRS) and two model data sets (ERA and GFS) over the year
2007. Rather than comparing averages over larger timescales
and regions, we compared individual profiles over specific
locations (in the tropical and subtropical west Pacific). The
data sets that were compared to ERA, which we considered
the reference data set, include profiles from four different
RO retrievals (UCAR direct, UCAR 1D-Var, WEGC 1D-
Var, JPL direct), RS, AIRS, GFS analysis, ERA PERSIST,
and ERA CLIMO (the last two to set a quality baseline). We
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studied both the time series of profile pairs and the mean and
rms computed for the four seasons and three pressure layers
(1000 to 800, 800 to 600, and 600 to 400 hPa). As expected,
we found different characteristics for each data set. Our main
conclusions are as follows:

1. For all four RO humidity retrievals, the magnitude of
the mean biases relative to ERA is smaller than or com-
parable to those of the RS and AIRS in the 800–400 hPa
layer. Above 600 hPa, differences between the various
RO humidity retrievals generally become larger (Figs. 6
and 7, top).

2. All data sets have smaller rms differences than both
CLIMO and PERSIST (Figs. 6 and 7, bottom). The
exception is the tropical 1000–800 hPa layer, where
all rms values are comparable in magnitude due to
the nearly constant humidity conditions throughout the
year. This confirms that all observational data sets con-
tribute valuable information compared to persistence
and climatology.

3. The rms of all RO retrievals is comparable to or lower
than the rms of the RS and AIRS for all pressure layers
below 400 hPa, which confirms the high quality of RO
profiles (Figs. 6 and 7, bottom). The agreement among
the four different retrievals of specific humidity in the
lower and middle troposphere validates the stability of
the four retrievals.

4. In the time series, the four RO retrievals agree within
10 % in the 1000–600 hPa layer (Fig. 5). Differences
become larger in the 600–400 hPa layer, where the
UCAR 1D-Var gets drier, the UCAR direct alternates
between too dry and too wet, and both the WEGC 1D-
Var and JPL direct become too wet. Since water vapor
decreases exponentially with altitude, the retrieval be-
comes more and more sensitive to the prescribed tem-
perature, which can lead to larger humidity differences.

5. The structural uncertainty of RO humidity retrievals is
estimated from anomalies of RO retrievals from the
inter-center mean. Maximum differences among re-
trievals from 1000 to 400 hPa are between 1 and 0.2 %
for refractivity, and 3 and 10 % for specific humidity
(Fig. 10).

6. RO has the potential to contribute valuable informa-
tion on water vapor via data assimilation in the mid-
and lower troposphere, especially when high-quality RS
are unavailable (Southern Hemisphere, over oceans). In
contrast to infrared or microwave sounders, RO can re-
solve strong vertical gradients of humidity.

7. AIRS is biased dry throughout the entire troposphere, as
noted previously (Wong et al., 2015). This bias is par-
ticularly strong for wet atmospheric conditions (Fig. 8).

8. All data sets show increased humidity and temperature
values during a typhoon passage (Fig. 9). Differences
from ERA do not change noticeably during a typhoon
passage, indicating that all data sets and ERA report a
signal that is similar in magnitude during the typhoon
passages.

We find that the alternating wet and dry seasons at Guam,
together with the very sharp transition at the top of the plane-
tary boundary layer in the dry season at Guam, are especially
challenging for the RO, RS, and AIRS observational systems
compared to the conditions at the subtropical Japanese lo-
cations. The results comparing the different data sets to the
ERA are similar at the three Japanese RS stations.

All the observational data sets at the Japanese stations
show a response to the rapid increase of water vapor through-
out the troposphere during the passage of typhoons; however,
the AIRS response is weaker than the RS and RO responses,
probably because of the extensive clouds associated with the
typhoons.

Our results support the findings of Vergados et al. (2018),
e.g., the relative dryness of the UCAR 1D-Var and wetness
of the JPL RO humidity retrieval, and the dry bias of AIRS.
While Vergados et al. (2018) draw their conclusions from
large-scale multi-year climatologies, we use high-resolution
time series to depict the short-term and small-scale variabil-
ity of humidity, and we add results below 700 hPa, where the
tropospheric water vapor content is highest.

We conclude that the accuracy of RO humidity retrievals
is comparable to or better than both standard RS and AIRS
data at the four tropical and subtropical locations studied here
above 800 hPa, as well as below 800 hPa if super-refraction
is absent. If assigned smaller errors (and therefore greater
weights) in the assimilation process, RO could have a pos-
itive impact on improving the water vapor analysis in data
assimilation in the lower and mid-troposphere.
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1 Co-Location of ERA, RO, RS, and AIRS

A map with the locations of the 4 chosen RS stations is
shown in Fig. S1. Details about the co-location process are
depicted in Fig. S2.

2 2007 annual mean profiles5

The constant value CLIMO (ERA 2007 annual mean) is used
to normalize all data sets. The values for CLIMO are listed
in Table S1.

3 Setting the stage: ERA 2007 time series of N , T , q,
and RH10

Time series for ERA refractivity, temperature, specific hu-
midity, and relative humidity for 2007 are shown in Fig. S3
for Guam and in Fig. S4 for Ishigakijima. All data are inter-
polated to a common 25 hPa grid.

4 Normalized difference for specific humidity between15

various data sets and ERA

The Minamidaitojima 2007 RH time series are shown in
Fig. S5 (top). Time series for q normalized differences be-
tween various data sets and ERA are shown in Fig. S5 (panels
2–5) and Fig. S6.20

5 Normalized difference for refractivity between
various data sets and ERA

Time series for refractivity N normalized differences be-
tween various data sets and ERA are shown in Fig. S7 and
Fig. S8.25
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Figure S1. Map with the locations of Guam, Ishigakijima, Minamidaitojima, and Naze, and the locations of the data sets: ERA (black star),
radiosonde (red star), RO (blue dots), and AIRS (yellow circle). The ERA relative humidity field at 700 hPa for one day is shown in the
background.

Figure S2. Sketch of the co-location of RO, RS, and AIRS with the ERA reference point for one point in time. ROs are chosen if their mean
tangent point is within 300 km from the ERA reference.
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Table S1. Mean annual values for refractivity, specific humidity, relative humidity, and temperature for ERA in 2007, interpolated on a 25 hPa
grid.

Pressure Refractivity (N-units) Specific Humidity (g kg−1) Relative Humidity (%) Temperature (◦C)
(hPa) Guam Ishi Mina Naze Guam Ishi Mina Naze Guam Ishi Mina Naze Guam Ishi Mina Naze

300 96.7 96.8 97.0 97.5 0.3 0.3 0.3 0.3 41.6 37.8 38.8 40.3 -29.8 -30.3 -30.9 -32.1
325 103.1 103.3 103.5 104.1 0.4 0.4 0.4 0.4 39.1 37.6 38.3 40.7 -25.6 -26.5 -27.0 -28.5
350 109.8 110.3 110.4 111.2 0.6 0.6 0.5 0.5 36.6 37.5 37.7 41.2 -21.5 -22.6 -23.2 -24.9
375 116.4 117.1 117.1 117.9 0.7 0.7 0.7 0.6 35.6 37.7 37.5 40.9 -18.1 -19.5 -20.1 -21.8
400 123.5 124.3 124.3 125.1 0.9 0.9 0.9 0.8 34.5 37.9 37.3 40.6 -14.8 -16.4 -16.9 -18.7
425 130.4 131.3 131.1 132.0 1.1 1.1 1.0 1.0 35.0 38.3 37.1 40.6 -12.0 -13.7 -14.2 -16.0
450 137.7 138.7 138.4 139.3 1.4 1.4 1.3 1.2 35.5 38.7 37.0 40.6 -9.3 -11.0 -11.5 -13.3
475 145.0 146.0 145.6 146.4 1.7 1.7 1.5 1.5 36.9 39.7 37.9 41.3 -6.9 -8.6 -9.1 -10.8
500 152.8 153.7 153.2 154.0 2.0 2.0 1.8 1.7 38.3 40.8 38.9 42.0 -4.4 -6.3 -6.6 -8.4
525 160.4 161.4 160.8 161.4 2.3 2.3 2.1 2.0 39.7 42.4 40.7 43.0 -2.4 -4.2 -4.5 -6.3
550 168.4 169.5 168.9 169.3 2.7 2.7 2.5 2.3 41.1 44.0 42.4 43.9 -0.3 -2.1 -2.4 -4.2
575 176.4 177.7 176.9 177.1 3.0 3.1 2.9 2.6 42.8 46.1 44.4 45.3 1.5 -0.2 -0.6 -2.4
600 184.7 186.3 185.4 185.4 3.5 3.6 3.3 3.0 44.6 48.2 46.3 46.8 3.4 1.7 1.3 -0.6
625 193.1 195.0 193.8 193.5 3.9 4.0 3.7 3.4 45.8 50.2 48.1 48.2 5.3 3.4 3.1 1.1
650 202.0 204.1 202.7 202.0 4.5 4.6 4.2 3.8 47.1 52.3 49.9 49.6 7.3 5.1 4.8 2.8
675 211.2 213.3 211.5 210.3 5.0 5.1 4.7 4.1 48.7 54.6 51.6 50.7 9.0 6.7 6.3 4.3
700 220.8 222.9 220.8 219.0 5.7 5.7 5.2 4.6 50.4 56.9 53.3 51.8 10.7 8.2 7.8 5.8
725 231.1 232.4 229.9 227.5 6.3 6.2 5.6 4.9 53.1 59.0 55.0 52.6 12.1 9.5 9.1 7.0
750 241.8 242.3 239.5 236.3 7.1 6.8 6.2 5.3 55.9 61.1 56.6 53.5 13.6 10.8 10.3 8.3
775 253.9 252.4 249.5 245.3 8.1 7.3 6.7 5.7 60.1 63.4 59.3 54.9 14.8 12.0 11.4 9.4
800 267.1 263.0 260.3 254.9 9.2 8.0 7.4 6.2 65.4 66.3 63.0 56.9 15.9 13.1 12.4 10.5
825 281.5 274.7 271.9 265.7 10.4 8.7 8.2 6.8 71.5 70.5 67.4 61.3 16.9 14.0 13.4 11.5
850 295.9 287.0 283.8 277.7 11.6 9.6 8.9 7.6 76.6 74.7 71.5 66.9 17.9 15.1 14.3 12.4
875 310.2 299.6 295.8 290.2 12.8 10.5 9.7 8.5 80.5 78.1 75.0 72.5 19.1 16.1 15.4 13.5
900 324.2 312.5 308.4 303.3 13.9 11.4 10.6 9.5 83.2 81.1 78.3 77.6 20.4 17.3 16.5 14.6
925 337.6 325.4 321.5 316.1 14.9 12.4 11.6 10.4 84.2 83.0 80.9 80.5 21.8 18.6 17.8 16.0
950 352.0 338.2 334.5 328.2 16.0 13.3 12.5 11.2 86.6 83.7 82.5 81.1 22.9 20.0 19.1 17.4
975 363.4 349.7 346.1 338.9 16.7 14.0 13.3 11.9 84.3 81.8 81.2 79.1 24.6 21.6 20.7 19.1

1000 371.6 358.8 354.5 347.3 17.1 14.5 13.7 12.3 78.0 76.7 75.8 74.1 26.6 23.6 22.7 21.1
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Figure S3. ERA 2007 time series at Guam for refractivity, temperature, specific humidity, and relative humidity (top to bottom).

74



: 5

Figure S4. ERA 2007 time series at Ishigakijima for refractivity, temperature, specific humidity, and relative humidity (top to bottom).
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Figure S5. Top panel: 2007 time series of the relative humidity (%) at Minamidaitojima over 2007 with blue representing moist air and
red representing dry air. Other panels: Normalized difference of specific humidity for PERSIST, GFS, RS, and AIRS compared to ERA at
Minamidaitojima, 2007.
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Figure S6. Normalized difference of specific humidity for the RO retrievals UCAR direct, UCAR 1D-Var, WEGC 1D-Var, and JPl direct
compared to ERA at Minamidaitojima, 2007.
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Figure S7. Normalized difference for refractivity for PERSIST, GFS, RS, and AIRS compared to ERA at Guam, 2007.
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Figure S8. Normalized difference for refractivity for the RO retrievals UCAR direct, UCAR 1D-Var, WEGC 1D-Var, and JPl direct compared
to ERA at Guam, 2007.
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Abstract. In this paper we show how multiple data sets, in-
cluding observations and models, can be combined using the
“three-cornered hat” (3CH) method to estimate vertical pro-
files of the errors of each system. Using data from 2007, we
estimate the error variances of radio occultation (RO), ra-
diosondes, ERA-Interim, and Global Forecast System (GFS)
model data sets at four radiosonde locations in the tropics and
subtropics. A key assumption is the neglect of error covari-
ances among the different data sets, and we examine the con-
sequences of this assumption on the resulting error estimates.
Our results show that different combinations of the four data
sets yield similar relative and specific humidity, temperature,
and refractivity error variance profiles at the four stations,
and these estimates are consistent with previous estimates
where available. These results thus indicate that the correla-
tions of the errors among all data sets are small and the 3CH
method yields realistic error variance profiles. The estimated
error variances of the ERA-Interim data set are smallest, a
reasonable result considering the excellent model and data
assimilation system and assimilation of high-quality obser-
vations. For the four locations studied, RO has smaller er-
ror variances than radiosondes, in agreement with previous
studies. Part of the larger error variance of the radiosondes
is associated with representativeness differences because ra-
diosondes are point measurements, while the other data sets
represent horizontal averages over scales of ∼ 100 km.

1 Introduction

Estimating the error characteristics of any observational sys-
tem or model is important for many reasons. Not only are

these errors of scientific interest; they are also important for
data assimilation systems and numerical weather prediction.
In many modern data assimilation schemes, observations of a
given type are weighted proportionally to the inverse of their
error variance (e.g., Desroziers and Ivanov, 2001).

Kuo et al. (2004) and Chen et al. (2011) used the difference
between radio occultation (RO) observations and short-range
model forecasts to estimate the error of the RO observations,
using the concept of apparent or perceived errors, defined by

XAE =XRO−Xfcst, (1)

where XAE is the apparent error of the RO observation and
XRO and Xfcst are the RO observations and model forecast
values, respectively.

The error variance σ 2
a of the apparent error is given by

σ 2
a =

1
n

∑
X2

AE, (2)

where n is the number of samples of observed and modeled
RO at the same location and time.

The relationship between the apparent error variance σ 2
a ,

the observational error variance σ 2
o , and the forecast error

variance σ 2
f is given by

σ 2
a = σ

2
o + σ

2
f − 2COVerr (XRO,Xfcst) , (3)

where the COVerr term is the error covariance between the
observations and the forecasts. If the error variance of the
forecast σ 2

f is estimated independently, the observational er-
ror variance can be estimated from the apparent error vari-
ance, under the assumption that the observational errors
are uncorrelated with the forecast errors (in which case the

Published by Copernicus Publications on behalf of the European Geosciences Union.
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COVerr term in Eq. 3 is zero).

σ 2
a = σ

2
o + σ

2
f (4)

We note that the apparent errors are the same as the O−B
(observation minus background) or innovations as used in
data assimilation methods and studies (Chen et al., 2011).

As discussed by Kuo et al. (2004) and Chen et al. (2011),
the forecast error variance can be estimated by two alter-
native methods, the National Meteorological Center (NMC)
method (Parrish and Derber, 1992) or the Hollingsworth
and Lönnberg (1986) method. Kuo et al. (2004) used both
methods to estimate the observational errors of RO refractiv-
ity using the National Centers for Environmental Prediction
(NCEP) Aviation Model (AVN). They found that the esti-
mated radiosonde (RS) observations had larger errors than
the RO observations, due in part to representativeness er-
rors of the RS, which provide in situ point measurements,
whereas the model data were larger-scale horizontal aver-
ages similar to those of the RO data. Chen et al. (2011) used
the NMC method and Weather and Research Forecast Model
(WRF) to estimate the forecast error variance and then the
RO refractivity error variance.

In this paper, we estimate the error variances of multiple
data sets using the “three-cornered hat” (3CH) method (Gray
and Allan, 1974). Unlike the apparent-error method, this
method does not require independent estimates of the error
variance of a forecast; it uses the differences between com-
binations of three data sets. The 3CH method is described in
Appendix A along with the closely related “triple-collocation
method” (TC; Stoffelen, 1998). The data sets may be either
different model or observational data, and estimates of the er-
ror variances of all the data sets are computed by the method.
We compare three observational data sets (two versions of
RO retrievals and radiosondes) and two model data sets at
four locations in the tropics and subtropics to estimate the er-
ror variances of all five data sets. We find that the results are
consistent with each other and with previous error estimates,
where available.

2 Discussion of data sets

We use five data sets from an entire year (2007) in this study.
Rieckh et al. (2018) extensively studied the properties of
these data sets and their daily variability over 2007 in the
tropical and subtropical western Pacific. They are described
in more detail there but are summarized briefly here for con-
venience.

We chose 2007 for the year of our study because the num-
ber of COSMIC (Constellation Observing System for Me-
teorology, Ionosphere, and Climate) RO observations was
near a maximum at this time. Because the primary interest in
Rieckh et al. (2018) was the evaluation of water vapor obser-
vations and model analyses in challenging tropical and sub-
tropical environments, we chose one RS station in the deep

tropics and three Japanese stations in the subtropics. Because
of our focus on water vapor, we carry out the analysis from
1000 to 200 hPa.

2.1 ERA-Interim

The ERA-Interim (hereafter ERA) reanalysis is a global
model reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Dee et al.,
2011). Information about the current status of ERA-Interim
production, availability of data online, and near-real-time
updates of various climate indicators derived from ERA-
Interim data can be found at https://www.ecmwf.int/en/
research/climate-reanalysis/reanalysis-datasets/era-interim.

We use the ERA analysis product, which assimilates both
RS and RO data for the entire year of 2007; hence some cor-
relation of model, RS, and RO errors is likely. However, there
are many other observations going into the ERA reanalysis,
and model correlations with any one observational data set
are likely to be small.

2.2 NCEP Global Forecast System (GFS)

The Global Forecast System (GFS) is a forecast model pro-
duced by the National Centers for Environmental Prediction
(NCEP). Data are available for download through the NOAA
National Operational Model Archive and Distribution Sys-
tem (NOMADS). Forecast products and more information on
GFS are available at https://www.ncdc.noaa.gov/data-access/
model-data/model-datasets/global-forcast-system-gfs.

The GFS assimilated RS observations for the entire year
2007 but began assimilating RO data on 1 May 2007, along
with many other changes to the model and analysis system
(Cucurull and Derber, 2008; Kleist et al., 2009). Thus the
GFS and RS and RO errors are also likely correlated to some
degree. However, we computed vertical profiles of the corre-
lation coefficients for RO and GFS refractivity, temperature,
specific humidity, and relative humidity in the 2 months be-
fore and after 1 May 2007, when the GFS started assimilating
RO data, and found little differences, so the error correlations
between RO and GFS are likely small.

2.3 Radio occultation observations

The RO observations used in this study are re-processed
data obtained from the UCAR COSMIC Data Analysis and
Archive Center (CDAAC). Two methods for estimating the
temperature and water vapor from the RO refractivity are
used. In the direct method, the GFS temperature is used in
the Smith and Weintraub (1953) equation

N = 77.6
p

T
+ 3.73× 105 e

T 2 (5)

to compute water vapor pressure e from the observed refrac-
tivity N and GFS temperature T .
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Figure 1. Number of co-located measurements for (a) Mina and (b) Guam. These are also the sample numbers in the calculations of the
estimated error variances for the data sets. When using the RO 1D-VAR, the number of co-locations is slightly higher than for the RO-direct
throughout the profile due to the way the 1D-VAR is computed.

A one-dimensional variational (1D-VAR) method is also
used to estimate T and e from N . The 1D-VAR method uses
an a priori state of the atmosphere (background profile) and
an observed RO N profile to minimize a quadratic cost func-
tion. At CDAAC, an ERA-Interim profile is used as a back-
ground, which is interpolated to the time and location of the
RO observation (accounting for tangent point drift during
the occultation). The humidity retrieval allows an error for
both T and e but only a very small error for bending an-
gle/refractivity. Specific humidity q is then computed from
the derived e.

2.4 Radiosonde observations

RS data from Guam and three Japanese stations are used in
this comparison. The RS data are given on nine main pres-
sure levels between 1000 and 200 hPa, plus additional lev-
els if atmospheric conditions are variable. The four stations
use the following sensors: Guam: VIZ/Sippican B2; Ishigak-
ijima: Meisei; Minamidaitōjima: Vaisala RS92; and Naze:
Meisei. They are launched twice daily in the hour before
noon and midnight, UTC.

Guam is located in the deep tropics at 13.7◦ N, 144.8◦ E.
Ishigakijima (hereafter called Ishi), Minamidaitōjima (here-
after called Mina), and Naze are located relatively close to-
gether in the western Pacific subtropics south of Japan and
northeast of Taiwan:

– Naze (Kagoshima Prefecture): 28.4◦ N, 129.4◦ E

– Mina (Okinawa Prefecture): 25.6◦ N, 131.5◦ E

– Ishi (Okinawa Prefecture): 24.2◦ N, 124.5◦ E

2.5 Co-location of the data sets

The locations of the four radiosonde stations are chosen for
the comparisons. We use RO observations that are located
within 600 km and 3 h of the radiosonde launches. CDAAC

provides GFS and ERA profiles that are already linearly in-
terpolated in space and time to the RO location and time.
These interpolated profiles, along with the RO observations,
were corrected for their time and spatial differences from
the radiosonde data using a model correction algorithm (de-
scribed in Gilpin et al., 2018). Thus the effect of spatial and
temporal differences among the data sets is expected to be
minor.

The refractivity for the radiosonde and model data is com-
puted from Eq. (5) using the pressure, temperature, and water
vapor from these data. Normalized differences are computed
for all combinations of the data sets (RO–ERA, RO–GFS,
GFS–ERA, RS–ERA, RS–GFS, RS–RO), where RO is ei-
ther the RO-direct or the RO 1D-VAR data. The ERA annual
mean for 2007 at each RS station is used to normalize the dif-
ferences in the data sets associated with that station. We con-
sider the differences among all data sets for four variables:
refractivity (N ), temperature (T ), specific humidity (q), and
relative humidity (RH).

2.6 Number of samples

The number of samples is limited by the number of RO ob-
servations that are within the co-location criteria of 3 h and
600 km. Figure 1 shows the number of data samples per pres-
sure level that meet these criteria during 2007 at Mina (the
numbers at Ishi and Naze are similar) and Guam. The sharp
cutoff on the top of the profiles is due to limited RS data
availability at high altitudes. The smooth transition to lower
numbers at the bottom results from a decrease in the number
of RO observations with lower altitudes in the mid- and lower
troposphere. The number of samples at the Japanese stations
is a maximum of approximately 900 at 300 hPa. The num-
ber decreases to about 100 at 950 hPa. At Guam, the number
ranges from a maximum of about 500 at 200 hPa to about
50 at 950 hPa. Thus the effect of the limited sample size will
be greatest for the Japanese stations above 300 hPa and for
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Figure 2. The mean ERA profiles over 2007 at Guam and Mina of specific humidity q (a), relative humidity RH (b), temperature T (c), and
refractivity N (d). The standard deviations about the mean profiles are indicated by the shading.

all four stations below 900 hPa, where the sample size is less
than 500.

2.7 Mean ERA profiles for 2007 and example of
profiles and normalized-difference profiles

Before showing the statistical comparisons of the normalized
differences between the data sets and their estimated errors,
we present the mean ERA profiles of q, RH, T , and N at
Mina and Guam for the year 2007 (Fig. 2). The standard de-
viations are shown by the shading around each mean pro-
file. As shown by Fig. 2, the water vapor (especially relative
humidity) shows the greatest variability over the year. The
variability in specific humidity, temperature, and refractivity
is greater at Mina, which is located in the subtropics, than
Guam, which is located in the deep tropics.

We next present a single example of soundings from the
five data sets, to illustrate how the profiles of the normalized
differences of the variables (which we use in all the follow-
ing calculations) compare to the actual profiles. Figure 3 il-
lustrates the q, RH, T , and N profiles from 13 January 2007
at approximately 00:00 GMT, and Fig. 4 illustrates the cor-
responding profiles of the normalized differences of the vari-
ables from ERA, for example (q − qERA)/q, where q is the
2007 mean ERA value of q.

A comparison of Figs. 3 and 4 shows that the normalized-
difference profiles highlight the similarities and differences
of the five data sets better than the actual profiles, especially

in the upper troposphere. The magnitudes of the normalized
differences are the same order of magnitude at all levels,
whereas the differences in the actual profiles can vary by
more than an order of magnitude from the lower to the upper
troposphere. Figure 4 shows that typical percentage differ-
ences between data sets are ∼ 50 % for q and RH, 0.5 % for
T , and 5 % for N .

2.8 Representativeness errors

As in the apparent-error method, the 3CH error estimates
include representatives errors. Since four of the five data
sets considered here are representative of horizontal averages
with a length scale of ∼ 100 km, while the RS data are point
measurements, the differences between the RS and other
data sets include a significant “representativeness” compo-
nent (Kitchen, 1989). O’Carroll et al. (2008) discuss the im-
portance of representativeness errors and how they relate to
the concept of “truth” that is used in the 3CH method.

3 Derivation of error variances

In this section we summarize the derivation of the equations
relating the error variances and covariances among the data
sets. The complete derivation and a discussion of the limita-
tions are given in Appendix A.
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Figure 3. Profiles of specific humidity (a), relative humidity (b), temperature (c), and refractivity (d) for the five data sets for 13 January 2007
at 00:23 UTC.

Figure 4. Same as Fig. 3 except for normalized differences from ERA.
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The error variance of a variable X (e.g., q, RH, T , or N )
is defined as

VARerr(X)=
1
n

∑
(X− true)2 =

1
n

∑
X2

err, (6)

where true is the true (but unknown) value ofX and the sum-
mation is over n samples.

As shown in Appendix A, we can derive three different lin-
early independent equations for estimating the error variance
of any data set, assuming that the error covariances among
all the data sets are negligible compared to the differences in
the observed mean square (MS) differences between the data
sets. The three complete (and exact) linearly independent so-
lutions for estimating the error variance of RO are

VARerr (RO)=
1
2

MS(RO–ERA)+
1
2

MS(RO–GFS)

−
1
2

MS(GFS–ERA)+COVerr (RO,ERA)

+COVerr (RO,GFS)−COVerr (GFS,ERA) , (7)

VARerr (RO)=
1
2

MS(RO–ERA)+
1
2

MS(RO–RS)

−
1
2

MS(RS–ERA)+COVerr (RO,ERA)

+COVerr (RO,RS)−COVerr (RS,ERA) , (8)

VARerr (RO)=
1
2

MS(RO–GFS)+
1
2

MS(RO–RS)

−
1
2

MS(RS–GFS)+COVerr (RO,GFS)

+COVerr (RO,RS)−COVerr (RS,GFS) , (9)

where RO (or ERA, GFS, RS) corresponds to the value of
X as estimated by RO (or ERA, GFS, RS) and MS denotes
the mean square difference between the values from two data
sets (e.g., RO–ERA).

We use Eqs. (7)–(9) to provide three independent estimates
of VARerr(RO) by neglecting the COVerr terms in each equa-
tion. The assumption that the error covariances are small
compared to the difference in variances between the data
sets is similar to the assumption used in the apparent-error
method that the errors of the observations and model fore-
casts are uncorrelated. In general the COVerr terms are not
zero; thus we will examine the validity of this assumption by
checking whether the various estimates of the error variances
from the three equations are consistent with each other and
reasonable compared to other independent studies that esti-
mate error variances in other ways. In a related paper (Rieckh
and Anthes, 2018) we examine the effect of various degrees
of error correlations between two of the three data sets using
simulated data sets with known errors.

The same procedure can be used to derive three equations
for estimating the error variances for the other three data sets,
RS, ERA, and GFS (equations not shown here).

So for each of the five data sets – RO-direct and RO 1D-
VAR, RS, ERA, and GFS – there are three independent ways

to estimate their respective error variances. This is the three-
cornered hat method described in Appendix A. We note that
it is possible that the estimated error variances from any of
the three equations are negative because of the neglect of the
COVerr terms and the small sample size, especially above
300 hPa for the Japanese stations and below 800 hPa for all
four stations (Fig. 1).

4 Comparison with previous studies for RO refractivity

We first compute the estimated error variance for RO refrac-
tivity using GFS and ERA data for comparison with the Kuo
et al. (2004) and Chen et al. (2011) estimates of RO error
variance to illustrate the 3CH method. In an analogy to the
apparent-error equation (Eq. 4), with RO being the observa-
tion and ERA being the forecast,

MS(RO–ERA)= VARerr (RO)+VARerr (ERA) , (10)

which is Eq. (A2) in Appendix A with neglect of the COVerr
terms. We compute MS(RO–ERA) from the RO and ERA
data sets (analogous to the apparent error variance σ 2

a in
Eq. 4) and plot its square root as the black line in Fig. 5.
Then we estimate VARerr(RO) using Eq. (7) and the data sets
(RO–GFS) and (GFS–ERA), neglecting the COVerr terms.

The square root of VARerr(RO) gives the standard devia-
tion (SD) (Fig. 5, blue curve). Finally, the ERA error variance
(analogous to the forecast error) is obtained by subtracting
VARerr(RO) from MS(RO–ERA) using Eq. (10) above (pink
line in Fig. 5). The gap in the computed ERA error SD in
Fig. 5a occurs due to negative estimated error variance val-
ues, which can result from having a limited sample size, ne-
glecting the error covariance terms, and having an error vari-
ance that is already close to zero (as is the case for ERA).

The results shown in Fig. 5 are quite similar to those from
Kuo et al. (2004, Fig. 13) and Chen et al. (2011, Fig. 3d),
who used different models and different data sets. The SD of
normalized RO refractivity errors is a maximum of between
2.0 and 2.5 % near the surface, decreasing to about 0.5 % at
10 km. These similarities give credibility to both methods.

5 Calculation of the error variance terms using
multiple data sets

This section shows the estimated error variances for N , q, T ,
and RH at one of the four stations (Mina) for the five data
sets and summarizes the results for the other three stations
(Naze, Ishi, and Guam).

5.1 Results for Mina

The following plots show the estimated error variances com-
puted from Eqs. (7), (8), or (9). Two RO data sets (direct and
1D-VAR) are considered one at a time using the other three
data sets. Thus we have two sets of error estimates for each
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Figure 5. Standard deviations of the apparent-error SD(RO–ERA) (black line), estimated RO error SD(RO–true) computed from Eq. (7)
(blue line) and ERA error SD(ERA–true) (pink line) for refractivity at (a) Guam, (b) Ishi, (c) Mina, and (d) Naze.

data set: one using the RO-direct with RS, ERA, and GFS,
and one using the RO 1D-VAR with RS, ERA, and GFS. In
the following plots, darker colors correspond to the three re-
sults using the RO 1D-VAR, and lighter colors correspond to
the three results using the RO-direct.

Figure 6 shows the results for specific humidity. Error vari-
ances are shown rather than SDs because they are easier to
interpret using the three equations used to derive them and
because the SD are undefined for the occasional negative
estimated error variance. Figure 6a shows the q error vari-
ance profiles for the two RO data sets (direct and 1D-VAR).
The direct method (use of GFS temperature in Eq. 5) shows
a steady increase of error variance with height, from about
100 %2 (SD∼ 10 %) at 950 hPa to 800 %2 (SD∼ 28 %) at
500 hPa and 2000 %2 (SD∼ 45 %) at 300 hPa. This is ex-
pected since the refractivity contains little information on
water vapor above about 400 hPa and we are using an inde-
pendent estimate of temperature, with no constraints on the
water vapor retrieval. The q error variance profile for RO us-
ing the 1D-VAR method is similar to that of the direct method
below 500 hPa but reaches a maximum at about 500 hPa of
about 500 %2 (SD∼ 22 %) and then decreases toward zero at
200 hPa. The 1D-VAR method uses the ERA-Interim fields
as a background and thus constrains the water vapor profile
retrieval at high altitudes. It is notable that the three equa-
tions used to estimate the error variance profiles agree closely
and the difference among the three estimates is much smaller

than the differences in the mean profiles using the two RO
retrieval methods.

The RS specific humidity error variance profiles at Mina
(Fig. 6b) show a similar behavior to the RO-direct, with
a steady increase with height, exceeding 2000 %2 (SD of
∼ 45 %) at 400 hPa. The SDs of the RS are slightly larger
than the two RO estimates below 600 hPa. The larger error
variance of RS compared to RO is consistent with the results
from Kuo et al. (2004) and is due in part to the RS represen-
tativeness differences. The error variance estimates using the
RO-direct (orange) and RO 1D-VAR (red) are similar.

The error variance profiles from the two model sets
(Fig. 6c, d) are quite different. The GFS error variance is less
than the RO-direct and RS error variances at all levels, and
also less than the RO 1D-VAR error variance except above
300 hPa. Although there is more scatter, especially in the up-
per troposphere, the ERA profiles are different from all the
other data sets in that they show only a small increase of er-
ror variance with height, from near zero at the surface to up
to a mean of about 100 %2 (SD∼ 10 %) at 200 hPa.

Figure 7 shows the estimated error variances of relative hu-
midity. As with specific humidity, there is consistency among
the estimates for the different data sets. The general behav-
ior of the RH error variance profiles is similar to that for q,
as might be expected because the percentage variability of
water vapor is greater than that of temperature at this sub-
tropical location. Again, the estimated error variances of the
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Figure 6. Estimated error variances (percent squared) of specific humidity at Mina: (a) RO, (b) RS, (c) GFS, and (d) ERA.

Figure 7. Estimated error variances (percent squared) of relative humidity at Mina: (a) RO, (b) RS, (c) GFS, and (d) ERA.

RO-derived RH are less than those of the RS in the lower tro-
posphere. The GFS error variances are smaller than the RO
and RS variances, except for the RO 1D-VAR profile above
300 hPa, which is constrained by the ERA observations in

the upper troposphere. The ERA error variances are signifi-
cantly smaller than the other data sets, averaging between 50
and 200 %2 (SD 7–14 %) throughout the troposphere.
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Figure 8. Estimated error variances (percent squared) of temperature at Mina: (a) RO, (b) RS, (c) GFS, and (d) ERA.

Figure 8 shows the estimated error variances of tempera-
ture. Because the RO-direct retrieval uses the exact GFS tem-
perature, the results for the direct retrieval (light blue) using
(RO, GFS, and ERA) and (RO, RS, and GFS) are not mean-
ingful in Fig. 8a (they are identically zero). The result from
Eq. (8) (RO, ERA, and RS), given by the dashed light blue
line in Fig. 8a is valid, but in reality this is an estimate of
the GFS T error variance, and it is in fact very similar to the
profiles in Fig. 8c.

The RO 1D-VAR results for temperature from all three
equations give somewhat larger results (Fig. 8, dark blue
profiles). The estimated error variance profiles oscillate be-
tween 0.1 and 0.3 %2 (SD 0.3 to 0.55 %). For a temperature
of 300 K, these correspond to 0.9 to 1.65 K.

The RS temperature error variances (Fig. 8b) vary be-
tween 0.05 and 0.15 %2 (SD 0.2 to 0.4 % or 0.6 to 1.2 K for
T = 300 K). The GFS temperature error variances are a little
lower, averaging around 0.05 to 0.10 %2 (SD 0.2 to 0.3 %),
while the ERA-estimated temperature error variances aver-
age close to zero (Fig. 8d).

Figure 9 shows the estimates of the normalized refractivity
errors for the five data sets. There is more spread in the re-
fractivity estimates compared to those of the other variables,
especially in the lower troposphere, where the estimates vary
between about 4 and 9 %2 (SD 2 to 3 %) for the two RO vari-
ances. Recall that the RO-direct N are the observed RO N

as provided by CDAAC, while the RO 1D-VAR N are mod-
ified based on the background (ERA) N . The average of the
N error variances for the radiosondes (Fig. 9b) shows a max-

imum of ∼ 10 %2 (SD∼ 3.2 %) around 900 hPa. The GFS
error variance profiles show a maximum around 750 hPa of
∼ 8 %2 (SD∼ 2.8 %). The ERA profiles show the smallest
errors, with a maximum in the lower troposphere of an aver-
age of∼ 2 %2 (SD∼ 1.4 %). All data sets show a decrease of
error variance to less than 0.5 %2 (SD< 0.7 %) at 400 hPa.
The reason for the large scatter in estimates of N below
about 800 hPa may be related to errors in N caused by super-
refraction in the lower troposphere, which occurs often in the
tropics and subtropics. Super-refraction causes a negative N
bias, which may lead to larger error covariances in this layer.
The smaller number of RO samples below 800 hPa (Fig. 1)
may also be a factor.

Figure 10 shows the mean of the three estimates of the
error variances of the five data sets for q, RH, T , and N at
Mina. The standard deviation1 about these means is shown
by the shaded areas. These figures show clearly the signif-
icant differences among the error variance estimates of the
five data sets. In Fig. 10a, the error variance for specific hu-
midity is greatest for the radiosonde (red and orange pro-
files) and least for the ERA profiles. As discussed earlier,
the mean of the RO 1D-VAR retrieval reaches a maximum
at about 550 hPa and then decreases back toward zero as it
becomes constrained by the background profile at high lev-
els. Figure 10b–d show the mean profiles of error variance
for relative humidity, temperature, and refractivity. The rela-

1σ =
(

1
2
∑n=3
n=1(xn− x)

2
)1/2

, where xn denote the three error
variance estimates.
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Figure 9. Estimated error variances (percent squared) of refractivity at Mina: (a) RO, (b) RS, (c) GFS, and (d) ERA.

Figure 10. Mean of the three estimates of error variance plots for q, RH, T , and N using RO-direct and RO 1D-VAR for each data set at
Mina. The standard deviation about the mean is indicated by shaded areas. (a) specific humidity, (b) relative humidity, (c) temperature, and
(d) refractivity. RO (blue), radiosonde (red), GFS (gray), and ERA (purple).
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tive humidity profiles are similar to the specific humidity pro-
files. The ERA errors are the smallest, followed by GFS, the
RO, and finally the radiosondes. The temperature error vari-
ance profiles show that the ERA errors are very close to zero
throughout the entire troposphere. The GFS profiles (gray)
and the RS profiles (red and orange) show relatively con-
stant values with height of approximately 0.05 and 0.1 %2,
respectively (corresponding to temperature errors of 0.7 and
0.9 K at 300 K, respectively). The RO shows an oscillating
error variance profile ranging between 0.1 and 0.3 %2 (0.9
and 1.6 K at 300 K). Finally, the refractivity profiles show the
greatest variability, but the mean profiles are still quite dis-
tinct. ERA again shows the lowest errors, followed by GFS,
RO, and RS.

It is difficult to find previous results for RS temperature
and specific humidity error variances. However, previous
studies comparing RO with RS and models indicate that our
estimates are reasonable and consistent with these studies.
Ho et al. (2017) found SD between RO and RS pairs for many
RS types of about 1.5 K in the 200–20 hPa layer, where RO
temperatures are most accurate (Table 2 in Ho et al., 2017).
This value corresponds to the apparent error between RS and
RO, which is larger than the RS error. The estimated RS tem-
perature error variances from 200 to 100 hPa in Fig. 10c is
about 0.15 %2, which corresponds to a SD of 0.39 % or 0.9 K
for a mean temperature of 230 K. Ladstädter et al. (2015)
compared high-quality GCOS (Global Climate Observing
System) Reference Upper-Air Network (GRUAN) RS to RO
globally and for a tropical station (Nauru) and subtropical
station (Tateno, Japan) from 2002 to 2013. They found tem-
perature SD of about 0.5 K for Nauru and 0.5 to 0.8 K at
Tateno averaged over the layer 800 to 300 hPa. For specific
humidity, they found SD between RO and RS of about 10 %,
increasing to about 40 % in the upper troposphere. In our cal-
culations for Guam and the three subtropical Japanese sta-
tions our estimates for SD of q are similar (Fig. 10a; Fig. B1
in Appendix B), ranging from about 10 % at 900 hPa to 45 %
at 300 hPa.

Ho et al. (2010) compared COSMIC RO observations to
ECMWF analyses and several types of radiosondes for the
period August–November 2006. They found mean specific
humidity SD of RO–ECMWF of ∼ 0.5 g kg−1 and RO–RS
(Meisei) of ∼ 0.9 g kg−1. From their plots of the vertical
profiles of the SD, these numbers are typical for the layer
800–500 hPa, which, given the normalization values from the
four RS stations in our study (Fig. 3) of about 9 g kg−1 at
800 hPa and 2 g kg−1 at 500 hPa, correspond to SD (VAR)
values of ∼ 6 % (36 %2) at 800 hPa and 25 % (625 %2) at
500 hPa for ECMWF and ∼ 10 % (100 %2) at 800 hPa and
45 % (2025 %2) at 500 hPa for Meisei RS. These values are
similar to the estimates of the RS analysis for the Japanese
stations shown in Fig. B1 of Appendix B.

Vergados et al. (2014) compared RO-derived observations
of specific humidity with radiosondes and ERA-Interim un-
der cloudy conditions in the tropics for August–October

Table 1. Normalized differences of zonal mean RO and ERA spe-
cific humidity in the tropics for cloudy conditions (computed from
data in Vergados et al., 2014).

Pressure (hPa) VAR (%2) SD (%)

925 320 17.8
850 460 21.4
700 1260 35.5
500 2760 53.5
400 4220 65.0
300 5625 75.0

2006. They used the direct method for computing specific hu-
midity from the RO refractivity using the ERA-Interim tem-
peratures. Their differences between zonal means of normal-
ized RO and ERA-Interim observations of q are presented in
Table 1 (we computed the normalized differences from their
data in Table 3 for the tropics).

The VAR values in Table 1 correspond to apparent errors,
where RO and ERA correspond to the observation and fore-
cast variables, respectively (Eq. 10). As expected, they are
larger than the estimated error variances for RO-direct shown
in Fig. 6a because the apparent errors are always larger than
the observation errors as shown in Eq. (4). This comparison
indicates that the estimates of true errors in Fig. 6a are rea-
sonable.

5.2 Summary of results at Naze, Ishi, and Guam

The mean and SD error profiles for Naze, Ishi, and Guam
corresponding to the above results for Mina are presented in
Appendix B. Here we summarize the main similarities and
differences between the error variance estimates for these sta-
tions compared to those for Mina. In general, we find similar
magnitudes and shapes of the profiles of the estimated error
variances of the five data sets for all four variables (q, RH,
T , and N ).

The estimated error profiles are especially similar for the
three Japanese stations. This close similarity may be due pri-
marily to the fact that the three locations are relatively close
together and two of the three use the same type of radiosonde
(Meisei).

The results from Guam are also similar in general mag-
nitudes and shapes of the profiles to those from the three
Japanese stations, but there are somewhat greater differences
in some of the profiles (e.g., GFS q, RH, and N ; and RS
N ). These differences are likely due to the different loca-
tion and the use of a different radiosonde type at Guam
(VIZ/Sippican B2). The neglected error covariance terms
are also likely different between the three Japanese stations,
which are located in a data-rich region, and Guam, which is
located in a data-sparse region. Thus the model errors are less
likely to be highly correlated with a single observational sys-
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tem in the former than in the latter, where single observations
may affect the models more significantly.

6 Summary and discussion

We used the three-cornered hat (3CH) method to estimate
vertical profiles of error variances of different observation
and model data sets by computing the differences among
the data sets. We computed estimated error variances of four
variables (specific humidity q, relative humidity RH, tem-
perature T , and refractivity N ) for five data sets (ERA, GFS,
radiosondes (RS), and radio occultation (RO) 1D-VAR and
RO-direct) at four different locations in the tropics and sub-
tropics for the year 2007. The stations are Guam, Ishigaki-
jima, Minamidaitōjima, and Naze. The latter three stations
are on Japanese islands and are located quite close together
(a few hundred kilometers apart). We computed vertical pro-
files of estimated error variances for normalized differences
from the 2007 ERA mean values of q, RH, T , and N at
the four stations using three linearly independent equations
(Eqs. 7–9) neglecting all error covariance terms. Ideally, with
a very large sample of data pairs and zero correlation of er-
rors among the different data sets, all three equations would
produce identical results. However, a finite data set and non-
zero error correlations among the data sets lead to three dif-
ferent estimates, as shown by Rieckh and Anthes (2018). The
differences among the three estimates is a measure of these
effects.

Although the neglect of the covariance terms affects the
results to a noticeable degree in some of the estimated pro-
files, there is strong evidence that there is valid information in
the estimated error profiles that rises above the noise caused
by the neglect of the covariance terms and the limited data
sample. This evidence is summarized as follows:

1. There is generally good agreement in the three esti-
mated error profiles of the four variables for each of
the five data sets at all four locations. It is unlikely that
this agreement would occur by chance if the neglected
error covariance terms were large enough to invalidate
the results, because they would have to somehow com-
bine or cancel in each of the three equations to give the
observed similar results.

2. There are large differences in the overall structure
(shape and magnitude) of the average vertical profiles of
estimated error variances for the five data sets (Fig. 10).
These differences are significantly larger than the stan-
dard deviation from the three independent equations
used to compute the error variances.

3. The variability, or spread among the error estimates, is
similar at most height levels for specific humidity, rel-
ative humidity, and temperature. If the error covariance
terms were significant, they would almost certainly vary

with height, giving different agreement in estimated er-
ror profiles with height. For example, we know that RO
temperature and refractivity are most accurate in the
upper troposphere and least accurate in the lower tro-
posphere and that the weight given to RO in the mod-
els’ data assimilation varies significantly with height,
being largest in the upper troposphere and smallest in
the lower troposphere. Thus one would expect the RO–
ERA and RO–GFS error covariance terms to vary sig-
nificantly with height. Also, the RS errors as well as the
ERA and GFS model errors vary with height. It is there-
fore unlikely that all of the neglected error covariance
terms are the same at all heights.

4. The general structure and magnitudes of the estimated
error variance profiles are similar at the four locations.
However, there are some small differences among the
profiles at the four locations. In general, the differences
among the three estimates (indicated by the SD about
the mean), which are a measure of the effect of the ne-
glected covariance terms as well as limited sample size,
are smallest for Ishi, Naze, and Mina and largest for
Guam. Since the three Japanese stations are close to-
gether, this suggests that there is a difference in the error
variance of the Japanese RS observations compared to
the Guam RS observations. There may also be small dif-
ferences in the model errors over the Japanese stations,
which are located in a data-rich area compared to Guam,
which is located in a data-sparse region. The largest
variability and largest error estimates occur at Guam,
which uses a radiosonde that is thought to have large
water vapor biases due to sensor malfunctions (Hol-
ger Vömel, personal communication, 2017).

5. The magnitudes of the estimated RO refractivity error
variances are supported by previously published studies,
including Kuo et al. (2004) and Chen et al. (2011).

6. The estimated errors are smallest for the ERA-Interim
model data set, which is a reasonable result since ERA
uses an excellent model and data assimilation system
that assimilates many independent, quality-checked ob-
servations. In fact, Vergados et al. (2015) state that
“ERA-Interim is one of the most advanced global atmo-
spheric models simulating the state of the atmosphere
with accuracy similar to what is theoretically possible
(Simmons and Hollingsworth, 2002) using a 4D-VAR
method (Simmons et al., 2005)”.

7. Our results show, in general, that the RO observations
have smaller errors than the radiosonde errors, in agree-
ment with previous studies. This difference is in part
due to representativeness errors associated with the RS,
which are point measurements while the other data sets
are representative of horizontal averages with a length
scale of ∼ 100 km.
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Appendix A: Derivation of estimates of error variances
using four data sets and the three-cornered hat method

A1 Description of three-cornered hat method

In this appendix we summarize the 3CH method (Gray and
Allan, 1974) for estimating error variances from three data
sets. Gray and Allan (1974) developed the method to esti-
mate the absolute frequency stability of an ensemble of N
clocks by forming all (N − 1)(N − 2)/2 triads under the as-
sumption that the clock errors are uncorrelated. Each of the
triads are three-cornered hat (3CH) estimates. Riley (2003)
provides a summary of the 3CH method.

Variations and enhancements of the 3CH method have
been applied to many diverse geophysical data sets. The
3CH method has been used to estimate the stability of GNSS
clocks using the measured frequencies from multiple clocks
(Ekstrom and Koppang, 2006; Griggs et al., 2014, 2015;
Luna et al., 2017). Valty et al. (2013) used the 3CH method
to estimate the geophysical load deformation computed from
GRACE satellites, GPS vertical displacement measurements,
and global general circulation models. O’Carroll et al. (2008)
compared three types of systems to measure sea surface tem-
peratures: two different radiometers and in situ observations
from buoys. They discuss the assumption of the neglect of
error correlations among the three data sets; the effect of rep-
resentativeness errors; and the interpretation of “truth”, the
true value of the variable being measured.

Closely related to the 3CH method is the triple-collocation
(TC) method, which was introduced by Stoffelen (1998) and
has been widely used since in oceanography and hydromete-
orology (e.g., Su et al., 2014; Gruber et al., 2016). It has been
used to estimate the error variances of triplets of observa-
tion types to measure a diverse set of geophysical properties,
including wave heights, sea surface temperatures, precipi-
tation, surface winds over the ocean, leaf area index (LAI)
products, and soil moisture. Stoffelen (1998) estimated the
error variances of in situ measurements, ERS scatterome-
ter winds, and NCEP forecast model wind speeds. Later,
Vogelzang et al. (2011) compared four sets of scatterome-
ter winds from ASCAT and SeaWinds with buoy measure-
ments and ECMWF model forecasts of surface winds over
the oceans to estimate the error variances and standard de-
viations of the different data sets and their combinations.
Stoffelen (1998) and Vogelzang et al. (2011) calibrate their
data sets using an error model and show how the error es-
timates may account for a partial correlation of representa-
tiveness errors between two data sets if independent infor-
mation about this correlation is known. Fang et al. (2012) es-
timated the uncertainties in three different estimates of LAI
products. McColl et al. (2014) extended the method by de-
riving a performance metric of the measurement system to
the unknown truth and applied the extended method to wind
estimates from numerical weather prediction, scatterometer,
and buoy wind estimates. Roebeling et al. (2012) used the

triple-collocation method to estimate the errors associated
with three ways of estimating precipitation: the Spinning
Enhanced Visible and Infrared Imager (SEVERI), weather
radars, and ground-based precipitation rain gauges. They
concluded that the method provides useful error estimates of
these systems.

The major assumption in the 3CH and TC methods is that
the unknown errors of the three systems are uncorrelated.
Correlations between any or all of the three measurement
systems will reduce the accuracy of the error estimates. Other
factors that can reduce the accuracy of the error estimates in-
clude widely different errors associated with the three sys-
tems or a small sample size. These factors can lead to neg-
ative estimates of error variances, especially when the esti-
mates are close to zero (Gray and Allan, 1974; Riley, 2003).
All three of these factors potentially affect the 3CH estimates
in this paper, but the general agreement of the three linearly
independent equations for estimating the error variances of
each variable suggests that the estimates are still reasonably
valid and contain useful information.

A2 Derivation of 3CH equations

In this section we summarize the derivation of the 3CH
method as applied to four meteorological data sets, RO, RS,
GFS, and ERA. The error variance of a variableX (e.g., tem-
perature, specific humidity, relative humidity, refractivity) is
defined as

VARerr (X)=
1
n

∑
(X− true)2 =

1
n

∑
X2

err, (A1)

where true is the true but unknown value of X and the sum-
mation is over n samples. This definition of error variance in-
cludes bias as well as random errors inX. Let RO correspond
to the value ofX as estimated by RO, ERA correspond to the
value of X as estimated by ERA, and similarly for GFS and
RS. We then have

MS(RO–ERA)= VARerr (RO)+VARerr (ERA)
− 2COVerr (RO,ERA) , (A2)

where MS(RO–ERA) is the mean square difference between
RO and ERA and the last term is the error covariance be-
tween RO and ERA.

In the estimation of the error variances for the four data
sets, we assume that the RO errors and ERA errors are un-
correlated, so the error covariance term in Eq. (A2) is zero
or, in practice, negligibly small compared to the other terms.
However, to show the complete (and exact) equations, we re-
tain them here in the six equations (Eqs. A2–A7) involving
the different pairs of data sets.
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MS(GFS–ERA)=VARerr (GFS)+VARerr (ERA) (A3)
− 2COVerr (GFS,ERA) ,

MS(RS–ERA)=VARerr (RS)+VARerr (ERA)
− 2COVerr (RS,ERA) , (A4)

MS(RO–GFS)=VARerr (RO)+VARerr (GFS)
− 2COVerr (RO,GFS) , (A5)

MS(RS–GFS)=VARerr (RS)+VARerr (GFS)
− 2COVerr (RS,GFS) , (A6)

MS(RO–RS)=VARerr (RO)+VARerr (RS)
− 2COVerr (RO,RS) . (A7)

It is possible to use these six equations to get three different,
linearly independent estimates of the four unknowns error
variances for RO, RS, ERA, and GFS. For RO, these three
equations are

VARerr(RO)=
1
2

MS(RO−ERA)+
1
2

MS(RO−GFS)

−
1
2

MS(GFS−ERA)+COVerr(RO,ERA)

+ COVerr(RO,GFS)−COVerr(GFS,ERA) (A8)

VARerr(RO)=
1
2

MS(RO−ERA)+
1
2

MS(RO−RS)

−
1
2

MS(RS−ERA)+COVerr(RO,ERA)

+ COVerr(RO,RS)−COVerr(RS,ERA) (A9)

VARerr(RO)=
1
2

MS(RO−GFS)+
1
2

MS(RO−RS)

−
1
2

MS(RS−GFS)+COVerr(RO,GFS)

+ COVerr(RO,RS)−COVerr(RS,GFS). (A10)

O’Carroll et al. (2008) present these equations for a system
of three observation types (their Eq. 1). However, they re-
move the mean biases from each data set in their definition of
error variance, whereas we do not in our definition (Eq. A1).
Our expressions for estimated error variances are identical to
those of O’Carroll et al. (2008) with the removal of the effect
of these biases; e.g., replace MS(X−Y ) in Eqs. (A8)–(A10)
with MS(X−Y ) − [M(X−Y )]2, where X and Y are any of
the data sets. Removing these biases will generally result in
smaller estimated error variances than the results presented
in this paper.

As noted by an anonymous reviewer, it is pos-
sible to derive infinitely many linearly dependent
equations by combining Eqs. (A8)–(A10) in dif-
ferent ways by forming combinations of the form
M1×Eq. (A8)+M2×Eq. (A9)+M3×Eq. (A10), where
M1, M2, and M3 are any numbers except those for which
M1+M2+M3 = 0. We did not pursue this possibility in
this paper but instead used the three linearly independent
equations only in our estimates of error variances.

If all the neglected COVerr terms were in fact identically
zero and the sample size was very large (much larger than our
sample size), all three estimates of the error variances would
be the same. The fact that they give different solutions is be-
cause the neglected COVerr terms are in reality not zero, and
hence their neglect affects the three approximate equations in
different ways to give three different solutions. The relatively
small sample size n also contributes to the differences in the
three solutions, which are a measure of these effects.

We also note that the error estimates contain any represen-
tativeness errors caused by the different data sets represent-
ing different scales of atmospheric structure (O’Carroll et al.,
2008). Representativeness errors can occur because of differ-
ent horizontal or vertical resolutions or footprints of the data
sets.

A3 Brief comparison of 3CH method and TC method

While it is not the intent of this paper to do a thorough com-
parison of the 3CH and TC methods, which are introduced
above, in response to a reviewer’s comment we compared
the two methods on a subset of our data sets. A difference
between the 3CH and TC method is that the TC method cor-
rects for additive and multiplicative biases among the three
data sets, as discussed by Stoffelen (1998), Vogelzang et al.
(2011), and others. The TC method calibrates two of the data
sets against the third, eliminating biases among the three
data sets. This calibration uses an error model of the form
Xi = a · true+b+ei , where a and b stand for the “trend” and
“bias” calibration coefficients and ei are random errors (Vo-
gelzang et al., 2011). As shown below, calibrating our data
sets according to this model gave results very similar to re-
sults using our uncalibrated data sets.

In our application of the TC method we use the follow-
ing combinations of data sets: (ERA, RO, RS), (ERA, RO,
GFS), and (ERA, GFS, RS). For the RO we use two RO re-
trievals, the direct and 1D-VAR (see Sect. 2.3). The RO, RS,
and GFS data sets are all calibrated using ERA as the cali-
bration reference, using the following calibration factors. For
example, the calibrated RO and RS (designated by ROcal and
RScal, respectively) using ERA as the reference are (follow-
ing Stoffelen, 1998; Vogelzang et al., 2011; and Roebeling
et al., 2012)

ROcal =
RO− bRO

aRO
,

RScal =
RS− bRS

aRS
,

where the additive bias terms are

bRO =M(RO–ERA) ,
bRS =M(RS–ERA) ,

the multiplicative bias terms are

aRO =
M(RO ·RS)
M (RS ·ERA)

,
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aRS =
M(RO ·RS)
M (RO ·ERA)

,

and M denotes the mean value over the data sets.
The results of the specific humidity error variance esti-

mates for ROcal and RScal compared to RO and RS are shown
in Fig. A1, and the estimates for ERAcal and GFScal com-
pared to ERA and GFS are shown in Fig. A2. The left panels
show the results from the TC method (calibrated data), and
the right panels show the results using the 3CH method (un-
calibrated data). The close similarity of the results indicates
that the biases do not significantly affect the 3CH estimates,
in agreement with the results from the error model study in
Rieckh and Anthes (2018).
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Figure A1. Estimated RO and RS error variances for specific humidity at Minamidaitōjima (Japan) using calibrated data as in the TC
method (a, c) and the uncalibrated data as in the 3CH method (b, d). For the TC method, the RO, RS, and GFS data sets are calibrated with
respect to ERA as the reference data set. The following combinations of the four data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and
(ERA, GFS, RS).

Figure A2. Estimated ERA and GFS specific error variances for ERA at Minamidaitōjima (Japan) using calibrated data as in the TC
method (a, c) and the uncalibrated data as in 3CH method (b, d). For the TC method, the RO, RS, and GFS data sets are calibrated with
respect to ERA. The following combinations of the four data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS, RS).
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Appendix B: Mean and standard deviations of three
independent error estimates of q, RH, T , and N using
RO-direct and RO 1D-VAR at Guam, Ishi, Mina and
Naze

Figure B1. Mean and standard deviations (shading) of the three estimates of normalized specific humidity using RO-direct and RO 1D-VAR
at (a) Guam, (b) Ishi, (c) Mina, and (d) Naze.
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Figure B2. Mean and standard deviations (shading) of the three estimates of normalized relative humidity using RO-direct and RO 1D-VAR
at (a) Guam, (b) Ishi, (c) Mina, and (d) Naze.

Figure B3. Mean and standard deviations (shading) of the three estimates of normalized temperature using RO-direct and RO 1D-VAR at
(a) Guam, (b) Ishi, (c) Mina, and (d) Naze.
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Figure B4. Mean and standard deviations (shading) of the three estimates of normalized refractivity using RO-direct and RO 1D-VAR at
(a) Guam, (b) Ishi, (c) Mina, and (d) Naze.

Atmos. Meas. Tech., 11, 4239–4260, 2018 www.atmos-meas-tech.net/11/4239/2018/

100



R. Anthes and T. Rieckh: Evaluating observation and model error variances 4259

Author contributions. RA formulated the overall idea of this work,
and TR performed all the calculations and contributed significantly
to the discussion of the results.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge with thanks the insightful
comments and advice on this study from Ian Culverwell and John
Eyre (Met Office), Shay Gilpin (UCAR COSMIC), Sean Healy
(ECMWF), Adrian Simmons (ECMWF), and Sergey Sokolovskiy
(UCAR COSMIC). We thank the three anonymous reviewers for
their constructive comments. Anthes and Rieckh were supported by
NSF-NASA grant AGS-1522830. We thank Eric DeWeaver (NSF)
and Jack Kaye (NASA) for their long-term support of COSMIC.

Edited by: Ad Stoffelen
Reviewed by: three anonymous referees

References

Chen, S.-Y., Huang, C.-Y., Kuo, Y.-H., and Sokolovskiy, S.: Ob-
servational Error Estimation of FORMOSAT-3/COSMIC GPS
Radio Occultation Data, Mon. Weather Rev., 139, 853–865,
https://doi.org/10.1175/2010MWR3260.1, 2011.

Cucurull, L. and Derber, J. C.: Operational Implementa-
tion of COSMIC Observations into NCEP’s Global Data
Assimilation System, Weather Forecast., 23, 702–711,
https://doi.org/10.1175/2008WAF2007070.1, 2008.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Desroziers, G. and Ivanov, S.: Diagnosing and adaptive
tuning of observation-error parameters in a variational
assimilation, Q. J. Roy. Meteor. Soc., 127, 1433–1452,
https://doi.org/10.1002/qj.49712757417, 2001.

Ekstrom, C. R. and Koppang, P. A.: Error Bars for Three-
Cornered Hats, IEEE T. Ultrason. Ferr., 53, 876–879,
https://doi.org/10.1109/TUFFC.2006.1632679, 2006.

ERA-Interim, available at: https://www.ecmwf.int/en/research/
climate-reanalysis/reanalysis-datasets/era-interim, last access: 1
July 2018.

Fang, H., Wei, S., Jiang, C., and Scipal, K.: Theoreti-
cal uncertainty analysis of global MODIS, CYCLOPES,
and GLOBCARBON LAI products using a triple col-
location method, Remote Sens. Environ., 124, 610–621,
https://doi.org/10.1016/j.rse.2012.06.013, 2012.

Gilpin, S., Rieckh, T., and Anthes, R.: Reducing repre-
sentativeness and sampling errors in radio occultation–
radiosonde comparisons, Atmos. Meas. Tech., 11, 2567–2582,
https://doi.org/10.5194/amt-11-2567-2018, 2018.

Gray, J. E. and Allan, D. W.: A method for estimating
the frequency stability of an individual oscillator, in:
28th Annual Symposium on Frequency Control, Atlantic
City, New Jersey, 29–31 May 1974, IEEE, 243–246,
https://doi.org/10.1109/FREQ.1974.200027, 1974.

Griggs, E., Kursinski, E., and Akos, D.: An investigation of GNSS
atomic clock behaviour at short time intervals, GPS Solut., 18,
443–452, https://doi.org/10.1007/s10291-013-0343-7, 2014.

Griggs, E., Kursinski, E., and Akos, D.: Short-term
GNSS satellite clock stability, Radio Sci., 50, 813–826,
https://doi.org/10.1002/2015RS005667, 2015.

Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W.,
and Wagner, W.: Recent advances in (soil moisture) triple
collocation analysis, Int. J. Appl. Earth Obs., 45, 200–211,
https://doi.org/10.1016/j.jag.2015.09.002, 2016.

Ho, S.-P., Zhou, X., Kuo, Y.-H., Hunt, D., and Wang, J.-H.: Global
evaluation of radiosonde water vapor systematic biases using
GPS radio occultation from COSMIC and ECMWF analysis, Re-
mote Sens., 2, 1320–1330, https://doi.org/10.3390/RS2051320,
2010.

Ho, S.-P., Peng, L., and Vömel, H.: Characterization of the long-
term radiosonde temperature biases in the upper troposphere
and lower stratosphere using COSMIC and Metop-A/GRAS
data from 2006 to 2014, Atmos. Chem. Phys., 17, 4493-4511,
https://doi.org/10.5194/acp-17-4493-2017, 2017.

Hollingsworth, A. and Lönnberg, P.: The statistical struc-
ture of short-range forecast errors as determined from ra-
diosonde data. Part I: The wind field, Tellus A, 38, 111–136,
https://doi.org/10.3402/tellusa.v38i2.11707, 1986.

Kitchen, M.: Representativeness errors for radiosonde ob-
servations, Q. J. Roy. Meteor. Soc., 115, 673–700,
https://doi.org/10.1002/qj.49711548713, 1989.

Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-
S., and Lord, S.: Introduction of the GSI into the NCEP Global
Data Assimilation System, Weather Forecast., 24, 1691–1705,
https://doi.org/10.1175/2009WAF2222201.1, 2009.

Kuo, Y.-H., Wee, T.-K., Sokolovskiy, S., Rocken, C., Schreiner, W.,
Hunt, D., and Anthes, R. A.: Inversion and error estimation of
GPS radio occultation data, J. Meteorol. Soc. Jpn., 82, 507–531,
2004.

Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G.:
Climate intercomparison of GPS radio occultation, RS90/92 ra-
diosondes and GRUAN from 2002 to 2013, Atmos. Meas. Tech.,
8, 1819–1834, https://doi.org/10.5194/amt-8-1819-2015, 2015.

Luna, D., Pérez, D., Cifuentes, A., and Gómez, D.: Three-
Cornered Hat Method via GPS Common-View Com-
parisons, IEEE T. Instrum. Meas., 66, 2143–2147,
https://doi.org/10.1109/TIM.2017.2684918, 2017.

McColl, K., Vogelzang, J., Konings, A., Entekhabi, D., Piles,
M., and Stoffelen, A.: Extended triple collocation: Esti-
mating errors and correlation coefficients with respect to
an unknown target, Geophys. Res. Lett., 41, 6229–6236,
https://doi.org/10.1002/2014GL061322, 2014.

O’Carroll, A. G., Eyre, J. R., and Saunders, R. S.: Three-way error
analysis between AATSR, AMSR-E, and in situ sea surface tem-

www.atmos-meas-tech.net/11/4239/2018/ Atmos. Meas. Tech., 11, 4239–4260, 2018

101



4260 R. Anthes and T. Rieckh: Evaluating observation and model error variances

perature observations, J. Atmos. Ocean. Tech., 25, 1197–1207,
https://doi.org/10.1175/2007JTECHO542.1, 2008.

Parrish, D. F. and Derber, J. C.: The National Meteorological
Center’s Spectral Statistical-Interpolation analysis system, Mon.
Weather Rev., 120, 1747–1763, https://doi.org/10.1175/1520-
0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.

Rieckh, T. and Anthes, R.: Evaluating two methods of estimating
error variances using simulated data sets with known errors, At-
mos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-75,
in review, 2018.

Rieckh, T., Anthes, R., Randel, W., Ho, S.-P., and Foelsche, U.:
Evaluating tropospheric humidity from GPS radio occultation,
radiosonde, and AIRS from high-resolution time series, At-
mos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-
11-3091-2018, 2018.

Riley, W. J.: Application of the 3-cornered hat method to the analy-
sis of frequency stability, Hamilton Technical Services, available
at: http://www.wriley.com/3-CornHat.htm (last access: 1 July
2018), 2003.

Roebeling, R. A., Wolters, E. L. A., Meirink, J. F., and
Leijnse, H.: Triple collocation of summer precipitation re-
trievals from SEVIRI over Europe with gridded rain gauge
and weather radar data, J. Hydrometeorol., 13, 1552–1566,
https://doi.org/10.1175/JHM-D-11-089.1, 2012.

Simmons, A. J. and Hollingsworth, A.: Some as-
pects of the improvement in skill of numerical pre-
diction, Q. J. Roy. Meteor. Soc., 128, 647–677,
https://doi.org/10.1256/003590002321042135, 2002.

Simmons, A. J., Hortal, M., Kelly, G., McNally, A., Untch, A., and
Uppala, S.: ECMWF Analyses and Forecasts of Stratospheric
Winter Polar Vortex Breakup: September 2002 in the Southern
Hemisphere and Related Events, J. Atmos. Sci., 62, 668–689,
https://doi.org/10.1175/JAS-3322.1, 2005.

Smith, E. and Weintraub, S.: The constants in the equation for at-
mospheric refractive index at radio frequencies, Proc. IRE, 41,
1035–1037, 1953.

Stoffelen, A.: Toward the true near-surface wind speed: Error mod-
eling and calibration using triple collocation, J. Geophys. Res.,
103, 7755–7766, https://doi.org/10.1029/97JC03180, 1998.

Su, C.-H., Ryu, D., Crow, W. T., and Western, A. W.:
Beyond triple collocation: Applications to soil mois-
ture monitoring, J. Geophys. Res., 119, 6419–6439,
https://doi.org/10.1002/2013JD021043, 2014.

Valty, P., de Viron, O., Panet, I., Camp, M. V., and Legrand, J.:
Assessing the precision in loading estimates by geodetic tech-
niques in Southern Europe, Geophys. J. Int., 194, 1441–1454,
https://doi.org/10.1093/gji/ggt173, 2013.

Vergados, P., Mannucci, A. J., and Ao, C. O.: Assess-
ing the performance of GPS radio occultation measure-
ments in retrieving tropospheric humidity in cloudiness:
A comparison study with radiosondes, ERA-Interim, and
AIRS data sets, J. Geophys. Res.-Atmos., 119, 7718–7731,
https://doi.org/10.1002/2013JD021398, 2014.

Vergados, P., Mannucci, A. J., Ao, C. O., Jiang, J. H., and Su, H.:
On the comparisons of tropical relative humidity in the lower
and middle troposphere among COSMIC radio occultations and
MERRA and ECMWF data sets, Atmos. Meas. Tech., 8, 1789–
1797, https://doi.org/10.5194/amt-8-1789-2015, 2015.

Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa-Saldaña, J.: On
the quality of high-resolution scatterometer winds, J. Geophys.
Res., 116, C10033, https://doi.org/10.1029/2010JC006640,
2011.

Atmos. Meas. Tech., 11, 4239–4260, 2018 www.atmos-meas-tech.net/11/4239/2018/

102



Part III.





Acronyms

1D-Var One-Dimensional Variational

3CH Three-Cornered Hat

AIRS Atmospheric Infrared Sounder

CONTRAST CONvective TRansport of Active Species in the Tropics

DMI Danish Institute for Meteorology

ERA-Interim ECMWF Reanalysis Interim
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RHS Right Hand Side

RMS Root Mean Square

RO Radio Occultation

RO Radiookkultationsmethode

SI International System of Units

SR Super Refraction

STD Standard Deviation

UCAR University Corporation for Atmospheric Research

UTLS Upper Troposphere – Lower Stratosphere

WEGC Wegener Center for Climate and Global Change
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Abstract: 
This report investigates the quality of Radio Occultation (RO)-derived humidity using other 
remote sensing techniques, in-situ observing techniques, and model analyses and 
reanalyses. Since water vapor plays a key role in many atmospheric processes, a correct 
understanding of the distribution, transport, and vertical structure of tropospheric humidity are 
crucial to accurately model weather and climate. But to the present day, no single observing 
system can provide global accurate tropospheric humidity data with a resolution that 
captures their variability on all important vertical, horizontal, and time scales.  
Using multiple observational data sets and models, we assess the quality of RO-derived 
tropospheric humidity. The structural uncertainty of RO-derived humidity is determined from 
comparisons of multiple different RO humidity retrievals. Even in challenging humidity 
conditions, such as high variability and extreme dryness, the accuracy of RO-derived 
humidity data is similar to the one of other state-of-the-art humidity measurements. 
Additionally, the RO technique features global coverage, all-weather capability, and same 
data quality for day and night time measurements. This shows the usefulness of RO for 
tropospheric humidity studies, as well as its potential to contribute tropospheric data to 
numerical weather prediction models via data assimilation. 
 
 
Zum Inhalt: 
Das Ziel dieser Arbeit ist es, die Qualität von Radiookkultation-Feuchtedaten mithilfe von 
anderen Fernerkundungsmethoden und in-situ Messungen sowie Modell-Analysen und 
Reanalysen abzuschätzen. Wasserdampf spielt eine große Rolle in vielen atmosphärischen 
Prozessen und genaues Wissen über die Verteilung und Vertikalstruktur troposphärischer 
Feuchte ist daher sehr wichtig um Wetter und Klima korrekt modellieren zu können. 
Allerdings gibt es keine einzige Messmethode, welche Wasserdampf global mit einer 
Auflösung messen kann, die dessen starke Variabilität auf zeitlicher, horizontaler und 
vertikaler Ebene widerspiegelt. 
Die GPS Radiookkultationsmethode (RO) liefert die Möglichkeit, vertikal hoch aufgelöste 
Information über die Feuchteverteilung in der Troposphäre zu gewinnen. Die Qualität dieser 
RO Feuchtedaten wird mithilfe von Daten mehrerer Messmethoden sowie Modellen 
abgeschätzt. Ihre strukturelle Unsicherheit wird über Unterschiede zwischen verschiedenen 
RO Feuchte-Retrievals bestimmt. Sogar in Regionen mit starken Feuchteschwankungen ist 
die Genauigkeit von RO Feuchte vergleichbar mit der von anderen Messmethoden. 
Zusätzlich kann RO kurzzeitige und kleinräumige Variabilität auflösen und liefert globale 
Messungen unter allen Wetterbedingungen bei Tag wie bei Nacht. RO zeigt daher durchaus 
Potential troposphärische Daten im Datenassimilationsprozess der Wettervorhersage 
beitragen zu können. 
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