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Abstract

convection resolving climate simulations (CRCS) have high potential to improve multiple
error sources in state of the art regional climate models (RCMs) by explicitly resolv-
ing deep convection and by representing orography and land cover with high accuracy.
However, the added value of CRCSs compared to simulations on coarser grids is difficult
to assess by traditional statistical methods. In order to assess added value in a sys-
tematic way, we separate four categories (mean climate-, spatial-, temporal-, and event
based added value) which can be evaluated separately. For each category several statis-
tical methods are introduced which make different aspects of added value visible. They
include traditional statistics like biases, correlation coefficients, or root mean squared
errors (RMSEs), but also comprise methods which were especially developed to evaluate
highly resolved simulations on grid point basis. The latter methods are of particular
interest with regard to convection resolving simulations, since they are suited to analyze
the model performance at small spatial scales. A specific focus is also on the evaluation
of simulations with regard to small scale extreme events (e.g., heavy convective precipi-
tation) and other local weather and climate phenomena like foehn and inversions. Each
introduced method is designed to evaluate and quantify a certain aspect of simulations
and sometimes also certain parameters. The presented categories and methods can be
used as a guideline for the evaluation of high resolution climate simulations and are basis
for the design of a standard evaluation scheme which is used in the Local Climate Model
Intercomparison Project (LocMIP), which is described in the third part of this report
series.
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1 Introduction

The impacts of climate change on society and ecosystems are predominately related to
the regional and local scale characteristics of climate change. Even if General Circulation
Models (GCMs) are able to simulate the large scale circulation properly, they have much
too coarse grid scales to resolve for example the high-resolution patterns of precipitation,
regional wind fields, or important local atmosphere surface interactions. This calls for
methods to transfer the results from GCMs to the regional and local scale.
The most rigorous of all downscaling techniques is the dynamical downscaling with

regional climate models (RCMs) (e.g., Dickinson et al. (1989), Giorgi and Bates (1989),
Wang et al. (2004), and Rummukainen (2010)). Thereby a RCM is nested into a global
model (or another RCM simulation) to produce climate simulations with resolutions
which cannot be achieved by GCMs because of computational constraints. State of the
art regional climate simulations have horizontal grid distances between 10 km and 50 km
(e.g., Christensen and Christensen (2007), Linden and Mitchel (2009), Loibl (2010)).
However, many important phenomena are beyond these scales and have to be param-
eterized. One prominent example is moist convection, which has to be parameterized
at grid-scales above about 3 km and is regarded as one major error source in climate
simulations.
Therefore, climate simulations at convection resolving scales have two main advan-

tages: First, they are able to resolve the topography and surface fields more accurately
and second, deep convection can be simulated explicitly without parameterizations.
In numerical weather prediction (NWP) convection resolving simulations have already
proven to yield a more realistic precipitation pattern, especially for cases with moist
convection over orographically complex areas (Mass et al. 2002).
However, convection resolving climate simulationss (CRCSs) have also disadvantages

like high computational costs, and the need of large data storage space. Furthermore,
the evaluation of convection resolving simulations poses difficulties because of the lack
of highly resolved reference datasets. But even if such datasets are available, particu-
larly the evaluation of highly resolved precipitation fields is challenging, because of the
so called ’double penalty’ problem. If a precipitation object like a convective cell is
misplaced only by a few grid points traditional statistical methods (like the bias, the
root mean squared error (RMSE), or the correlation coefficient) will treat the misplaced
object as falls alarm and the observed object as a missed event and therefore refer a
bad performance to the simulation even if the spatial patterns are perfectly reproduced.
Small temporal or spatial misplacements of precipitation are however inevitable since
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1 Introduction

Table 1.1: Overview of the RCMs, institutes, and acronym of the LocMIP ensemble.

RCM Version Institute abbreviation
CCLM 4.0 Wegener Center W_CLM
CCLM 4.8 BTU Cottbus B_CLM
MM5 3.7.4 Wegener Center W_MM5
WRF 2.2.1 Wegener Center W_WRF

the predictability limit falls of rapidly toward small scales (1 km – 100 km) because of
upscale error propagation (Wernli et al. 2008). To avoid these ’double penalty’ problem,
multiple methods where developed especially in the NWP community.
In this report the following four main categories are defined, in which added value of

CRCSs could get visible:

• mean climate,

• spatial characteristics,

• temporal characteristics,

• event based.

Specific statistical methods are introduced for each category to make different aspects
of added value visible. Some methods which are focusing on climatologically means
and variabilities are generally applicable for hindcasts and control runs (e.g., bias maps,
Taylor statistics, . . . ), while others evaluate the performance of the simulations to re-
produce the weather of the past and therefore need hindcast simulations (e.g., spatial
and temporal highly resolved precipitation evaluations).
Examples for the described methods are given from published literature and from the

evaluation of the Local Climate Model Intercomparison Project (LocMIP) ensemble (Prein
et al. 2011). The LocMIP ensemble consists of four different RCMs (or versions of RCMs;
see Table 1.1) and covers the eastern Alpine region within the periods June, July, and
August (JJA) 2007 and December, January, and February (DJF) 2008. The acronyms
of the simulations are build of a capital letter indicating the institution in which the
simulations were performed (W for the Wegener Center for Climate and Global Change
(WegCenter) and B for the Brandenburg University of Technology Cottbus (BTU)), the
name of the RCM, and a number which describes the horizontal grid spacing of the
simulation (10 for ∼10 km grid spacing and 3 for ∼3 km grid spacing). The major
difference between the two resolutions is that in the 10 km simulations convection is
parameterized while in the 3 km simulations deep convection is resolved explicitly. For
more details about the LocMIP ensemble and its evaluation see Prein et al. (2011).

10



2 Mean Climate

In the atmosphere energy and mass is transferred from large scales to small ones and
vice versa. Thereby, small scale features can affect large scale effects significantly. For
example, in a regional climate model (RCM) with smaller grid spacing the orography is
better represented which might not only have effects on regional precipitation but can
also effect large scale rainfall patterns through shadowing effects of mountains. Added
value of this category is not easily obtained, since it has to be transferred from the
smaller scales where it resides, to the larger scales. However, it is easy to analyze, since
standard techniques can be used for the evaluation of mean climate data, which is the
focus of this chapter.
Three methods, bias maps, annual cycles, and conditional quantile plots, are described.

In bias maps, the spatial distribution of temporal averaged biases is shown on grid-
point basis, while in annual cycles spatial averages are calculated for climatologically
means of each month. In conditional quantile plots climatologically conditional biases
are calculated for quantiles of the spatial-temporal distribution of the reference dataset.

2.1 Bias Maps
Biases are systematic errors which can be calculated by subtracting observational values
at a given time or time span from the simulated values. For deriving a map this has to
be done point-wise on a common grid:

bjk = 1
n

n∑
i=1

(xijk − oijk) , (2.1)

where xijk is the simulated value and oijk is the observed value at a given time i, given
longitude j, and given latitude k. The total time n, over which is averaged has to be
long enough to capture decadal variability to derive a meaningful climatological bias of
the simulation. It is advisable to draw bias maps not only on annual basis but also on
seasonal, because error characteristics in climate models are often differing with different
times of a year (see Section 2.2).
In Figure 2.1 the differences between the Fifth-Generation Mesoscale Model (MM5)

10 km (panel a) and 3 km (panel b) simulations minus the Integrated Nowcasting through
Comprehensive Analysis (INCA) are displayed as mean bias of 2 m temperature for June,

11



2 Mean Climate

Figure 2.1: Bias maps of the 10 km (panel a) and 3 km (panel b) MM5 LocMIP simulations
minus INCA. Shown are the mean differences of 2 m temperature for JJA 2007. Below
the maps, the mean, the maximum, and the minimum difference is displayed.

July, and August (JJA) 2007. In both cases the spatial mean bias is zero, but the
maximum and minimum biases are larger in the 10 km gridded simulation.
The major part of the improvement can be attributed to a more accurate represen-

tation of the orography in the 3 km simulation which leads to smaller biases in valleys
and mountain ridges in orographically complex regions. In flat or hilly areas like south
eastern Styria, northern Slovenia, or western Hungary biases do not change.

2.2 Annual Cycle

Annual cycles are a basic pattern of climate which are caused by the changing orbital
position of the earth’s during the course of a year. Thereby atmospheric parameters
are influenced by the orbital position either directly by the variation of incoming solar
radiation or indirectly by changes in the synoptic circulation (e.g. monsoon systems,
strength of westerlies). Climate models typically have different error characteristics
during different seasons because of the changing atmospheric and surface processes. A
good example is the predominance of convective precipitation in mid latitude summers
and the mostly frontal precipitation during winters.
Looking at biases in the annual cycle can reveal insights in weaknesses of the rep-

resentation of physical processes within a climate model. Thereby, data are typically
spatially and temporally averaged for each month of the year. The biases between the
simulated minus the reference values can then be displayed as a time line representing
the average monthly climatologically situation over a specific area.

12



2.3 Conditional Quantile Plots

2.3 Conditional Quantile Plots
The joint distribution of observed and simulated variables can give valuable insights in
the simulation performance and in the statistical characteristics of the simulation and
observation (Murphy and Winkler 1987). If the considered parameters are not already
discrete variables they have to be rounded to a finite set of values. Considering the
simulation x which can take any value xi with i = 1,. . . , I; and the observation o with
values oj (j = 1,. . . J) then the joint distribution can be denoted as:

p (xi, oj) = Pr {xi, oj} = Pr {xi ∩ oj} ; i = 1, . . . , I; j = 1, . . . , J. (2.2)

Equation 2.2 shows the bivariate discrete probability distribution of the simulation
and the forecast containing a probability for each I × J possible combinations. This
joint distribution can be factorized as follows:

p (xi, oj) = p (oj | xi) p (xi) ; i = 1, . . . , I; j = 1, . . . , J. (2.3)

This is called calibration-refinement factorization (Murphy and Winkler 1987). The
first part in Equation 2.3 p (oj | xi) consist of I conditional distributions which account
for the probabilities that the observation measure a particular value oj when the value xi
has been simulated. The second part in Equation 2.3 refers to the marginal distribution
and shows the relative frequency of the simulated values xi.
Conditional Quantile plots offer an informative way to display the properties of the

joint distribution by showing the two parts of Equation 2.3 separately in a single plot
Figure 2.2. The conditional distributions p (oj | xi) are represented by their median and
the lower and upper quartiles (Q25 and Q75). In this image a perfect forecast would
exactly lie on the 1:1 diagonal. Here it can be seen, that there is a strong cold bias at
warmer simulated temperatures. However, the most frequently simulated temperatures
feature relatively small biases, which results in a moderately cold overall bias of -3.6 K
in the 10 km (CLM34_D2), -3.5 K in the 3 km (CLM50_D3), and -3.1 K in the 1 km
grid spacing simulation (CLM50_D4a). The distributions in the lower part of Figure 2.2
show the marginal distributions p (xi) of the simulations and the observation. A strong
zero degree peak is visible in all COSMO model in CLimate Model (CCLM) simulations
which flattens with increasing grid spacing.

13



2 Mean Climate

Figure 2.2: Conditional Quantile plot for 2 m temperature of three CCLM simulations
with 10 km (dark blue), 3 km (light blue), and 1 km (grey) grid spacing compared with
INCA in south-eastern Styria. The solid lines are the median values while the dashed
lines are the 25 % and 75 % quartiles. The relative frequencies of the simulated and
observed values correspond to the right y Axis. The black line displays the distribution
of INCA.
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3 Spatial Characteristics
In this chapter, we focus on the quality of spatial variability and spatial patterns of tem-
porally averaged simulated fields. Since higher resolution directly relates to the potential
ability of a model to more realistically represent fine-scale spatial patterns, one can ex-
pect to find added value here much more easily than in spatial averages, where only the
net-effect of fine-scale improvements is visible. In our applications the model fields are
always interpolated to the finer resolved grid of the reference dataset. This allows, e.g.,
to identify also added value in the finer scale simulations due resolved spatial structures
which are simply smoothed out in the coarser scale simulations. Added value of this
kind wouldn’t necessarily imply that the coarser scale simulations are performing worse
(they might be even perfect on their appropriate scale), but it would still demonstrate
additional useful information in the finer scale simulations.

3.1 Spatial Correlation
The correlation rxo is a measure for the linear connection between two variables and is
defined as the standardized covariance covxo:

rxo = covxo
sx · so

(3.1)

covxo =
∑N
i=1 (xi − x̄) · (oi − ō)

N − 1
(3.2)

sx =

√∑N
i=1 (xi − x̄)2

N
(3.3)

so =

√∑N
i=1 (oi − ō)2

N
(3.4)

rxo =
∑N
i=1 (xi − x̄) · (oi − ō)
(N − 1) · sx · so

. (3.5)

Thereby sx and so are the standard deviations of the simulation and the observation
and a bar above a variable means averaging. To obtain the spatial correlation coefficient
the observation and the simulation has to be given at the same points i. A very useful
tool for displaying the correlation coefficient together with the pattern root mean squared
error (RMSE) E′ and the standard deviations σo and σx is the Taylor diagram (Taylor
2001). The mathematical description looks as follows:

15



3 Spatial Characteristics

Figure 3.1: Geometrical relationship between the correlation coefficient r, the pattern
RMSE E′ and the standard deviations σo and σx.

E2 = Ē2 + E′2 (3.6)
Ē = x̄− ō (3.7)

E′ =
{

1
N

N∑
i=1

[(xi − x̄)− (oi − ō)]2
}1/2

(3.8)

E′2 = σ2
x + σ2

o − 2σxσor. (3.9)

Hereby, the RMSE E2 is the sum of the squared overall bias Ē2 and the squared pattern
RMSE E′2. Equation 3.9 can be geometrically interpreted by using the Law of Cosines
c2 = a2 + b2 − 2ab cosφ where a, b, and c are the sides of a triangle, and φ is the angle
opposite of c. The geometrical relationship of r, E′, σx and σo is displayed in Figure 3.1.
In Figure 3.2 an example Taylor plot is shown for the Local Climate Model Intercom-

parison Project (LocMIP) regional climate model (RCM) simulations. Displayed are the
spatial correlation coefficients of 2 m temperature over the eastern Alps for the mean
2007 June, July, and August (JJA) period. As expected, a general improvement is gained
in terms of 2 m temperature when one moves from a 10 km (darker colors) to a 3 km
(brighter colors) model grid. However, for other variables which are less directly re-
lated to the altitude of the orography than temperature, such improvements cannot be
automatically expected.
A different way to look at the same data as in Figure 3.2 is to calculate r, E′, σx, and

σo for every time slice and to show them as point cloud or as contour plot (Figure 3.3)
in the Taylor diagram. Thereby, the spread of the statistical parameters gets visible and
structures in their temporal deviations appear. It should be noted that calculating the
average of r, E′, σx, and σo for every time step leads to a different result as calculating
the quantities from the time averaged spatial field.

16



3.2 Spatial Rainfall verification

Figure 3.2: Taylor plot for the 2 m temperature of the four LocMIP RCMs in an eastern
Alpine domain. The green point marks the reference field REF (here INCA). The distance
to this point shows the pattern RMSE while the radial distance from the origin shows
σx/σo. The correlations between the two fields display the azimuthally position of the
simulated field.

3.2 Spatial Rainfall verification

Verifying spatial rainfall simulations is one of the most challenging verification tasks
(Stevenson 2006). There are three problems that occur in spatial rainfall fields. First,
precipitation fields are highly discontinuous and values can change on very small spatial
distances. Second, there is often a mismatch between simulations and observations since
simulations are generally given on some clearly defined grid while observations are taken
on specific points or must be estimated indirectly from radar observations. Third, the
distribution of precipitation is highly skewed which excludes statistical methods which
demand Gaussian assumptions.
By decreasing the grid spacing of RCMs the above mentioned problems get even more

severe, if precipitation fields are considered in a high temporal and spatial resolution.

17



3 Spatial Characteristics

Figure 3.3: Same as in Figure 3.2 but for hourly data shown as contour plot. Intensive
colours mean a clustering of points while different colours show different RCMs. 10 km
simulations have solid contour lines while 3 km simulations have dashed.

This is because the chance of a ‘double penalty’ is increased if highly resolved simulations
are evaluated by considering short time periods (e.g., hours). This ‘double penalty’
occurs because even slight misplacements of precipitation in the simulation can lead to
numerous missed events and false alarms when traditional statistical methods are used.
Even when the simulation represents the large-scale precipitation accurate, the small-
scale errors dominate the total error (Mass et al. 2002). In general, small misplacements
cannot be avoid because upscale error propagation lead to a decreasing predictability
limit toward small scales (1 km – 100 km) (Wernli et al. 2008).

Multiple, approaches have been developed to overcome the above mentioned problems.
Those methods do not require a perfect fit of the simulation and the observation at the
fine scale. In the following sub chapters an overview of commonly used methods is given.

18



3.2 Spatial Rainfall verification

3.2.1 Filtering Approaches

The common feature of filtering methods is that they separate the spatial structures in
different scales and compare them with the observation. Thereby, filtering approaches
can further be separated in neighborhood methods and scale separation methods.

Neighborhood Methods

Neighborhood or fuzzy verification methods give credits to simulated events which are
close to the observation. Ebert (2008) provides a good overview on 10 fuzzy verification
methods which are used in the verification of numerical weather predictions. Ament
et al. (2008) presented an evaluation of 12 fuzzy verification methods. They found three
statistics, which perform very good on detecting a broad range of forecast errors. Those
three methods are in detail discussed in the following paragraphs while additionally seven
methods are introduced more briefly with respect to their references.

Fractional Skill Score Roberts and Lean (2008) developed a verification method which
shows how the skill of a simulation varies with spatial scale. The basic idea behind the
Fractional Skill Score (FSS) is that a simulation is useful if the spatial frequency of events
is similar in the forecast and in the observation. The precondition for using this method
is that the observation and the simulation are given on the same grid. In the first step,
the originally observed and simulated fields are transferred to binary fields (Io and Ix)
by choosing a set of thresholds q (e.g., q=0.5 mm/d, 1 mm/d, 2 mm/d, and 4 mm/d)
and setting all grid-cells exceeding the threshold to 1 and all others to 0,

Io =
{

1 o ≥ q
0 o < q

(3.10)

and

Ix =
{

1 x ≥ q
0 x < q.

(3.11)

Secondly, for all grid points in the binary fields the spatial density of ones compared
to zeros is calculated for a given squared neighborhood of length n:

O(n)(i, j) = 1
n2

n∑
k=1

n∑
l=1

IO

[
i+ k − 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]
, (3.12)

X(n)(i, j) = 1
n2

n∑
k=1

n∑
l=1

IX

[
i+ k − 1− (n− 1)

2
, j + l − 1− (n− 1)

2

]
. (3.13)
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3 Spatial Characteristics

In Equation 3.12 On(i, j) is the field of observed fractions of values exceeding the
threshold for a square of length n and Xn(i, j) accordingly is the field for the simulation
assessing the spatial densities in the binary fields. Thereby, i goes from 1 to Nx and j
goes from 1 to Ny, where Nx corresponds to the numbers of columns in the domain and
Ny to the number of rows. The fractional fields On(i, j) and Xn(i, j) are generated for
different spatial scales by changing the value of n from 1 to maximum 2N − 1, whereby
N is max(Nx, Ny). If neighborhood points lie outside the domain, their value is assumed
as zero.
After the fractional fields On(i, j) and Xn(i, j) are known, the third step is to calculate

fraction skill scores. Therefore, the mean squared error (MSE) is calculated:

MSE(n) = 1
NxNy

Nx∑
i=1

Ny∑
j=1

[
O(n)(i, j)−X(n)(i, j)

]2
. (3.14)

MSE(n)ref = 1
NxNy

Nx∑
i=1

Ny∑
j=1

O2
(n)i,j +

Nx∑
i=1

∑
j=1

X2
(n)i,j

 (3.15)

From Equation 3.14 the FSS can be calculated as a MSE skill score:

FSS(n) =
MSE(n) −MSE(n)ref

MSE(n)perfect −MSE(n)ref
= 1−

MSE(n)
MSE(n)ref

, (3.16)

MSE(n)perfect is the MSE of a perfect simulation and therefore 0 for a given neighbor-
hood length n. MSE(n)ref is the largest obtainable MSE from the given simulation and
reference dataset. Therefore, a FSS of 1 indicates the best possible simulation.
An example is visible in Figure 3.4, where the FSS of the LocMIP Wegener Center for

Climate and Global Change (WegCenter) COSMO model in CLimate Model (CCLM) sim-
ulations with 3 km grid spacing (left plot) is compared to the corresponding 10 km grid
spacing mother simulation (middle plot). The right plot shows the difference between
the 3 km minus the 10 km simulation. It gets visible that the simulation with the 3 km
grid spacing has a higher FSS especially for medium and strong rainfall events and for
large neighborhood sizes.

Upscaling The upscaling verification method was first published by Zepeda-Arce et al.
(2000) and is conceptionally build on the assumption that a useful simulation resembles
the observation when averaged to a coarser scale. In the upscaling method the threat
score (TS) is calculated as a measure of scale. The TS compares the area of precipitation
above a threshold between a simulation and an observation (e.g., see Wilks (2005)) and
is defined as:
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3.2 Spatial Rainfall verification

Figure 3.4: The left and the middle plot are the FSSs of the LocMIP WegCenter CCLM
simulations with 3 km and 10 km grid spacing. The right plot shows the difference
between the FSSs of the 3 km simulation minus the FSSs of the 10 km simulation. In
rows different thresholds and in columns different neighborhood sizes are displayed.

TS = Ac
Ao +Ax −Ac

, (3.17)

thereby, Ac is the area where the simulation correctly produced precipitation above the
threshold, Ao is the total observed area, and Ax the total simulated area. The best
possible TS is one whereas the worst is zero. The TS is scale depended and gets typically
higher with increasing scale. Furthermore, the TS can be expressed as a function of
spatial scale and precipitation intensity by regrinding the simulated and observed fields
on grids with different spacings and by using different precipitation thresholds.

Intensity-Scale Casati et al. (2004) uses a method which gives credits to a simulation
which has more accurate structures than a random arrangement of the observation.
As a first step, simulated and observed data has to be preprocessed. Therefore, all
non-zero precipitation values are dithered by adding uniformly distributed noise with a
magnitude of ±1/64 mm/h. Thereafter, the precipitation values are normalized with a
(base 2) logarithmic transformation and the pixels with zero precipitation are set to -6.
The normalization is done to produce more normally distributed data and to remove
skewness. This data is then recalibrated with the following transformation function:

X ′ = F−1
O (FX(X)), (3.18)

where each value of the simulated field X is substituted with the value of the ob-
served field O having the same empirical cumulative probability FO and FX . With this
procedure biases in the marginal distribution of the simulated precipitation are erased.
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After the preprocessing the intensity-scale verification can begin. Therefore, the simu-
lated and observed fields are converted into a binary image using thresholds q =0 mm/h,
1/32 mm/h, 1/16 mm/h, . . . , 128 mm/h:

IO =
{

1 O > q
0 O ≤ q (3.19)

and

IX′ =
{

1 X ′ ≥ q
0 X ′ < q.

(3.20)

Then the binary error Z is calculated:

Z = IX′ − IO. (3.21)

With a two-dimensional discrete Haar wavelet decomposition the binary error can be
expressed as the sum of components on different spatial scales:

Z =
L∑
l=1

Zl, (3.22)

where l is referring to the spatial scale of the error and not to the scales of the precip-
itations features or their displacements. A detailed description of the two dimensional
Haar wavelet decomposition can for example be found in Mallat (1999) or Nievergelt
(1999).
With the mean squared Z values the MSE of the binary image is calculated:

MSE = Z̄2. (3.23)

Since the components of a discrete wavelet transformation are orthogonal ¯ZlZl′ = 0l 6=
l′ the MSE can be written as:

MSE =
L∑
l=1

L∑
l′=1

¯ZlZl′ =
L∑
l=1

Z̄2
l (3.24)

and (3.25)

MSE =
L∑
l=1

MSEl, (3.26)

where MSEl = Z̄2
l . Thereby, MSEl depends on the spatial scale l and the threshold

u which enables the evaluation of precipitation on different scales and intensities. With
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the now obtained data the MSE skill score can be calculated for every scale and threshold:

SS = MSE −MSErandom
MSEbest −MSErandom

= 1− MSE

2ε(1− ε)
, (3.27)

where MSEbest = 0 is a perfect simulation, MSErandom = 2ε(1 − ε) is the MSE
of random created binary field and ε is the fraction of rain-pixels in the observation.
By assuming that the random observation and simulation binary fields are Bernoulli
distributed variables IX ∼ Be(ε) and IO ∼ Be(ε) which have (unbiased) means E(IX′) =
E(IO) = ε and variances σ2

IO
= σI2

X′
= ε(1 − ε) it can be shown that the binary error

(Equation 3.21) has a mean E(Z) = 0 and a variance σ2
Z = σ2

IO
+ σI2

X′
= 2ε(1− ε). The

expected value of MSE is then MSErandom = E(Z2) = E(Z −E(Z))2 = σ2
Z = 2ε(1− ε).

With the assumption that the MSE is uniformly distributed over all scales SS can be
written as the sum of its means over all scales by using Equation 3.24 and Equation 3.27:

SSl = 1− MSEl
2ε(1− ε)/L

. (3.28)

Minimum coverage The minimum coverage verification assumes that a skill-full simu-
lation produces an event over a minimum coverage of a region of interest. This method
was presented by Damrath (2004) on the International Verification Methods Workshop
in Montreal (15 – 17 September 2004). The presentation is available under http://www.
cawcr.gov.au/projects/verification/Workshop2004/presentations/5.3_Damrath.
pdf (15 February, 2011).

Fuzzy logic, joint probability The idea behind the fuzzy logic method (Damrath 2004)
is to use neighborhood events to generate probabilities. Thereby, the forecast as the
observation have likelihoods to become an event or a non event. If greater parts of a
forecast are correct than incorrect, the forecast is useful. For the verification the prob-
ability of detection (POD), the false alarm ratio (FAR), and the equitable thread score
(ETS) are used (e.g., Wilks (2005)). Ebert (2002) presented a variation of this method
at the NCAR/FAA Verification Workshop in Boulder, Colorado from the 30 July – 1 Au-
gust 2002. The presentation is available under http://www.rap.ucar.edu/research/
verification/verification_wkshp_2002/pdfs/FuzzyVerificatio_ebert.pdf (15 Febru-
ary, 2011).

Multi-event contingency table Atger (2001) suggested the method of multi-event con-
tingency table which is based on the assumption that an useful simulation produces at
least one event which is close to an observed event. Therefore, the traditional 2 × 2
contingency table gets expanded. In contingency tables a discrete amount of possible
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combinations of simulated and observed event pairs are compared. In the most easy case
of a 2 × 2 contingency table the probabilities of predicting an event (e.g., an Hurricane)
when there is one observed, to predict an event when there is non observed, to predict
non event when there is one observed, and to predict none event when there occurs none
are shown in a table (a more detailed description can be found in e.g., Wilks (2005) or
Stevenson (2006)).
Atger (2001) expands the 2 × 2 contingency table not only to several intensity thresh-

olds, but also introduces the possibility of adding additional thresholds like temporal or
spatial closeness of an event.

Pragmatic approach The method of producing a probabilistic pseudo-ensemble with
a deterministic forecast within a neighborhood of the reference for verifying the forecast
quality was published by Theis et al. (2005). They suggested that instead of evaluating
the simulation in a neighborhood with the reference in the same neighborhood, it should
be compared with the central grid box of the reference. For the evaluation, they used
the Brier score and Brier skill score with the decision model, that a skilful simulation
has a high probability of detecting events and non events. For a definition of the Brier
score see for example Wilks (2005) or Stevenson (2006).

Practical perfect hindcast Brooks et al. (1998) had the idea that a skillful forecast is
resembling a practically perfect hindcast which is a forecast achieved by having knowl-
edge of the observation beforehand. This fuzzy verification method was particularly
developed for rare events. For the evaluation the TS ore critical success index (CSI) is
used (see e.g., Wilks (2005) or Stevenson (2006))). To generate a practically perfect
forecast a Gaussian kernel filter is applied to the observation to obtain a probability
field for the event.

Conditional square root for ranked probability score (RPS) In the method of Ger-
mann and Zawadzki (2004) precipitation frequencies are used in logarithmic increasing
intervals to compute the ranked probability score (RPS):

RPS = 1
M − 1

M∑
m=1

(CDFx,m − om)2, (3.29)

where M is the number of event categories and CDFx,m is the cumulative probability
of the simulation to exceed a particular threshold for event categorym. om gets one if the
observed value exceeds the threshold for category m and zero if not. Taking the square
root of RPS reveals the standard error of the simulation probability in probability space.
To compare results over different kind of events,

√
RPS is normalized by the observed

rain fraction which leads the conditional square root of the RPS.
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3.2 Spatial Rainfall verification

Areal-related RMSE The basic idea behind the verification method of Rezacova et al.
(2007) is that a useful simulation has a similar intensity distribution as the observation.
Therefore, precipitation values are compared within a certain neighborhood to obtain a
scale dependency of the RMSE. The observed and simulated values within the neighbor-
hood have to be ordered from the smallest to the largest and then the RMSE is computed
from the ordered series.

Scale Separation Methods

The goal of the here presented methods is, to examine performance as a function of
spatial scale. For this reason, Fourier or wavelet transformations are a common tool to
decompose atmospheric fields and look at different scales separately.

The Discrete Cosine Transformation (DCT) Using Furrier transformations enables
to decompose a periodic function into its wavenumbers of partial frequencies (Peixoto
and Oort 1992). Denis et al. (2002) where the first who used the 2D discrete cosine
transformation (DCT) for limited areas. Therefore, the precipitation field has to be
mirrored at the position i = j = −1/2 to make it symmetric. Thereafter, the Fourier
transformation can be applied, centered on i = j = −1/2. This is a special case of a
Fourier transformation which is called DCT because the sine components of the Fourier
series are zero for symmetric functions. Concerning a 2D field fij of Ni by Nj grid
points, the direct and inverse DCT are defined as:

F (m,n) = β(m)β(n)
i=Ni−1∑
i=0

j=Nj−1∑
j=0

f(i, j) cos
[
πm

(i+ 1/2)
Ni

]
cos

[
πn

(j + 1/2)
Nj

]
(3.30)

f(i, j) =
m=Ni−1∑
m=0

n=Nj−1∑
n=0

β(m)β(n)F (m,n) cos
[
πm

(i+ 1/2)
Ni

]
cos

[
πn

(j + 1/2)
Nj

]
(3.31)

β(m) =



√
1
Ni
, for m = 0 (3.32a)√

2
Ni
, for m = 1, 2, . . . , Ni − 1 (3.32b)

β(n) =



√
1
Nj

, for n = 0 (3.33a)√
2
Nj

, for n = 1, 2, . . . , Nj − 1 (3.33b)
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Thereby, fij is the value of the field at grid point number (i, j), and Fmn is the real
spectral coefficient corresponding to the 2D-wavenumber at (m,n). A more detailed
derivation of the DCT can be found in the appendix of (Denis et al. 2002) and an
application of this method on high resolved RCM simulations can be seen in Kapper
(2009).
To generate variance spectra of a 2D field, the variances have to be connected to a

specific wavelength. To do so, the method of binning was suggested by Denis et al.
(2002). It is based on dividing the wavenumber field into multiple quarters of ellipses.
The space between two ellipses can be connected to a specific wavenumber for which the
variances are summed up. For a detailed description see Denis et al. (2002).
As an example for the application of the DCT Figure 3.5 shows the power spectra

of 700 hPa wind speed in January 2008 over south-east Styria for Fifth-Generation
Mesoscale Model (MM5), CCLM, and Weather Research and Forecasting model (WRF)
simulations on 10 km, 3 km, and 1 km grid spacing. Evident, is the increasing variance
of small grid spacing simulations in smaller wavelengths. Thereby, WRF shows always
the lowest variances, whereas CCLM has always the highest. The effective resolution of
the simulations can be estimated in Figure 3.5 by looking at the points where the lines
of the coarser gridded simulations start to differ from those of the finer gridded one.
For example, the 3 km simulations start to differ at approximately 30 km wavelength
from the 1 km simulations, which means that the effective resolution of the wind field in
700 hPa is ∼10 times the grid spacing.
A higher variance in smaller wavelengths however, does not directly indicate that

there is added value in RCM simulations with smaller grid spacings. It is a necessary
but no sufficient feature because it has to be proven that the higher variance also carries
additional information and not only random noise.

Intensity-scale The intensity scale method, published by Casati et al. (2004) was al-
ready introduced in Section 3.2.1. By using Haar wavelets, reference and simulated
precipitation fields are separated in different scales which than are evaluated by a MSE
skill score. Since the intensity-scale method uses spectral decomposition and skill scores
on different scales and intensities it can be assigned to fuzzy and scale separation meth-
ods.

Variogram The basic idea of evaluating fields with the variogram method is related to
publications of Gebremichael and Krajewski (2004), Germann and Joss (2001), Harris
et al. (2001), and Zepeda-Arce et al. (2000). The method itself was proposed by Marzban
and Sandgathe (2009) and compares two fields in terms of their covariance structures.
Thereby, the fields can be compared in two different ways, where one accounts for dis-
placements and intensity errors, while the other is only sensitive to intensity errors. The
analogy, which is insensitive to intensity and only accounts for displacements can be also
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Figure 3.5: Variance spectra of January 2008, 700 hPa wind speed in south-east Styria
for three different RCM (different colours) outputs with 10 km, 3 km, and 1 km grid
spacing (different line-styles) (Kapper et al. 2010).

calculated and is called correlogram.
As the name suggests, the central quantity in the variogram method is the variogram

which is defined as the RMSE between two points of the field as a function of the dis-
tance between the points (Noel 1993). Thereby, all points within the same distance are
averaged. The variogram detects variations within the field as a function of scale and so
summarizes the covariance structure in a spatial field.
As mentioned above three different methods of the variogram where introduced by

Marzban and Sandgathe (2009). In the first, all grid points are considered to calculate the
variogram. The second should be used for fields where continuous and discrete quantities
occur (e.g., precipitation). In this case only the non-zero grid-points are used to generate
the variogram. It can be shown, that the first method accounts for displacements and
intensity errors while the second does not account for global displacements (e.g., shifts)
any more. Finally, the differences between the reference variogram and the simulated

27



3 Spatial Characteristics

variogram are calculated which is then called ‘delta variogram’. A perfect forecast is
denoted with zero differences at all scales.
As already mentioned, the third method is called correlogram, which is insensitive

to intensity errors. It is build of the generalized Pearson correlation coefficient to a
2-dimensional case. Therefore, the differences between two correlograms, called ‘delta
correlogram’ show only the displacement errors.
An application and a comparison of the variogram method with two other spatial

verification methods can be found in Marzban et al. (2009).

3.2.2 Displacement Approaches
Feature Based Approaches

The basic idea behind object respectively feature based spatial verification methods is to
identify relevant features in the simulated and observed field and compare characteristic
attributes of both fields with each other. Some example methods will be discussed in
the following paragraphs.

SAL Verification Method Wernli et al. (2008) introduced an object-based quality mea-
sure which considers three components accounting for the structure, amplitude, and lo-
cation (SAL) of a precipitation field. The SAL measure aims to address the following
issues:

• quantify the quality of a simulated precipitation field over a fixed area (e.g., a river
catchment),

• considering the structure of the precipitation field (e.g., scattered convective cells,
frontal rain, . . . ), and

• a one to one matching between the reference and the observed field is not required.

As a first step individual precipitation objects have to be identified for calculating the
location and structure components. Therefore, a precipitation threshold is chosen:

R∗ = fRmax. (3.34)

In Equation 3.34 R is the precipitation field, R∗ is the precipitation threshold, and
Rmax is the maximum rainfall within the considered domain. For the constant f , Wernli
et al. (2008) suggested a value of f = 1/15 because this factor leads to contours which
are reasonable with contours identified by eye. Grid-cells cluster to an object if one of
the neighborhood cells is above the threshold f . A possible algorithm to identify objects
can be found in Wernli and Sprenger (2007).
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The amplitude component A is calculated by using the normalized differences of the
average precipitation values:

A = D(Rmod)−D(Robs)
0.5 [D(Rmod) +D(Robs]

. (3.35)

D(R) denotes the domain average precipitation in the observed (obs) or simulated
(mod) field.

D(R) = 1
N

∑
(i,j)∈D

Rij , (3.36)

where Rij are the grid point values of the precipitation amount. A is a simple quantity,
showing information of the domain wide amount of precipitation by ignoring the field‘s
sub regional structure. It has values between [-2 . . . +2] whereby a perfect simulations
in terms of amplitude leads to A = 0. An A value of ±1 corresponds with an over- or
underestimation of precipitation by the factor of 3.
The location component L consist of two additive parts: L = L1 + L2:

L1 = | x(Rmod − x(Robs) |
d

, (3.37)

where d is the maximum distance between two boundary points of domain D and
x(R) corresponds to the center of mass of the precipitation field R. L1 has values
between 0 and 1 and gives a first order estimation of the precipitation distribution in
the considered region whereby L1 = 0 if the centers of mass are at the same position.
However, many different fields can have equally centers of mass which makes the second
quantity L2 necessary. It accounts for the distances between the center of mass of the
total precipitation field and single precipitation objects. Therefore the total precipitation
amount is calculated for every object:

Rn =
∑

(i,j)∈Rn

Rij . (3.38)

Then the averaged and waited distances between the centers of mass of the individual
objects are calculated:

r =
∑M
n=1Rn | x− xn |∑M

n=1Rn
, (3.39)
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whereby, M is the total number of precipitation objects. r can have a maximum value
of d/2 (half of the maximum distance between two grid points in the domain). It is zero
if there is only one object in the domain. It should be noted that

∑M
n=1Rn is not equal

to
∑

(i,j)∈D Rij (in Equation 3.36) because the former only considers grid points above
the threshold R∗. L2 is now calculated as follows:

L2 = 2
[ | r(Rmod)− r(Robs) |

d

]
. (3.40)

L2 is only greater than zero if either the observation or the simulation has more than
one object in the domain. L2 can range from zero to one which means that L can have
values between zero and two. Zero indicates that the total center of mass as the averaged
distances of the objects and the center of mass are the same in the observation and in
the simulation. However, this does not mean a perfect match between the two field,
because the L value is for example invariant to rotations around the center of mass.
The last missing component in the SAL method is the structure (S) component in which

the volumes of the precipitation objects are compared and which contains information
about the mass and the shape of the objects. Therefore, first a scaled volume Vn is
calculated for every object:

Vn =
∑

(i,j)∈Rn

Rij/R
max
n = Rn/R

max
n . (3.41)

In Equation 3.41 Rmaxn stands for the maximum precipitation within the object n and
has to be Rmaxn ≤ Rmax. Then V , the weighted mean of all objects scaled precipitation
volume is computed for the reference and the simulated field:

V (R) =
∑M
n=1RnVn∑M
n=1Rn

. (3.42)

Similar to the A component, the S component is the normalized difference in V :

S = V (Rmod)− V (Robs)
0.5 [V (Rmod) + V (Robs)]

. (3.43)

S becomes negative if too small or too peaked objects are simulated or positive if
widespread precipitation is modeled but small convective cells are observed. Two exam-
ple SAL diagram from Wernli et al. (2008) are shown in Figure 3.6. Panel a) displays
daily precipitation forecasts of the COSMO-aLMo and panel b) those from the ECMWF
model during the summer seasons 2001–04 in the German part of the Elbe catchment.

30



3.2 Spatial Rainfall verification

Figure 3.6: SAL diagrams for daily summertime precipitation forecasts from the
COSMO-aLMo (panel a) and the ECMWF model (panel b) over the German part of
the Elbe catchment during 2001–04. The dots correspond to the three values in the
SAL statistic for a particular day. The L-component is shown as the color of the circles,
while the values of the A component are displayed on the y-axis and those of the S
components on the x-axis. The median A and S values are shown as dotted lines and
the grey box displays the 25th and 75th percentile. The contingency tables in the right
bottom corner of each plot display the number of falls alarms (cell MJ-ON), missed
events (cell MN-OJ), dry days (MN-ON), and wet days (MJ-OJ) in the simulation (M)
and observation (O) (Wernli et al. 2008).

Cluster Analysis The statistical method of cluster analysis was used by Marzban and
Sandgathe (2006) to identify clusters in precipitation fields whose members are more
similar to one another as to members of the other clusters. The specific kind of cluster
analysis used is called agglomerative hierarchical cluster analysis (CA). Details of cluster
analysis in general and for the CA method in particular can for example be found in
Everitt et al. (2001). Generally, a cluster is an event or an object in a gridded field. The
method is used to identify objects in the observation and simulation field. Afterwards,
the two fields are compared with respect to the clusters fund in each of them.
The result from the cluster analysis is not a single error value, but an array of error

values for different numbers of clusters in the two fields. Marzban and Sandgathe (2006)
suggest that the outcome should be viewed as error surface in a three dimensional space,
whereby the x and y dimension are the number of clusters in the observation and forecast
field (NCo and NCf ) and the height of these surface shows the error of the forecast at
the correspondent scale.

31



3 Spatial Characteristics

Figure 3.7: Cluster analysis performed on Coupled Ocean Atmospheric Mesoscale Pre-
diction System data compared with reference data from the River Forecast Center. On
the x-axis the number of clusters (NC) in the forecast field and on the y-axis those on
the observed field are displayed. The colors of the contour indicate the calculated error
from the CA analyses (Marzban and Sandgathe 2006).

Figure 3.7 shows the results of a cluster analysis performed by Marzban and Sandgathe
(2006). They compared precipitation fields from the Coupled Ocean Atmospheric Mesoscale
Prediction System with reference data from the River Forecast Center. In general the
forecast errors are large (red through yellow) if the number of clusters is small, either in
the reference or in the simulation. This means that the error between both fields is gen-
erally large if there are only a few large clusters in one field whereby there are multiple
small clusters in the other field. The ridge along the diagonal shows also increased error
values which occur when equal numbers of clusters are ‘forced’ to occur in both fields
when the ‘true’ numbers are unequal. The symmetric structure along the ridge is a sign
for the quality of the simulation because if it would be absent the forecast would have
the wrong scale. Here, the error surface has smaller values when the number of clusters
in the forecast field is greater than in the observed field. This is because the forecast
has generally to many clusters compared to the observed field.
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Method for Object-based Diagnostic Evaluation (MODE) Davis et al. (2006) sug-
gested an object based rainfall verification method, where precipitation objects are de-
fined in the forecast and the observation with a smoothing and thresholding process.
The basic verification quantity used is the rainfall distribution rather than the rainfall
amount. This has multiple reasons but was especially chosen because observations (e.g.,
radar images) are more precise in the location of at least mesoscale precipitation areas
than at the amount of rainfall within them.
After objects are identified in both fields, objects from the observation have to be

linked with objects from the simulation to compute error statistics. Therefore, matching
conditions have to be described that are not too restrictive on the location of the objects
but also do not compare objects that are not related by general physical process.
The following properties are calculated for each object.

• Intensity: to account for the rainfall intensity the 25th and 90th percentiles are
evaluated.

• Area: is a simple measure of object size

• Centroid: comparing the centers of mass give an estimation of rainfall displace-
ment.

• Axis angle: a line through an object to identify the orientation of an object.

• Aspect ratio: the ratio between the major and the minor axes of an object.

• Curvature: a circular arc is fitted to the object to show the objects general deviation
from straightness. The corresponding radius of the arc is used to describe the
objects curvature.

A practical application of the Method for Object-based Diagnostic Evaluation (MODE)
on numerical forecasts can be found in Davis et al. (2009).

Contiguous Rain Area (CRA) The Contiguous Rain Area (CRA) method was published
by Ebert and McBride (2000) and evaluates the location, the size, the intensity, and the
fine scale patterns of features in precipitation systems. Similar than in the MODE method
objects from the observation have to be linked to objects in the simulation to evaluate
the performance of the simulation. The displacement is thereby calculated by translating
the simulated rainfall field until the squared difference is minimized.

Procrustes Micheas et al. (2007) suggested the usage the Procrustes shape analysis
methods for verifying precipitation forecast. With this method the forecast error can be
decomposed into any number of components like displacement, shape, size, orientation,
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and intensity. Furthermore, every error component can get a specific weight so that the
quality of the forecast can be calculated.
A further application of these method can be found in Lack et al. (2010).

Field Deformation

Field deformation approaches have in general, that they evaluate how much a field
has to be transformed to match the observation. This is in particular interesting for
precipitation because models often produce phase errors and displace weather systems
in space or time.

Displacement Amplitude Score The displacement and amplitude score was published
by Keil and Craig (2007) and in an revised version by Keil and Craig (2009). An optical
flow technique is used to avoid problems in identifying features and problems occurring
through linking specific objects in the simulation to objects in the observation.
The optical flow method is based on a pyramid algorithm where the fields first are

re-gridded on a coarser grid where 2F pixels are averaged on one pixel element. F is
thereby called the sub sampling factor. On the coarse grid for every grid cell of the
simulation the distance of the minimum squared error (compared to the observation) is
searched in a neighborhood of ± 2 grid cells. The obtained vector field of displacements
is then applied to the original simulated image which generates an intermediate image
accounting for large scale displacements. Afterwards, the intermediate image is coarse
grained by averaging 2F−1 pixels which is the next pyramid level and the displacement
vector field is calculated and applied as mentioned above. This algorithm is repeated
until the full resolution is obtained. After the total displacement vector field, which
morphs the simulation to the observation, is defined, the displacement vector field, which
morphs the observation to the simulation, is calculated with the same algorithm.
The resulting displacement vector fields are the sum of the vector fields at each pyramid

level and are used to build the final morphed images. More details on the algorithm can
be found in Keil and Craig (2007) and Zinner et al. (2008).
The displacement and amplitude score is then calculated by considering two quan-

tities. The first accounts for the displacement error which is the magnitude of the
displacement vector giving the distance of a simulation to an observed object (if any).
The second accounts for the amplitude error which is the difference between the observed
and the morphed simulation field. Accordingly, the same quantities are calculated for
the morphed observation onto the simulation.
If two objects in the simulation and the observations are separated by more than

the maximum search distance, they are treated as two independent objects and the
amplitude error accounts for one missed event and one false alarm.
Finally, the displacement and amplitude errors are combined to yield the displacement

amplitude score. Thereby, the two components are weighted so that the maximum
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3.2 Spatial Rainfall verification

possible displacement error between two objects equals the amplitude error for the same
two objects that would occur if the distance between the two objects would have been
larger as the maximum search distance.
To visualize the above described formalism, Figure 3.8 shows an idealized example

of an observation (panel a) and an identical forecast field (panel b) which is 50 pixels
shifted to the right. The resulting vector field (forecast is transformed to observation)
is shown in panel b. Panel c displays the morphed forecast field and panel d and e show
the displacement and amplitude error fields.

Forecast Quality Index (FQI) Venugopal et al. (2005) suggested a metric called forecast
quality index (FQI), which combines the measure of errors in amplitude and displacement
of spatial rain intensity fields. The distant based measurement is a non-linear metric is
then called the Hausdorff Distance which was modified by Venugopal et al. (2005) to
improve the treatment of outliers and is called Partial Hausdorff Distance (PHD). The
amplitude-based metric was new developed by them and is called the universal image
quality index.

Image Warping Image warping can give an estimation of the spatial error by accounting
for the warping deformation of a simulation. There are multiple publications witch
described methods using image warp techniques to verify the accuracy of precipitation
forecasts (e.g., Dickinson and Brown (1996), Alexander et al. (1999), Åberg et al. (2005),
or Gilleland et al. (2010)).
The basic method of the image warping technique can be separated in three parts.

First, a warping function is applied to the simulated field that controls its deformation.
Second, an error function is needed that accounts for the intensity deviation between the
morphed simulation and the reference field. Third, to penalize unrealistic deformations
of the simulated field a smoothness prior has to be used.
Figure 3.9 shows the ideal test case pert007 from the ICP (http://www.ral.ucar.

edu/projects/icp/) on which image warping was applied by Gilleland et al. (2010).
On the left, the forecast field is shown, which is displaced by 48 km too far to the east
and 80 km too far to the south. Additionally, the rainfall intensity is reduced by 1.27 mm
from the original observed field (shown in the middle). Both fields are shown only above
a threshold of 75 % to remove frequency biases and scattering. In the figure of virtually
forecasted rainfall (left pannel), also vectors indicating the warp movement are shown.
On the right the final deformed forecast field is displayed.

3.2.3 Overview of the Ability of Spatial Rainfall Verification Methods

The spatial verification methods introduced in the subsections above provide great op-
portunities for better interpretable and more accurate precipitation evaluations. Thereby,
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3 Spatial Characteristics

Attribute Traditional Feature
Based

Neighbor-
hood

Scale Field De-
formation

Performance at
different scales

Indirect Indirect Yes Yes No

Location error No Yes Indirect Indirect Yes
Intensity errors Yes Yes Yes Yes Yes
Structure errors No Yes No No Yes
Hits, etc. Yes Yes Yes Indirect Yes
Table 3.1: Attributes measured by the traditional and new spatial precipitation verifi-
cation methods (Brown et al. 2009).

each method is useful in certain situations and to answer certain questions. However,
all of them have also limitations.
The major limitation of feature based approaches (scale separation and feature based)

is that they do not clearly isolate different kinds of errors (e.g., amplitude, displacement).
In case of the displacement methods (feature based and field deformation) the matching
criteria are somehow arbitrary and many parameters have to be fitted.
Advantages of feature based approaches are that they account for uncertainties in the

simulation and the observation and are able to deal with unpredictable scales. They
give scale dependent information and are mostly simple and easy to interpret. The
displacement approaches are able to measure the displacement and give credits to close
precipitation fields. Furthermore, feature based approaches are able to measure the
structure of precipitation while field deformation methods are able to account for aspect
ratio and orientation of the rainfall objects.
In table Table 3.1 a quick overview is given on the attributes that are measured by

different methods.
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3.2 Spatial Rainfall verification

Figure 3.8: An idealized example of an observed object (OBS) (panel a) and a forecasted
(FCT) object (panel b) which is 50 grid boxes shifted to the right. Here the simulation
is shifted towards the observation. Panel b shows the vectors of the displacement ar-
ray. Panel c displays the morphed forecast while panel d shows the observation space
displacement error field and panel e the amplitude error field (Keil and Craig 2009).
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3 Spatial Characteristics

Figure 3.9: Example of an image warp for an ideal test case. Left is the original fore-
cast field, in the middle is the verification field and right is the deformed forecast field
(Gilleland et al. 2010).
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4 Temporal Characteristics

In this chapter, methods to analyze and evaluate the temporal characteristics of simula-
tions are introduced and discussed. First, diurnal cycles are considered because a correct
representation of a diurnal cycle needs an interaction of many different physical processes
and can therefore give valuable insights in model physics. The temporal correlation is
used to account for linear relations between simulations and observations. The cross
correlation analyze is introduced to find temporal delays between the simulation and the
reference datasets. Furthermore, to analyze differences in the information contained in
the temporal frequencies spectra, a frequency decomposition method is discussed.

4.1 Diurnal Cycle

The diurnal cycle is one of the most basic climate patterns. The most common is
probably the diurnal cycle of temperature which occurs because of the varying energy
input from the sun during different times of the day. For a time series ~Xt with k
time-slices per day the calculation of the diurnal cycle is a simple average over every
t = [i, i+ k, i+ 2k, . . . , i+N ] element of the time vector where i = 1, 2, · · · , k and N is
the number of elements in ~Xt divided by k.
The mean diurnal cycle can give valuable insights in the representation of physical

processes in a simulation. Therefore, it is also interesting to average diurnal cycles for
e.g., seasons, days with convective precipitation, dry days.
An example diurnal cycle of precipitation in June, July, and August (JJA) 2007 can

be seen in Figure 4.1 for the Local Climate Model Intercomparison Project (LocMIP)
simulations. Clearly visible is the afternoon precipitation maximum at 5 pm which
occurs because of the convective precipitation activities during this time. Especially
the Weather Research and Forecasting model (WRF) and the W_CLM3 and B_CLM3
simulations overestimate this maximum notably.

4.2 Temporal Correlation

For regional climate model (RCM) hindcast simulations the temporal correlation gives
information about linear relationship of two variables. The mathematical formulation
to calculate the temporal correlation coefficient is the same as described for the spatial
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4 Temporal Characteristics

Figure 4.1: Diurnal cycle of JJA precipitation over the Hohe Tauern national park.
Shown is the reference dataset INCA, and the eight simulations from the LocMIP
experiment.

correlation in Section 3.1. The values of the correlation coefficients are allays between -1
and +1 and therefore well suited to compare the performance of different simulations.
Similar to the spatial correlation evaluations, also the temporal correlation can be

displayed with in a Taylor diagram. Example Taylor diagrams for precipitation in three
regions in JJA 2007 are displayed in Figure 4.2. In this diagram the statistical values
for hourly spatial averaged fields are shown. Clearly visible is, that the correlations in
the entire eastern Alpine region (panel a) are generally higher than in the small sub
regions of panel b and c. This is because displacement errors of precipitation objects
(e.g., convective cells) can be increasingly larger and biases are cancelling out more easily
when the spatial averaged domain size enlarges.
A further very informative index which is visible in Taylor diagrams is the temporal

standard deviation ratio of the simulated time series divided by those of the reference
time series. As can be seen in Figure 4.2 the correlation coefficients are very similar
between 3 km simulations and their correspondent 10 km mother simulations. However,
the temporal variability in the 3 km COSMO model in CLimate Model (CCLM) simula-
tions, is much higher than in the 10 km simulations which indicates more intensive or
more frequent rainfall in the higher resolved simulations.
Instead of averaging the spatial data on an hourly basis, it is also possible to compute
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4.3 Cross Correlation

Figure 4.2: Taylor diagram for spatially mean hourly temporal values for precipitation
in summer 2007 in the eastern Alps. Different RCMs have different colors and symbols.
The 10 km grid spacing simulations have intensive colors, while the 3 km simulations
have bright colors.

the temporal correlation coefficients for every grid cell of the considered domain. This
method gives information about the temporal performance of a simulation dependent on
the location. In Figure 4.3 this is shown for global radiation in December, January, and
February (DJF) 2007/08 for the LocMIP simulations above an eastern Alpine domain.

4.3 Cross Correlation
A very common mistake in RCM hindcast simulations are earliness or delays in the time
series (e.g., the passage of a front). A useful method to evaluate such errors is the
usage of cross correlations. Therefore, the correlation coefficient r is calculated for every
possible delay d:
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4 Temporal Characteristics

Figure 4.3: Taylor plot which shows the grid point wise temporal values of the hourly
fields of global radiation in winter 2007/08 from the LocMIP simulations in the eastern
Alpine region as contours. Different RCMs have different colors. The brightness of the
color represents the density of data points in this area. 10 km grid spacing simulations
have solid lines around the outermost contour while 3 km simulations have dashed lines.

rd =
∑N
i=0 (oi − ō) (xi−d − x̄)√∑N

i=0 (oi − ō)2
√∑N

i=1 (xi−d − x̄)2
, (4.1)

where the variables are the same as in Equation 3.1. rd is computed for all delays
d = 0, 1, 2, . . . , N − 1 and the result is a cross correlation series which is twice as long
as the original series. Most commonly indexes in the series which are lower than zero or
greater than N (i− d < 0 or i− d ≥ N) are treated as zero or ignored.
In the application on delays in time series between the reference and simulated at-

mospheric parameters it is not necessary to compute the entire possible range between
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4.4 Evaluating Timing Errors With SAL

d = 0, 1, 2, . . . , N − 1 because only the same physical phenomena should be linked to
each other. Therefore, it is sufficient to calculate cross correlations only between a time
slice of a few hours.
A limitation of this method is, that temporally high resolved simulation and observa-

tion data (time slices should be at least equal or smaller than one hour) have to be used
to get meaningful information about delays.

4.4 Evaluating Timing Errors With SAL

A timing error verification method for precipitation was proposed by Zimmer and Wernli
(2009). They suggested, to use the structure, amplitude, and location (SAL) method (see
Section 3.2.2) which does not need exact matches between the simulation and observed
fields. The minimum location component L is searched by computing it for the t=[-3,-
2,. . . ,2,3] hourly time slices in the simulation. The time slice t where L gets minimum
is then considered as the timing error of the model.

4.5 Frequency Decomposition

Frequency decompositions can similarly to its application in spatial verification (see
Section 3.2.1) also be used in temporal verification. Spatial scale separation methods
like the discrete cosine transformation (DCT) show that there is more variability in
small spatial scales in simulations with higher grid spacings than in simulations with
coarse grid spacing (e.g., see Figure 3.5). Similar to this approach, here it should be
investigated if simulations with fine grid spacing have more variability in short time
ranges than simulations with coarse grids since fine gridded simulations are able to
resolve phenomena with smaller scale than coarse gridded simulations.
For this reason a discrete Fourier Transformation is applied to the time series of each

grid point. The mathematical formulation looks as follows:

X(k) =
N−1∑
n=−∞

x(n)e−jk
2π
N , k = 0, 1, 2, . . . , N − 1. (4.2)

In Equation 4.2 X(k) are the discrete Fourier coefficients, n is the time variable, and
k is the index of the frequencies. For real numbers x(n) the discrete Fourier coefficients
X(k) are in general complex numbers and can be interpreted as a sum of sinus and cosine
functions. In generally we are interested in the absolute value of these coefficients rather
than in its compounds because the absolute value shows the total amount of information
contained at a certain frequency. The total amount is calculated as the square of the
X(k) values and is called the power of the signal. It should be reminded, that the
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4 Temporal Characteristics

amount of a complex number is the distance of the complex number to the origin. The
power of the signal at each frequency is called the power spectrum of the signal.
After calculating the power spectra for each grid point it can be averaged over the

whole domain or specific regions of interest. The power spectra of different simulation
and those of the reference can then be compared in a simple diagram where on the x-axis
the frequencies and on the y-axis the power (most commonly in dB) is shown.
The experience from the LocMIP evaluations showed that there are no differences be-

tween e.g., 3 km and 10 km resolution simulations if they are considered on an hourly
basis. So for this evaluation technique temporal resolutions of at least lower than one
hour have to be considered.
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5 Characteristics of Specific Weather and
Climate Phenomena

In the former chapters entire time series where considered to analyze the performance
of climate simulations. Here single events or a collection of events are considered to
evaluate the skill of the models to simulate particularly phenomena in the atmosphere.
This approach is especially important for the understanding of atmospheric processes
and to find shortcomings in the models and therefore support model development.

5.1 Extreme Events

Extreme events are defined statistically as events that deviate strikingly from the sta-
tistical mean and are those processes in the atmosphere which have the greatest impact
on the society and the environment. Therefore, the demand for accurate predictions
of the development of extremes in future climate change is large. Extreme events are
often small scale phenomena (e.g., convective cells, wind gusts, tornadoes) which makes
the grid spacing of the simulations particularly important. To get statistically signifi-
cant and meaningful results, the evaluation of extreme events demands long time series
in both, the observation and the simulation. In the following section an overview on
different methods to evaluate extreme events in climate simulations will be given.

5.1.1 Quantile-Quantile (QQ) Plots

The quantile-quantile (Q-Q) plot is a scatter plot and compares the marginal cumula-
tive probability distribution of a sample (e.g., a simulation) with those of a theoretical
distribution or another sample of data (e.g., an observation). Therefore, the empirical
quantiles of the observation are plotted against the empirical quantiles of the simulation.
If the data points lie on the diagonal, a perfect fit exists between the observed and the
simulated distributions.
If extreme values are considered, the quantiles lower than e.g., 10 % or higher than

90 % are most interesting because they provide information about the tails of the dis-
tributions.
An example Q-Q plot for observed precipitation compared with an theoretical Gamma

and Gaussian distribution can be seen in Figure 5.1.
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Figure 5.1: Q-Q plots for 1933 – 1982 January precipitation in Ithaca compared with a
Gamma (circles) and a Gaussian (crosses) distribution. Observed precipitation amounts
are on the y-axis while the amounts from the fitted distributions are displayed on the
x-axis (Wilks 2005).

A modification of the Q-Q plot is the probability-probability (P-P) plot which shows the
empirical cumulative probability of simulated data compared to reference or theoretical
data. P-P plots are less frequently used than Q-Q plots, maybe because comparing
dimensional data is more easy to interpret than comparing cumulative probabilities.
Furthermore, differences in the extreme tails of the distribution are also less pronounced
in the P-P plots. Further information on Q-Q or P-P plots can for example be found in
Wilks (2005) or Stevenson (2006).

5.1.2 Extreme-Value Distribution

Extreme values are defined statistically as values that are differing strikingly from the
statistical mean. Therefore extreme data are rare and either unusually large or small.
A common example for extreme values are a collection of annual maximums or block
maxima (the maximum value from a block of m elements). An extreme-value dataset is
derived for example by collecting the hottest day of each year out of a time series of 30
years.
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5.1 Extreme Events

In extreme-value statistics, it can be shown that the distribution of such an extreme-
value dataset will fit a known distribution increasingly close with increasing m, indepen-
dent of the distributions of the observation or simulation (e.g., (Leadbetter 1983), (Coles
2001)). This result is called the Extremal Types Theorem or Fisher-Tippett-Theorem
(Fisher and Tippett 1928) and is the equivalent in the extreme value theory to the Cen-
tral Limit Theorem which says that distributions of sums are converging to a Gaussian
distribution.
The distribution derived is called general extreme value (GEV) distribution which has

the following probability density function (PDF):

f(x) = 1
β

[
1 + κ(x− ζ)

β

]1−1/κ
exp

{
−
[
1 + κ(x− ζ)

β

](
− 1/κ)

}
, 1 + κ(x− ζ)/β > 0.

(5.1)

In Equation 5.1 ζ is a location parameter, β is a scale parameter, and κ is a shape
parameter. By integrating Equation 5.1 the cumulative density function (CDF) is derived:

F (x) = exp

{
−
[
1 + κ(x− ζ)

β

](
− 1/κ)

}
. (5.2)

By inverting Equation 5.2 a formulation for the quantile function can be formulated:

F−1(p) = ζ + β

κ

{
[−ln(p)]−κ − 1

}
. (5.3)

The parameters κ, β, and ζ can be estimated by using the method of maximum
likelihood (see e.g., Wilks (2005)) or the L-moments method (Hosking (1990), Stedinger
et al. (1993)) which is more often used for small data samples.
There are three special cases of the GEV distribution:

1. Gumbel, or Fisher-Tippett Type I distribution (derived when κ = 0),

2. Frechet, or Fisher-Tippett Type II distribution (for κ > 0),

3. Weibull, or Fisher-Tippett Type III distribution (for κ < 0),

which have different properties. More information about this types can be for example
found in Wilks (2005).
Often derived results of extreme value analysis are quantities of large cumulative

probabilities like the value of an event with an annual probability of 0.01. However, as
long as the number of years n is not very large it is not possible to directly estimate
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5 Characteristics of Specific Weather and Climate Phenomena

Figure 5.2: Q-Q plots for the GEV distributions of yearly maxima 2 m temperature on
daily basis of observational data and simulations between 1961 – 2000 on six different
domains over North America (Casati and Lefaivre 2009).

those quantities. Instead a well fitted extreme-value distribution can provide values of
probabilities which are larger than 1− 1/n.
If extreme minima are considered (e.g., smallest of m observations in n years) the

above explained formalism is equally applicable by solving the equations for −X.
An example for the evaluation of simulated maxima 2 m temperature on daily basis

can be seen in Figure 5.2 (Casati and Lefaivre 2009). With this method it is not only
possible to evaluate the performance in different regions (as shown in Figure 5.2) but
also to compare the skill of different simulations with each other.

5.1.3 Peaks over Threshold (POT) and Return Periods

Pickands (1975) showed that values of the tail of a distribution are following a general
Pareto distribution (GPD) asymptotically if the parent distribution belongs to one of the
three above mentioned extreme value distributions. The GPD is expressed as follows:
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5.1 Extreme Events

F (x) = 1−
(

1 + κ(x− ζ)
β

)− 1
κ

, (5.4)

and is defined as the GEV distribution by three parameters (location ζ, shape κ, and
scale β). After the parameters are fitted to the data, the derived probabilities can be
translated into return periods R(x):

R(x) = 1
ω [1− F (x)]

, (5.5)

where ω is the average sampling frequency of the sample time frame (ω = 1/n). The
return period is the typical time span in which an event of the magnitude x is expected
to occur once. If for example, annual maximum data are considered ω = 1yr−1 for an
event with the cumulative probability F (x) = 0.99 which has a probability of 1− F (x)
in any given year, the value of this event will be associated with a return period of 100
years and will be called the 100 year event.
Knote et al. (2010) used this method to calculate return values of 2 m temperature

for a 20th century control run and a A1B scenario simulation over a domain covering
Rhineland-Palatinate and Saarland of Germany as well as parts of Luxemburg (see
Figure 5.3).

5.1.4 Extreme Value Indices
Extremes like the annual maximum wind speed are very often modeled with the in
Subsection 5.1.2 mentioned GEV distribution. In this subsection extremes are evaluated
with index values whereby only few of them can be assumed to follow a GEV distribution.
Here a selection of the most common extreme value indices is presented. A more

comprehensive overview of indices can be found on the CCl/CLIVAR/JCOMM Expert
Team (ET) on Climate Change Detection and Indices (ETCCDI) homepage (http:
//cccma.seos.uvic.ca/ETCCDI/index.shtml, 15 February, 2011) or on the European
Climate Assessment & Dataset homepage (http://eca.knmi.nl/indicesextremes/
indicesdictionary.php, 15 February, 2011).

Temperature

Multiple temperature indices are defined in literature (e.g., Mekins and Vincent (2005)
or Vincent and Mekins (2004)) from which eight indices are selected and presented in Ta-
ble 5.1. The indices are describing cold events (cold days, frost days, cold nights), warm
events (warm days, summer days, warm nights), and the temperature variability (stan-
dard deviation of the daily mean temperature, diurnal temperature range). Commonly
they are calculated on an annual basis.
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5 Characteristics of Specific Weather and Climate Phenomena

Figure 5.3: Return value versus return periods for maximum 2 m temperature from
a control run (black) and the A1B scenario (grey). The solid lines show the fitted
distribution while the dots show the real data. Dashed lines are corresponded with 95 %
confidence intervals (Knote et al. 2010).

Precipitation

The eight precipitation extreme value indices in Table 5.2 are covering precipitation
type, intensity, frequency, and extremes. The annual snowfall ratio and the snow to
total precipitation ratio are showing the changes in solid precipitation which is a very
important climate characteristic in elevated and high latitude regions.

Cloudiness

Clouds have am major impact on the incoming and outgoing radiation as on the surface
energy budget. Therefore, a proper simulation of cloud cover is very important. In
Table 5.3 three indices for cloudiness are introduced, which account for mean daily
cloud cover and mostly cloudy and mostly sunny days.
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5.1 Extreme Events

Temperature Indices Definitions Units
Frost days Number of days with Tmin <0 ◦C d
Cold days Number of days with Tmax < 10th percentile d
Cold nights Number of days with Tmin < 10th percentile d
Summer days Number of days with Tmax >25 ◦C d
Warm days Number of days with Tmax > 90th percentile d
Warm nights Number of days with Tmin > 90th percentile d
Diurnal temperature range Mean of the difference between Tmax and

Tmin

◦C

Standard deviation of Tmean Standard deviation of daily mean tempera-
ture from Tmean

◦C

Table 5.1: Definition of eight temperature indices. Tmax, Tmin, and Tmean are the daily
maximum, minimum, and mean temperatures respectively.

Precipitation Indices Definitions Units
Annual snowfall precipitation Annual accumulated liquid equivalent of

snowfall amount
mm

Snow to total precipitation ra-
tio

Annual accumulated snow to total precipita-
tion ratio

%

Days with precipitation Number of days with precipitation > trace d
Simple day intensity index of
P

Annual total precipitation/number of days
with P > trace

mm/d

Max. number of consecutive
dry days of P

Max. number of consecutive dry days d

Highest 5-day precipitation
amount

Maximum precipitation sum for 5-day inter-
val

mm

Very wet days (≥ 95th per-
centile)

Number of days with precipitation ≥ 95th
percentile

d

Heavy P days (≥ 10 mm) Number of days with precipitation ≥ 10 mm d
Table 5.2: Definition of eight precipitation indices. P means total precipitation. Trace
is meant as the minimum measurable precipitation amount.

Cloudiness Indices Definitions Units
Mean of daily cloud cover Annual average of cloud cover %
Mostly sunny days days with cloud cover < 16 % d
Mostly cloudy days days with cloud cover > 84 % d

Table 5.3: Definition of three cloudiness indices.
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Cloudiness Indices Definitions Units
Max. of non consecutive dry
days

longest period within one year without mea-
surable precipitation (<1 mmd)

d

Six Month Standardized Pre-
cipitation Index

details can be found in Guttman (1999)

Potential evaporation for more details see Allen et al. (1994b) and
Allen et al. (1994a)

mm

Three Month Standardized
Precipitation Index

details can be found in Guttman (1999)

Table 5.4: Definition or references of four drought indices.

5.1.5 Drought

Drought indices are either based on precipitation alone (like the maximum non consec-
utive dry days index) or are derived from multiple atmospheric- and soil parameters.
Droughts have major effects on agriculture and water supply and have therefore signifi-
cant impact on live quality and the economically development of a region. In Table 5.4
four common drought indices are introduced. A more comprehensive overview of drought
indices and their application can for example be found in Heinrich (2008) or Heinrich
and Gobiet (2011).

5.2 Weather Events

In this section evaluation methods for model simulations of weather events are discussed.
Most of the physical phenomena behind the events have regional or local spatial scales
and are therefore hoped to be improved by high horizontal grid spacings.

5.2.1 Inversions

Generally, in an inversion the temperature increases with height. Thereby, inversions
can have different origins. Subsidence inversions occur when an air body sinks gradually
in the atmosphere and is thereby warmed adiabatically. Capping inversions occur when
warm air is moving above cold air so that the convective boundary layer is capped by
an inversion layer. Radiation inversions are built when the surface radiation budget is
negative. This situation especially appears during nighttime and in winter when the
angle of the sun is very low in the sky. If sufficient humidity is present in the cool layer
typically fog is present below the inversion cap.
In general, all three types of inversions need atmospheric conditions with low synoptic

scale forcing. Since strong solar radiation leads to strong mixing in the lower parts of
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Figure 5.4: Visualization of the settling of cold air during a clear night in a valley.
Thereby the bottom of the valley gets colder than its surrounding hillsides (Ahrens
2011).

the atmosphere, inversions are predominant in the winter season.
In hilly or mountainous regions it often occurs that higher elevated areas are reaching

out of the inversion layer. If this happens, inversions can be seen in the 2 m temperature
field because valleys and basins have then colder temperatures than the surrounding
mountain ridges. A possible evaluation method for these cases is to compare the observed
and simulated temperature along a cross-section of a mountain slope.
A second, more accurate way to evaluate the simulation of inversions is to use the data

of radiosondes. Radiosondes are able to measure air temperature, pressure, humidity,
the wind components, and other atmospheric data with high accuracy. The disadvan-
tage of this evaluation method is the high data storage space demand because multiple
atmospheric levels have to be saved to compare the simulated parameters with those of
the radiosondes.

5.2.2 Spring Late Frosts

Frosts during late spring are a severe problem for agriculture because during cold nights
many plants can get damaged (Ahrens 2011). Especially fruit trees during spring, citrus
crops, or grapes are affected. Simulations with high horizontal grid spacing are able to
capture orographically details better than coarse simulations and have therefore also the
potential to improve the representation of frost in valleys (see Figure 5.4).
Scheifinger et al. (2003) uses a method in which they search the latest occurrence date

of minimum temperature bellow a number of threshold values for each considered year
for a selection of monitoring stations. The derived data can be compared with the model
output by interpolating the grid point values to the location of the stations.
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5.2.3 Local Wind Systems

In situations with weak synoptic forcing, regional and local wind systems can occur.
Thereby the winds are often characterized by local conditions like topography, location,
and differential heating. Oliver (2005) suggested a classification of those winds in five
groups:

1. Diurnal winds covering all kind of winds which can be associated by the diurnal
cycle.

2. Jet-effects including all winds which are related to the local topography.

3. Antitripic winds are those winds which arise from pressure and thermal gradients
(e.g., land/sea breezes or foehn winds) or gravity (e.g., fall winds).

4. Local winds created by the overrunning of cold air (e.g., dust storms and haboobs).

5. Winds created by pressure gradients over a relatively small area, and/or the un-
interrupted flow over a flat surface (e.g., winds associated with blizzards or the
dessert khamsin).

Local wind circulations are often a result of differential heating of the surface. Good
examples are see (and lake) breezes and the corresponding land breezes which alternate
on a diurnal basis. A diurnal reversal of circulation can also be found in mountain and
valley breezes.
For the analysis of such wind systems relatively weak and clear synoptic weather

conditions have to be prevalent because the large scale synoptic system can completely
obscure local winds. So the first step to analyze local wind systems is to search for stable
high pressure systems with weak synoptic scale forcing above the region of interest. Then,
the wind fields can be compared between the simulation and monitoring stations within
the correspondent region. The near surface wind field can be very variable on small
scales because it is strongly influenced by the topography and so a careful selection of
representative monitoring stations is essential. If local winds with diurnal characteristics
are of interest, high temporal resolution (at least hourly data) in simulated and observed
data is required.
A further important feature of local winds is their vertical expansion. Therefore,

measurements on different height levels or radiosonde measurements can help to validate
the vertical wind structure in simulations.

5.2.4 Foehn

As mentioned in the former subsection, foehn is a local wind which belongs to the group
of antitripic winds. It is highlighted in a separate subsection because of its importance
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5.2 Weather Events

for the Alpine region and its special dependency on the orography. A general definition
of foehn can be found in the glossary of the American Meteorological Society given by
Defant in 1951 (Glickman 2000): Foehn is ‘a warm, dry, down slope wind descending the
lee side of the Alps as a result of synoptic-scale, cross-barrier flow over the mountain
range’. Since this definition could mislead that foehn is only a phenomena in the Alps
(there is also ‘Zonda’ in the south of Chilean Andes ,‘Puelche’ in Argentina or ‘Chi-
nook’ in the Rocky Mountains, for example) the World Meteorological Organization has
generalized the definition in 1992 to: ‘wind (which is) warmed and dried by descent, in
general on the lee side of a mountain’.
There are several atmospheric phenomena associated with foehn like wind, temper-

ature, humidity, wave formation, and precipitation. By considering these phenomena,
the detection and the assessment of foehn in regional climate model (RCM) simulations
get possible.

Wind: Typical for foehn events are strong down slope winds which can get gale intensity
and rather weak upstream surface winds. This phenomena is most well known for
Boulder Colorado, where its known as ‘Bolder Windsorm’ (Clark et al. 1994).

Temperature: The main season in which foehn occur is winter, because the develop-
ment of foehn winds is supported by stable atmospheric conditions. Adiabatic
compression causes the warming of the descended air body which often leads to
sudden and sometimes large increases in temperature in the valleys. Oard (1993),
for example, documented a temperature jump of 27 ◦C within 7 minutes on the 11
January 1980 at Great Falls Montana.

Relative humidity: Physically linked by the Clausius Clapeyron equation a rise of tem-
perature lead to a decrease of relative humidity. With height the absolute humidity
is decreasing and so the decent of absolute dry air with foehn winds can lead to
relative humidity values of less than 10 %. Snow covers are rapidly disappearing
during periods with foehn, because of the warm temperatures and low humidity
values.

Clouds and wave formation: If there is enough humidity, various cloud types can form
when the air flows over the mountains. On the windward side of the mountains
the cold air can be topped by a flat stratiform cloud. A typical sharp edge of the
cloud deck which is above the mountain ridge is called the foehn wall.

Precipitation: Precipitation is commonly present at the windward slopes because of
the orographic lifting of the air, especially when the atmospheric layers on the
mountain barrier is unstable. Precipitation can also occur on the foehn side of the
flow which is then called ‘Dimmer Foehn’ (Kuhn 1989).
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5 Characteristics of Specific Weather and Climate Phenomena

For the evaluation of foehn events in simulations three foehn predictors are especially
suitable. The vertical difference in potential temperature ∆Θ to indicate the decent of
isentropes, the pressure difference between the both sides of the barrier ∆p, and the
cross-barrier wind component v.
Before the predictors can be calculated, the grid points considered for the calculation

of ∆p and v have to be chosen. The downstream grid point is selected by searching for
the grid point with the maximum cross barrier wind component v. Since on the upstream
side blocking and flow over can occur depended on the considered foehn event, v is no
suitable parameter for selecting the most suitable upstream grid point. Instead, the cross
barrier pressure difference can be used with respect to the already found downstream
grid point. The reason for the pressure difference is the decrease of pressure at the
downstream side induced by the decent of isentropes nearby the mountain ridge. That’s
why during foehn the pressure difference ∆p is positive. From a theoretical point of view
∆p and v are largest nearby the crest because the strongest decent of the isentropes and
so the strongest pressure gradients occur there.
For the calculation of ∆Θ the two above derived grid points are considered. The

choice of the vertical level for the calculation of ∆Θ should be done by searching the
level where the foehn events can be best distinguished by non foehn events. Therefore
the overlapping areas of the PDF of ∆Θ between foehn and non foehn events should be
minimized. Drechsel (2004) found this level roughly at 300 m above ground level. In an
orographic following coordinate system, there will be a height difference between a grid
point located at the crest and a downstream grid point and therefore also a difference
in ∆Θ. Positive ∆Θ values indicate no or weak decent while neutral or even negative
values indicate a decent along the considered model level.

56



6 Conclusion

Convection resolving climate simulations (CRCS) have a big potential to improve the
accuracy of climate projections especially on the regional and local scale through a
better representation of orography, the explicit resolving of deep convection, and a more
accurate representation of soil atmosphere interactions.
However, finding added value in convection resolving climate simulationss (CRCSs) is

difficult because, if spatial scales beyond 10 km horizontal grid spacing are simulated,
atmospheric phenomena like precipitation patterns are getting increasingly unpredictable
and chaotic. Furthermore, the observation density is often much to coarse to resolve small
scale features and reliable high resolved reference datasets for the model evaluation are
hard to find.
Therefore, traditional statistical methods often fail in detecting added value of CRCSs.

This report gives a guideline on where to search added value, how to find it, and how it
can be quantified and displayed. The four introduced categories of added value (mean
climate, spatial respectively temporal characteristics, and event based evaluations) help
to classify the nature of distinctions between differently resolved simulations.
In the search for added value a best practice is to start searching at fine temporal

and spatial scales. Therefore, methods which investigate different scales are often a
useful and necessary tools (see Subsection 3.2.1 and Section 4.5). Averaging over time
tends to remove small scales, except if strong stationary forcing is prevalent (mountains,
coastlines). Particularly in those situations investigations on climatologically time-scales
can also reveal potential added value (see Chapter 2). Promising is the detection of added
value in temporal and spatial variability statistics. The small grid spacing enables a
more accurate simulation of maxima and minima in atmospheric fields and therefore has
a high potential to improve the spatial characteristics of atmospheric fields in general
(see Chapter 3) and extreme events in particular (see Section 5.1). Also local weather
phenomena like inversions, frost, local wind systems and so on which strongly depend
on local and regional characteristics hold a lot of promises to contain added value (see
Section 5.2).
During the last decades, methods where developed which provide great opportuni-

ties for more meaningful evaluations, especially in the field of spatial rainfall analysis.
Thereby, each introduced method has a different scope and is able to answer specific
types of questions. A general statement of added value in CRCSs can only be derived
when comprehensive analyses within all introduced categories are performed.
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Abstract: 
Convection-resolving climate simulations (CRCS) have high potential to improve multiple 
error sources in state of the art regional climate models (RCMs) by explicitly resolving deep 
convection and by representing orography and land cover with high accuracy. However, the 
added value of CRCSs compared to simulations on coarser grids is difficult to assess by 
traditional statistical methods. In order to assess added value in a systematic way, we 
separate four categories (mean climate-, spatial-, temporal-, and event based added value) 
which can be evaluated separately. For each category several statistical methods are 
introduced which make different aspects of added value visible. They include traditional 
statistics like biases, correlation coefficients, or root mean squared errors (RMSEs), but also 
comprise methods which were especially developed to evaluate highly resolved simulations 
on grid point basis. The latter methods are of particular interest with regard to convection 
resolving simulations, since they are suited to analyze the model performance at small 
spatial scales. A specific focus is also on the evaluation of simulations with regard to small 
scale extreme events (e.g., heavy convective precipitation) and other local weather and 
climate phenomena like foehn and inversions. Each introduced method is designed to 
evaluate and quantify a certain aspect of simulations and sometimes also certain 
parameters. The presented categories and methods can be used as a guideline for the 
evaluation of high resolution climate simulations and are basis for the design of a standard 
evaluation scheme which is used in the Local Climate Model Intercomparison Project 
(LocMIP), which is described in the third part of this report series. 
 
Zum Inhalt: 
Konvektionsauflösende Klimasimulationen (CRCS) haben großes Potenzial die 
Fehlercharakteristik regionaler Klimamodelle (RCMs) durch explizite Darstellung von 
hochreichender Konvektion und durch genauere Darstellung von Orographie und 
Landnutzung zu verbessern. Allerdings ist der Mehrwert von CRCS im Vergleich zu 
Simulationen auf gröberen Gittern schwer mit herkömmlichen statistischen Methoden zu 
quantifizieren. Für eine systematische Analyse werden vier Kategorien definiert, die getrennt 
bewertet werden können. (Mehrwert in: Klimamittel, räumlichem Muster, zeitlicher Abfolge 
und Darstellung von Einzelereignissen). Für jede Kategorie werden verschiedene statistische 
Methoden beschrieben, mit denen diverse Aspekte des Mehrwerts sichtbar gemacht werden 
können. Darunter befinden sich nicht nur traditionelle Methoden wie die Analyse von 
systematischen Fehlern, Korrelationskoeffizienten oder quadratischen Fehlern (RMSE), 
sondern auch Verfahren die speziell entwickelt wurden um hochaufgelöste Simulationen auf 
Basis von Gitterpunkten zu evaluieren. Letztere Methoden sind im Hinblick auf CRCS 
besonders interessant, da sie geeignet sind die Güte eines Models in kleinen räumlichen 
Skalen darzustellen und besonders geeignet sind kleinskalige Extremereignisse (z.B. 
schwere konvektive Niederschläge) und andere lokale Wetter- und Klimaphänomene wie 
Föhn und Inversionen zu analysieren. Jedes beschriebene Verfahren dient der Evaluierung 
eines bestimmten Aspekts einer Simulation bzw. teilweise auch der Auswertung spezieller 
Parameter. Die vorgestellten Kategorien und Methoden sind ein Leitfaden für die Bewertung 
von CRCS und fungieren als Grundlage für die Gestaltung eines einheitlichen 
Beurteilungsschemas, welches im lokalen Klimamodell-Vergleichsprojekt (LocMIP) 
Anwendung findet (siehe Teil drei dieser Berichtsserie). 
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