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Abstract

Accuracy, global coverage, long term stability, and a high vertical resolution are im-
portant properties of the radio occultation technique, enabling successful measurements
of atmospheric parameters. Starting from phase differences, the atmospheric tempera-
ture, as well as pressure or humidity (auxiliary data are necessary for the latter) can be
calculated.

The German CHAMP satellite (CHAllenging Minisatellite Payload) carries a GPS
flight receiver, which allows the acquisition of such measurements. Using several years of
temperature profiles, climatologies were generated by researchers of the ARSCliSys work-
ing group at Wegener Center, University of Graz, which we in turn compared to analyses
and reanalyses (supported from European and American meteorological services) as well
as to two different climatological models (NRLMSISE-00 and CIRA86aQ UoG).

One focal point was the investigation of the influence of local time at which radio
occultation measurements have been taken. Due to the orbit of the satellite, a majority
of the measurements within a month are made in two three-hour intervals, which are
separated by a twelve hour local time lag. The investigations revealed that monthly
climatologies do not show appreciable problems and that the influence of local time is
generally negligible.

An analysis of CHAMP radio occultation data resulted from factor analysis (being im-
plemented with four different calculation procedures) and principal component analysis.
The techniques were compared by means of two different atmospheric fields, the search
of atmospheric patterns was performed in four atmospheric domains (two on global and
two on regional scale). The comparative exploration of the different pattern decompo-
sition analysis techniques led to very useful insights into strengths and weaknesses of
the methods. Concerning the identification of atmospheric pattern, the seasonal cycle
was the most dominant one, which was found in all regions beyond the tropical area.
After the removal of monthly means (and consequently the seasonal cycle) the causes of
smaller temperature fluctuations were found, but an interpretation was not always feasi-
ble. Nevertheless, some well known atmospheric patterns, such as QBO (Quasi Biennial
Oscillation) and SSW (Sudden Stratospheric Warming), could be identified.
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Zusammenfassung

Genauigkeit, globale Erfassung, Langzeitstabilität und eine hohe vertikale Auflösung
sind Eigenschaften der Radiookkultationstechnik, die seit einigen Jahren erfolgreich für
die Messung atmosphärischer Parameter angewendet wird. Ausgehend von Phasendif-
ferenzmessungen kann auf die Temperatur, aber auch auf den Druck oder die Feuchtigkeit
(letztere jedoch nur mit zusätzlicher Hintergrundinformation) rückgeschlossen werden.

Der deutsche CHAMP-Satellit (CHAllenging Minisatellite Payload) hat einen GPS
Empfänger an Bord mit welchem solche Messungen durchgeführt werden können. Am
Wegener Zentrum der Uni-Graz, werden von MitarbeiterInnen der ARSCliSys-Gruppe
aus den Messdaten Temperaturklimatologien erstellt, welche in dieser Arbeit mit Anal-
ysen bzw. Reanalysen (erstellt von dem europäischen und dem amerikanischen Wet-
terdienst), als auch mit zwei verschiedenen Klimatologie-Modellen (NRLMSISE-00 und
CIRA86aQ UoG) verglichen wurden.

Ein Schwerpunkt dabei lag auf der Untersuchung des Einflusses der Lokalzeit, zu
welcher die Radiookkultationsmessungen stattgefunden haben. Aufgrund der Umlauf-
bahn des Satelliten erfolgt ein Großteil der Messungen innerhalb eines Monats in Zwei-
bis Drei-Stunden-Intervallen, welche um zwölf Stunden zueinander verschoben sind. Es
stellte sich heraus, dass der Einfluss der Lokalzeit, zu der die Messungen stattgefunden
haben, im Allgemeinen vernachlässigbar ist.

Eine Analyse der CHAMP Radiookkultationsdaten erfolgte mit Hilfe der Faktoren-
analyse und der Hauptkomponentenanalyse, wobei erstere durch vier unterschiedliche
Verfahren implementiert wurde. Die beiden Methoden wurden anhand von zwei atmo-
sphärischen Feldern verglichen, die Suche nach atmosphärischen Mustern wurde auf vier
atmosphärische Bereiche (zwei auf globaler und zwei auf regionaler Skala) ausgeweitet.
Die vergleichende Untersuchung der unterschiedlichen Techniken zum Auffinden von
Mustern führte zu sehr wertvollen Einblicken in die Stärken und Schächen der Metho-
den. Außerhalb des tropischen Bereiches war der Jahresgang das vorherrschende Muster,
welches in den Daten anzutreffen war, wurde dieser entfernt, so kamen die Ursachen für
geringere Temperaturschwankungen zum Vorschein. Nicht immer war eine Interpreta-
tion der auftretenden Strukturen möglich. Dennoch konnten in vielen Fällen bekannt
atmosphärische Muster wie etwa die QBO (Quasi Biennial Oscillation) oder SSW (Sud-
den Stratospheric Warming) beobachtet werden.
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Introduction

“Global warming” is in nearly everybody’s mind. In any industrialized country it is
discussed if–and if so how much–the temperature raises on earth, and how the impacts
will influence human (and other) lives. An intensive study examining this issue was done
by IPCC (2001). They assessed that “systematic observations and reconstructions” are
a “high priority area for action”.

The development of meteorology and climatology as a self-standing field of science is
closely linked to the invention of the thermometer, which is (mostly) attributed to Galileo
Galilei (Stoehr 2004) (who lived in the 16th century). Since then many technological
improvements were achieved, and since 1995, the radio occultation method is established
on earth to gage profiles of meteorological parameters1. The first experiment used to this
end was the GPS Meteorology (GPS/Met) instrument, launched on board the MicroLab-
1 spacecraft on April 3, 1995 (Ware et al. 1996). It provided measurements for several
multi-week periods until March 1997 . These measurements were analyzed and evaluated
and confirmed that the radio occultation technique is a powerful method to obtain
reliable profiles of atmospheric parameters (Rocken et al. 1997) such as temperature. The
technique satisfies the demands of IPCC (2001) who called to “sustain and expand the
observational foundation for climate studies by providing accurate, long-term, consistent
data”.

After these early days of the radio occultation on earth, other scientific missions were
started and because of the proceeding success still more missions will take place. Already
launched missions are CHAMP (CHallenging Minisatellite Payload, see e.g., Wickert
et al. (2001a)), SAC-C (Satelite de Applicaciones Cientificas, see e.g., Meehan and Hajj
(2001)) and GRACE (Gravity Recovery and Climate Experiment, see e.g., Dunn et al.
(2003)). Metop (e.g., Loiselet et al. (2000)) and COSMIC (Constellation Observing
System for Meteorology, Ionosphere, and Climate, see e.g., Anthes et al. (2001)) are two
comprehensive missions, which are planned to start in 2006.

Nowadays, the radio occultation technique only uses GPS signals (satellites launched
and controlled by U.S. Department of Defense), but in the near future also signals from
“Galileo” (funded by the European Space Agency, ESA, and the European Union, EU)
will be available. These additional satellites will extend the possibilities of radio occul-
tation.

This thesis wants to contribute to climate monitoring by means of CHAMP radio

1The method was already successfully applied at planets in the solar system before.
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occultation data. Since July 2000, the German CHAMP satellite is placed in a low
earth orbit and since February 2001, it provides radio occultation measurements to
calculate profiles of refractivity, geopotential height, and temperature. These temper-
ature profiles, retrieved by researchers of the ARSCliSys group under the direction of
G. Kirchengast, Wegener Center, University of Graz, were used in this work to create
monthly climatologies and to compare them with analyses of the ECMWF (European
Centre for Medium-Range Weather Forecasts), with reanalyses of NCEP/NCAR (U.S.
National Centers for Environmental Prediction/U.S. National Centers for Atmospheric
Research), with NRLMSISE-00 data and with CIRA86aQ UoG data (the latter two are
climatological model data sets). These investigations and results are looked at in de-
tail in the first part of this thesis (Part I), where Chapter 1 deals with the theoretical
background of radio occultation, the calculation of temperature climatologies and the de-
scription of the applied data sets. The differences between these data sets are discussed
in Chapter 2. Chapter 3 provides the comparisons amongst the data sets, providing
insight into different error characteristics, in particular also regarding local time effects.
Part I closes with the conclusions of the detected differences (Chapter 4).

The second part of the thesis (Part II) deals with the examination of the CHAMP RO
data with focus on exploring methods of finding atmospheric patterns (data mining).
In doing so, four different atmospheric fields were chosen to be investigated with the
help of two different mathematical methods: principal component analysis (PCA) and
factor analysis (FA). First of all, an overview of the two methods is given in Chapter
5. The theoretical background and the derivation of principal component analysis are
looked at in detail in Chapter 6. Factor analysis, discussed in Chapter 7, is split up into
four different methods: iterative principal factor analysis, true factor analysis, maximum
likelihood factor analysis, and centroid factor analysis.

Common properties (such as the determination of the number of factors being ex-
tracted, or rotation) and the differences between the two methods (underlying math-
ematical models, results’ dependence of the number of selected factors and explained
variances) are discussed in Chapter 8. The actual examinations of the atmospheric
fields (two global and two local regions) follow in Chapter 9. Besides a description of
the investigated data sets, factor analysis specific problems are addressed, as well as
problems occurring in regard to different dimensions of applied data matrices (coarse
and detailed resolved atmospheric temperature fields were investigated) for both PCA
and FA. Conclusions on the results of Part II complete the work.
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1 Data Description

1.1 CHAMP Radio Occultation Data

1.1.1 The CHAMP Satellite

(Author: B. Pirscher)

In 1994 scientists of the GeoForschungsZentrum Potsdam (GFZ), under the direction
of Prof. Christoph Reigber, suggested a small satellite mission to

• explore the spatial structure and temporal variability of the gravity field,

• determine the magnetic field, and

• realize a limb sounding technique to probe the earth’s atmosphere using GPS1

signals.

The satellite was launched on July 15, 2000 at 11:59:59:628 UTC2 from Plesetsk,
Russia aboard a Cosmos-3M launch vehicle.
Technical facts concerning the CHAMP Satellite (CHAllenging Minisatellite Payload)
are:

Total mass: 522.5 kg

Total length: 8.222 m

Length exclusive boom: 4.178 m

Width: 1.621 m

Height: 0.75 m

Figure 1.1: The CHAMP satellite, Wickert
(2004).

Its initial altitude was 454 km, the nearly polar orbit is almost circular (eccentricity:
0.004, inclination: 87.2◦); the period is 93.55 minutes. The intended duration of the
mission is about five years (at least one orbit change maneuver is necessary because
of the decrease of altitude as a result of drag). The orbit geometry leads to a global
coverage of observations, with more information in low and mid latitude regions and less
information in polar areas.

1Global Positioning System
2Universal Time Coordinated
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1 Data Description

The scientific instruments aboard CHAMP consist of an Electrostatic STAR Ac-
celerometer, a GPS Receiver TRSR-2, a LASER Retro Reflector, a Fluxgate, and an
Overhauser Magnetometer, an Advanced Stellar Compass, and a Digital Ion Driftmeter.
A detailed description of the satellite and the instruments aboard can be found in Reig-
ber et al. (2001).

GPS Receiver TRSR-2

The GPS receiver TRSR-2 enables high-precision orbit determination of the CHAMP
satellite, accurate time and navigation information. Compared to the antenna aboard
the MicroLab-I satellite (GPS/MET experiment3), this antenna features a higher signal
to noise ratio (SNR). It operates in three measurement modes; in occultation mode it
receives signals transmitted from setting GPS satellites (setting occultation). The signal
of the occulting satellite is sampled at 50 Hz; the signal of a reference GPS satellite is
sampled at 0.1 Hz to 1 Hz. The high gain helix antenna is mounted on the aft panel of
the satellite and is inclined 20◦ toward nadir.

The first occultation measurements were recorded on February 11, 2001 between
19:04 UTC and 20:04 UTC.

GPS Satellites

The Global Positioning System (GPS) was conceived by the U.S. Department of Defense
(DOD) in 1973 and in 1983 the DOD decided to release the GPS to civil users. In 1994 the
set of satellites was completed. At least 24 satellites circuit at an altitude of 20 200 km
on six different orbits (inclination approximately 55◦) with a period of 11 h 58 min.
Each satellite continuously transmits right circumpolar radiation at two L-Band4 carrier
frequencies, f1 = 1575.42 MHz (λ1 = 0.19 m) and f2 = 1227.60 MHz (λ2 = 0.244 m).

These two frequencies result from the fundamental frequency f0 = 10.23 MHz (λ0 =
29.3 m) by f1 = 154 × f0 and f2 = 120 × f0.

Using phase modulation, a binary code is modulated on the carrier frequencies con-
taining the C/A-code (“coarse acquisition” or “clear/access”), which is modulated only
on L1. The P-code (“protected” or “precise”) can be found on both the L1 and L2

carrier frequencies yielding the P1- and the P2-code. The basic observables used in the
occultation technique are the C/A-phase and the P2-phase.

Prior to May 2, 2000 the U.S. DOD used the “Selective Availability” (S/A) mode to
degrade the accuracy of satellite GPS signals.

3The GPS radio occultation technique was tested for the first time from April 3, 1995 to March 1997.
4Frequency domain between 1 GHz and 2 GHz.
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1.1 CHAMP Radio Occultation Data

1.1.2 The Retrieval Process

(Author: B. Pirscher)

Introduction

The radio occultation (RO) technique is a generally accepted method for global remote
sensing. It enables the extraction of vertical profiles of atmospheric parameters such as
temperature, pressure, and humidity with high accuracy.

The method is based on the limb sounding geometry using signals from GPS satel-
lites, which are received from GPS receivers aboard Low Earth Orbit (LEO) satellites.
Because the propagating signals are modified by the atmosphere depending on its proper-
ties, the modification is a measure for atmospheric components and physical atmospheric
characteristics.

The RO technique uses GNSS (Global Navigation Satellite System) signals from
1 GHz to 2 GHz because the signals are only affected by the refractivity field, and other
effects such as scattering, dispersion, and polarization are negligible or correctable at
these wavelengths.

A short introduction of the method and its properties can be found in Kirchengast
(2004) and detailed descriptions of this technique can be found in e.g., Kursinski et al.
(2001), Foelsche (1999), or Steiner et al. (2001).

The Occultation Geometry

Figure 1.2 schematically illustrates the geometry arising during an occultation event.
The straight line, s0 is the distance between the transmitter T and the receiver R, while
rT, rR, vT, and vR are the radius and velocity vectors of the satellites. a is the impact
parameter (specified below), r is the distance from the center of local curvature to the
tangent point, and φT and φR are the angles between the ray paths and the radius
vectors of the according satellites. γ is the angle between the radius vectors rT and rR

at the local center of curvature.
Under accurate geometric circumstances, the ellipsoidal shape of the earth has to be

applied in the geometry because it affects the spherical symmetry of the refractivity field.
First errors can be eliminated by replacing the earth’s radius with the local radius of
curvature. The radius of curvature is defined as the radius of a sphere that is tangential
to the ellipsoid at the location of the occultation event within the occultation plane
(Foelsche 1999).

Definitions: Refraction, Refractivity

Because the index of refraction

n =
cvacuum

cmedium
, (1.1)

is close to unity in the atmosphere, it is common to use the refractivity in atmospheric
studies:
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1 Data Description

Figure 1.2: Sketch of the geometry of the occultation experiment. A GPS satellite trans-
mits electromagnetic signals, which are received from a GPS receiver on board a LEO satellite
(CHAMP).

N = (n− 1) × 106, (1.2)

n index of refraction,

cvacuum speed of light in the vacuum [m/s],

cmedium speed of light in the medium [m/s],

N refractivity.

Physical Principles

On the basis of precise GPS and LEO satellite orbit data, bending angles are calcu-
lated assuming a spherical symmetric atmospheric refractive index field n(r) and tak-
ing the geometric optics approximation5. A real refractivity index (no absorption), a
monochromatic signal and small wavelengths (compared to atmospheric scales) have to
be assumed.

Fermat’s principle says that the actual path s between two points (from transmitter
T to receiver R) taken by a beam of light (speed of light in vacuum cvacuum = c) is the
one that is traversed in the least time t:

5The geometric optics approximation is not valid in the lower atmosphere (< 5 km) because of high
content of water vapor. The wave optics has to be applied in this region.
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1.1 CHAMP Radio Occultation Data

t =

R∫

T

n(s)

c
ds =

1

c

R∫

T

n(s)ds = min. (1.3)

The optical path length L of a signal propagating along the raypath T → R is defined
as (Kursinski et al. 1997):

L =

R∫

T

n(s)ds. (1.4)

Snell’s law follows directly from the Fermat’s principle. It states that the ratio of the
sine of the angle of incidence φ1 to the sine of the angle of refraction φ2 is constant:

sinφ1

sinφ2
=
n2

n1
=
c1
c2

= const,

n1 and n2 are the index of refractivity in different medium, c1 and c2 are the correspond-
ing speeds of light.

Bouguer’s formula is the generalization of Snell’s law. It is valid in a spherical sym-
metric medium (n = n(r)):

a = rn sinφ = const, (1.5)

a is known as the impact parameter, r is the radius value, and φ is the angle between
the ray vector and the local radius vector. The impact parameter is defined as the
perpendicular distance between the center of local curvature and the ray path asymptote
and is constant along a ray path. At the tangent point, where sinφ = 1, the impact
parameter becomes a = rtn(rt). Bouguer’s rule is generally a good approximation of the
earth’s atmosphere (Kursinski et al. 2001).

The Bending Angle

The change in the raypath direction accumulated along the raypath is defined as the
bending angle α(a) (Kursinski et al. 2001).

In general, the bending angle is very small and hardly measurable, but it can be derived
from accurate phase measurements because of Doppler shifted frequencies being time
derivations of excess phase paths (cf., equation (1.9)). During a GPS radio occultation
event the phase of the signal is the most important measurement. It varies due to the
relative motion between the transmitter and the receiver (known as Doppler shift), and
due to an additional propagation delay that follows from the reduction of the speed of
light in the atmosphere (effect of atmospheric bending).

From the measured phase differences ∆ϕi, it is possible to calculate the phase delays
(excess phase paths) ∆Li of the L1 and the L2 signal, respectively:
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∆L1 =

R∫

T

n(s1)ds1 − s0 = ∆ϕ1λ1, (1.6)

∆L2 =

R∫

T

n(s2)ds2 − s0 = ∆ϕ2λ2, (1.7)

s0 is the straight line between the transmitter T and the receiver R, λ1 = 0.19 m and
λ2 = 0.244 m are the wavelengths of the carrier frequencies.

Due to ionospheric bending dependent on the frequency (dispersion), the signals L1

and L2 travel on different paths. A linear combination of equations (1.6) and (1.7) yields
the elimination of the first order ionospheric impact

∆Lc =
f2
1 ∆L1 − f2

2 ∆L2

f2
1 − f2

2

. (1.8)

∆Lc contains particular fractions of the neutral atmosphere (Foelsche 1999).
The atmospheric Doppler shift ∆f is determined by

∆f =
f

c

d(∆Lc)

dt
, (1.9)

where f is the transmitted frequency.
A connection between the Doppler shift and the geometry of the occulting event is

given by

∆f =
f

c
vr
T cosφT + vθ

T sinφT + vr
R cosφR − vθ

R sinφR, (1.10)

vr
T, vθ

T, vr
R, and vθ

R are the radial and tangential components (denoted by r and θ) of
the velocity vectors of the transmitter and the receiver, respectively.

Knowing these four parameters as well as Bouguer’s law (1.5) with n(rT) = n(rR) = 1
and the geometry

(π − α(a)) + φR + φT + γ = 2π, (1.11)

the bending angle α(a) can be derived (cf., Kursinski et al. (2001)).
Another possibility deriving the ionosphere-corrected bending angle (αc(a)) is to apply

the linear combination directly to the bending (Vorob’ev and Krasil’nikova 1994)

αc(a) =
f2
1α1(a) − f2

2α2(a)

f2
1 − f2

2

. (1.12)

α1(a) and α2(a) are the uncorrected bending angles of the signals L1 and L2, which are
obtained by equations (1.10), (1.11), and Bouguer’s law.

This approach is known as “bending angle correction” and is preferred to the other
approach (Steiner et al. 1999).
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1.1 CHAMP Radio Occultation Data

High Altitude Retrieval

The ionospheric correction does not remove the whole error arising from the ionospheric
influence on the signal; a residual noise still remains. Beside this residual ionospheric
noise other error sources can influence the retrieved bending angle, such as orbit uncer-
tainties, local multipath errors, or receiver noise.

To minimize the errors resulting at high altitudes, background information is included
in the retrieval process. By means of statistical optimization, the best linear unbiased
estimator (BLUE), αopt, is derived via

αopt = αb + B(B + O)−1(αo − αb), (1.13)

where αo, αb are the observed and the background bending angle profiles, O and B are
the observation and background error covariance matrices, respectively.

The background information is either MSISE-906 climatologies or operational analyses
of the ECMWF7. The retrieved data used in this work are obtained by implementation
of ECMWF background information.

A detailed description of the high altitude retrieval can be found in Steiner et al.
(2004), Gobiet and Kirchengast (2004), and an evaluation of the retrieved parameters is
available from Gobiet and Kirchengast (2004) and Gobiet et al. (2005b).

The Abelian Integral Equation and the Abelian Inversion

The connection between the bending angle α, which is a function of the impact parameter
a, and the index of refraction n is given by the Abelian integral equation:

α(a) = 2a

∞∫

rt

1√
(nr)2 − a2

d ln(n)

dr
dr, (1.14)

rt is the radius at the tangent point.

Inverting this integral equation yields the expression of the refractivity index as a
function of the radius at the tangent point. The Abelian inversion means

n(r) = exp


 1

π

∞∫

a1

α(a)√
a2 − a2

1

da


 , (1.15)

a1 = n(r)r is the impact parameter for the particular ray of which the tangent radius is
r = rt.

It is quite evident that knowing the bending angle α(a), the Abelian inversion can be
solved by numerical partial integration.

6MSISE-90 is a precursor model of the NRLMSISE-00 model, which is described in detail in Section
1.4.

7Details concerning analyses of the ECMWF (European Centre for Medium-Range Weather Forecasts)
are found in Section 1.2.
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Derivation of Atmospheric Parameters

The knowledge of the refractivity index n enables the instant calculation of the refrac-
tivity N via equation (1.2).

At microwave wavelengths the refractivity N depends on the temperature T [K], the
total pressure p [hPa], the partial pressure of water vapor e [hPa], the free electron
density in the ionosphere ne [electrons/m3], the signal frequency f [Hz], and the mass
of condensed water in the atmosphere W [g/m3]:

N = 77.6
p

T
+ 3.73 × 105 e

T 2
− 4.03 × 107ne

f2
+ 1.4W. (1.16)

The first term of equation (1.16) represents the contribution of the dry atmosphere,
which results from the polarizability of atmospheric molecules. The second term exists
because of the permanent dipole moment of water vapor, which represents the so called
moist term. The third and the forth term arise due to the ionospheric impact and the
effect of scattering from liquid water droplets, respectively. The ionospheric correction
(1.8) yields the elimination of the accompanying term, and the last term can be neglected
because the content of liquid water is very small compared to the other terms in realistic
dispersion.

The refractivity remains dependent on the dry and the moist term,

N = 77.6
p

T
+ 3.73 × 105 e

T 2
. (1.17)

This simplification is known as the Smith-Weintraub formula.

Derivation of Density: The moist part of equation (1.17) can be neglected in atmo-
spheric regions where the specific humidity is lower than 10−4 kg/kg (Kursinski et al.
1997) and there the refractivity can be expressed as

N = 77.6
p

T
. (1.18)

The refractivity N depends on the height h and can be combined with the density ρ(h)
using the state law of ideal gas:

ρ(h) =
M

77.6R
N(h) =

M

R

p(h)

T (h)
. (1.19)

R = 8.314 J/(K mol) is the gas constant and M is the mean molecular mass of dry air;
M = 28.964 kg/kmol at an altitude below 80 km. The constant factor 77.6 has the unit
[K/hPa]. p(h) and T (h) are the pressure and the dry temperature, respectively.

Derivation of Pressure: In regions below approximately 100 km (homosphere) the pres-
sure can be derived from the equation of hydrostatic equilibrium, dp(h) = −g(h)ρ(h)dh,
where g is the acceleration of gravity. Knowing g(h) and ρ(h), the pressure p(h) can be
derived
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1.1 CHAMP Radio Occultation Data

p(h) =

∞∫

h

g(h′)ρ(h′)dh′. (1.20)

Derivation of Dry Temperature: Using the ideal gas law (equation (1.19)) a second
time, it is possible to derive the dry temperature profile:

T (h) =
M

R

p(h)

ρ(h)
. (1.21)

Derivation of Water Vapor: It is not possible to derive the content of water vapor
in an atmospheric column without ancillary information. Auxiliary data result from
independent observations and climatologies or meteorological analyses.

Characteristics of RO Measurements

Compared to conventional method of measurements, the RO technique provides several
interesting properties.

1. Self-calibration: At the start of a setting event (which CHAMP measurements
are) or at the end of a rising event, the unattenuated signal is measured. The self-
calibration arises from the normalization of all measurements made during this
event to the comparison measurement. Stability of the atmosphere during this
event is required.

2. Long term stability: Due to self-calibration, no trend concerning the measurement
equipment is shown. The expected drift is less than 0.1 K per decade. This
property is of prime importance in climate monitoring.

3. Resolution: The vertical resolution ∆ζ is determined by the diameter of the first
Fresnel zone DF. At GPS carrier frequency f1, the vertical resolution is ∆ζ =
DF = 1.4 km in the stratosphere. A better vertical resolving power is achieved
near the earth’s surface with ∆ζ = DF ≤ 0.5 km.

The horizontal resolution ∆ϑ can be estimated knowing the vertical resolution.
∆ζ = 1.4 km yields ∆ϑ = 270 km; ∆ζ = 0.5 km corresponds to ∆ϑ = 160 km
(Kursinski et al. 1997).

4. Accuracy: The accuracy of radio occultation data depends on external influences
such as ionospheric conditions (depending on daytime and solar activity), prop-
erties of the sampled atmosphere (dry or wet), as well as the quality of the used
instruments (e.g., signal-to-noise ratio (SNR)) and the retrieval (e.g., initialization
of the Abelian integral). A detailed error analysis on radio occultation yields a
retrieved temperature accuracy better than 1 K between about 4 km and 40 km
at optimal conditions and better than 1 K between 10 km and 28 km height at
worst conditions (Kursinski et al. 1997).
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5. Global coverage: Satellites that receive GPS signals to measure phase delays are
LEO satellites, which pass over the poles at an altitude of about 1 000 km in
order to get global coverage. Profiles of atmospheric parameters over continental
regions and above the oceans are obtained in a uniform manner, but there are more
occultation events in mid and high latitude regions than in low latitude regions
(cf., Section 1.1.4). More than 200 occultation events can be attained daily from
the GPS receiver aboard one single satellite.

6. All-weather capability: GPS occultation observations are made at wavelengths of
about 0.2 m, enabling the limb sounding of the atmosphere because these waves
are almost not absorbed by clouds and aerosols. Nevertheless, tropical regions with
high specific humidity cannot be scanned by the radio occultation limb sounding
technique because the GPS signal breaks away.

1.1.3 Binning of Retrieved Profiles

(Author: B.C. Lackner)

To derive evenly distributed grid point temperature values (“climatologies”), the re-
trieved radio occultation profiles, which are without spatial regularity, are assigned to
so-called “bins” – surface areas with a certain fixed dimensioning. Therefore, a fixed
number of bins at all latitudes is essential, which leads to overlapping to maintain equal
area. Occultation events in overlapping regions are assigned to more than one bin. This
effect is stronger developed in polar regions and is also dependent on the desired bin-size
(larger bins lead to more overlapping).
To generate climatologies, the bin size was chosen in a manner that at least three occul-
tation events took place in every bin each month. For that reason the originally desired
resolution of 10◦× 30◦ (latitude × longitude) was not possible, since during some months
single bins with no occultation event occurred (see Figure 1.3).
Furthermore, the CHAMP profiles were interpolated to a vertical resolution of 500 m

(ranging from earth’s surface up to 35 km), whereby arithmetic means were computed
for each altitude range of a bin.

Binning Resolutions

To compare CHAMP radio occultation profiles with other climatologies, three different
forms of representations were chosen together with therefore suitable binning resolutions:

• Latitude × height plots: Consisting of four longitudinal sectors (four bins) repre-
senting the regions Eurasia-Africa (20◦W – 70◦E), Asia-Australia (70◦E – 160◦E),
Pacific (160◦E – 110◦W), and America-Atlantic (110◦W – 20◦W). Each bin spreads
over 10◦ latitude and 90◦ longitude (see Figure 1.4).

• Longitude × height plots: These graphs shall help to explore differences of high
(60◦N/S to 90◦N/S), mid (30◦N/S to 60◦N/S), and low (30◦S to 30◦N) latitudes.
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1.1 CHAMP Radio Occultation Data

Figure 1.3: 10◦ × 30◦ binning for April 2003 – the red squares indicate the spatial distribution
of radio occultation events. Two bins (marked with arrows) do not contain the required number
of occultation events to calculate climatologies.

Figure 1.4: 10◦ × 90◦ binning resolution for latitude slices. The four resulting sectors contain
following regions: America-Atlantic, Eurasia-Africa, Asia-Australia, and Pacific.
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The bins are placed in a manner so that the Greenwich meridian is the center of
one bin (see left graph in Figure 1.5) and have a resolution of 30◦× 30◦.

• Longitude × latitude plots: Maps are computed for four selected height levels
(7 km, 15 km, 25 km, 35 km, respectively, 32 km for NCEP/NCAR data) using a
more detailed binning resolution of 30◦× 20◦ (see right graph in Figure 1.5).

Figure 1.5: Binning resolutions. Left: 30◦ × 30◦ for longitude × height plots. Right: 30◦ × 20◦

for longitude × latitude plots.

1.1.4 Radio Occultation Data of the Selected Period

(Author: B.C. Lackner)

The total amount of retrieved RO profiles in the selected period (March 2002 to
February 2004) sums up to 127 648. As the period includes 24 months, the monthly
arithmetic mean of ROs is 5 319, which leads to about 175 RO profiles – on the average
– per day. Anyhow, not all of these profiles can be used as different problems may occur
during the retrieval process.

Radio Occultation Profiles and Their Quality Parameter

Each retrieved RO profile is signed with a quality parameter (called QF = quality f lag),
which gives information on problems encountered during the retrieval (Gobiet 2004).
For further analyses, only profiles with quality flags equal to zero or two were applied.

• QF = 0: “No problems. Data may be used without restriction.”

• QF = 2: “The observation error could not be estimated from data and was set
conservatively to 50µrad. Use this kind of data only below 25 km!”

Table 1.1 shows the monthly amount of RO profiles, arranged according to their quality
parameter.
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2002 2003 2004

month all QF=0 or 2 all QF=0 or 2 all QF=0 or 2

Jan – – 5 592 4 667 5 267 4 365

Feb – – 5 051 4 164 4 763 3 995

Mar 4 755 3 902 5 030 4 058 – –

Apr 5 793 4 894 5 067 4 152 – –

May 6 029 4 944 5 869 4 839 – –

Jun 3 938 3 188 5 906 4 763 – –

Jul 5 366 4 466 5 713 4 542 – –

Aug 6 628 5 443 5 420 4 350 – –

Sep 5 938 4 856 4 794 4 028 – –

Oct 5 629 4 417 5 324 4 462 – –

Nov 4 302 3 345 4 819 3 928 – –

Dec 5 322 4 176 5 333 4 257 – –

Total 53 700 43 631 63 918 52 210 10 030 8 360

Table 1.1: Number of retrieved RO profiles (in the selected period) according to their quality
parameter.

Most of the retrievals caused no problems (QF equals zero). More than 76 % of all
data obtained this quality parameter wheras only 5 % of the profiles should just be used
below 25 km (QF equals two).

Figure 1.6 shows the daily number of radio occultation events, which were used for the
analysis (QF 0 and 2). It is worth mentioning that there are repeatedly some days with
nearly no applicable events (such as in June and November 2002, March and November
2003). The noticeable high value of occultation events in the middle of November 2003
(November 15, 2003, 276 profiles) seems to be based on a failure.

Zonal Distribution of Radio Occultation Events

In regard to the zonal distribution of radio occultations, a clear relationship between
the number of radio occultation events and the latitude can be determined. Due to
the nearly polar orbit of CHAMP (inclination 87.2◦), the larger earth surface at low
latitudes is rarely covered with occultation events compared to the smaller earth surface
at higher latitudes. The distribution of occultation events is symmetric with respect to
the equator, local maxima appearing about every 30◦, that is to say near 20◦, 50◦, and
80◦ north and south.

However, the smallest amount of events over all is found in the polar regions (north
and south of 85◦). Partitioning the earth in 37 latitude slices of five degree extension,
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Figure 1.6: Daily number of radio occultation events from March 2002 to February 2004.

the number of RO events averages to 126 for each slice in January 2003. The “highest”
northern slice (85◦N – 90◦N) only contains three RO events, the southern slice seven
events, while the adjacent slices (80◦N/S – 85◦N/S) include more than hundred. The
minimal number of events in the two highest slices seems to be a result of the inclination
of CHAMP and the GPS-satellites and the small surface region yielding in a lower
probability for an occultation event to take place.

Monthly distributions of ROs resemble those in Figure 1.7.

Figure 1.7: Histogram of the monthly distribution of the zonal number of ROs for two selected
months (January, July 2003).

Meridional Distribution of Radio Occultation Events

As expected, there is nearly no relationship between the number of ROs and the lati-
tude; the variance from meridional bin to bin is negligible (see Figure 1.8). A certain
longitudinal period of accumulating events is barely discernible.

18



1.2 ECMWF Atmospheric Analysis Data

Figure 1.8: Histogram of monthly distribution of meridional number of ROs for two selected
months (January, July 2003).

1.2 ECMWF Atmospheric Analysis Data

(Author: B. Pirscher)

The principal tasks of the European Centre for Medium-Range Weather Forecasts
(ECMWF) are the development of numerical methods for medium-range weather fore-
casting, the preparation of medium-range weather forecasts (≤ 10 days) and their dis-
tribution to meteorological services, scientific and technical research directed to the
improvement of these forecasts, and the collection and storage of meteorological data
(Persson 2001).

Since November 25, 1997 the operational global analyses follow from the 4D-Var (4-
Dimensional Variational) analysis assimilation algorithm (Bouttier and Rabier 1997/98)
yielding analyses at the four main synoptic hours 00 UTC, 06 UTC, 12 UTC, 18 UTC.

1.2.1 The Data Assimilation and Analysis System

A general survey about data assimilation can be found in Bouttier and Courtier (1999),
and a detailed description of the 4D-Var assimilation algorithm is available from Fischer
(2001).

An analysis is an image of the best estimate of the true atmosphere’s state at a
given time. Because of too sparse observations, it is necessary to include background
information and physical constraints to obtain an analysis close to the true state. This
analysis technique is called data assimilation. The background information is an a priori
estimate of the model state; it can be taken from the output of a previous analysis.

Data Availability

About 2 500 000 different observational data are used per 12-hour period. Figure 1.9
depicts some important data sources incorporated in ECMWF analyses.
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1 Data Description

• Conventional:

– Surface:
Weather stations (land, sea)

– Profiles:
Radiosondes,
UHF/VHF profilers

– Altitude: Aircrafts

• Satellite:

– Imagery

– Radiances

– Scatterometers

Figure 1.9: Conventional and satellite data are
used in ECMWF analyses. The numbers repre-
sent the typical number of observations used to
estimate the atmosphere initial conditions in a
typical day (Buizza 2000).

Satellite data have become an essential part of the observing system. By means of
satellite measurements, gaps in polar regions and above ocean areas can be closed.

There are polar orbiters (sun-synchronous circular orbits at an altitude of about
1 000 km), which almost pass over the poles and furnish data in high spatial resolu-
tion, and geostationary satellites (stationary with respect to one point on the earth’s
surface at an altitude of approximately 35 800 km), which send data in high temporal
resolution.

Nearly 90 % of all assimilated data come from satellites (van der Grijn 2004).

A more detailed summary of observations used in the 4D-Var data assimilation at the
ECMWF is given in Table 1.2.

Quality Control

The quality of data is of high relevance because of a significant effect on data assimilation.
The quality control includes the comparison of the observations with model fields, the
consistency between different data sources, and the self-consistency (Mendez 2004).

ECMWF Data Assimilation

The 4D-Var assimilation algorithm is a non-sequential (retrospective) assimilation. That
means that observations made in the past and observations from the future are used. It
requires, during the assimilation, to wait for the observations to be available over the
whole time interval before the analysis procedure is able to start.

A schematic illustration of the 4D-Var assimilation technique is illustrated in Figure
1.10.
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1.2 ECMWF Atmospheric Analysis Data

Observation type Variables

SYNOP synoptic surface observations u, v, ps (or z), rh

AIREP aircraft reports u, v, T

SATOB satellite cloud track winds u, v

DRIBU drifting buoy reports u, v, ps

TEMP radiosonde soundings u, v, T, q

PILOT wind soundings u, v

TOVS satellite temperature soundings Tb

PAOB pseudo observations of surface pressure ps

SCATT scatterometer reports u, v

Table 1.2: Observation types used in the 4D-Var data assimilation and retrieved atmospheric
parameters.

u, v: wind components ps: surface pressure z: geopotential height

rh: relative humidity T : temperature q: specific humidity

Tb: brightness temperature

Every six hours (00 UTC, 06 UTC, 12 UTC, 18 UTC) a 4D-Var is performed to
assimilate the most recent observations using the previous forecast as background. The
ECMWF data assimilation uses a 12-hour time window, from 9 hours before to 3 hours
after the nominal analysis time (Persson 2001). That means that if a 12.00 UTC analysis
should be computed, the earliest time observation information can enter in the analysis
is 03.00 UTC, the latest time is 15.00 UTC. The analysis starts to be computed at
19.00 UTC. The algorithm is designed to find a compromise between the previous forecast
at the beginning of the time window and the observed data. An analysis is optimal if it
is closest in a root mean square sense to the true state.

An analysis never specifies the true state of the atmosphere. Because of errors in the
background (estimation errors of the background state), observation errors (among other
things instrumental errors), and analysis errors (estimation errors of the analysis state)
an analysis will never be perfect.

From November 25, 1997 to September 12, 2000 the 4D-Var assimilation technique
operated on a 6-hour time window (three hours before and three hours after the analysis);
it has since been moved to the 12-hour cycling.

At the introduction of the 4D-Var analysis the spectral resolution of the model was
T213L318. After some changes in April 1998, in March 1999 (Untch and Simmons
1998/99), October 1999 (Fischer et al. 2000), and November 2000 (Buizza et al. 2001)

8T213L31: Horizontal resolution: T213, triangular truncation, resolving 213 waves around a great circle
on the globe; vertical resolution: L31, 31 vertical levels between the earth’s surface and 30 km height.
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1 Data Description

Figure 1.10: Simplified view of the 4D-Var analysis (Persson 2001). xb denotes the background
model state, xa is the analysis model state, Jb represents the background term and Jo the
observation term.

the resolution changed to TL511L609.

The horizontal resolution TL511 is roughly equivalent to 40 km grid length at the
mid-latitudes. The vertical resolution is divided into 60 height levels from the earth’s
surface up to a pressure of p = 0.1 hPa, which is about 64 km height. The levels are
surfaces of constant pressure with highest resolution in the planetary boundary layer
and lowest in the stratosphere and lower mesosphere.

Data Used in This Work

All data used in this work are available in the GRIB (GRIdded Binary) format. It is
a bit-oriented data exchange format, which enables the transmission of large volumes of
gridded data. A detailed description of this format can be found in Stackpole.

A lot of data follow from the 4D variational analysis, such as the 10 m wind components
u and v, the relative and specific humidity, the temperature or cloud cover. In this work,
only dry temperature data are used.

Not only because of the amount of data but also due to the similar resolution to the
radio occultation data, the horizontal resolution of the ECMWF data is reduced to T42
(∼ 300 km). The vertical resolution is still the same, 60 levels, up to 0.1 hPa. Because of
this vertical limit (0.1 hPa corresponds approximately to 64 km), the data are extended
for higher altitudes implementing the MSISE-90 model.

For each RO profile, a coinciding ECMWF profile (a so called “co-located” profile)
was extracted from the analysis by spatial interpolation using the nearest time layer of
the analysis.

9TL511L60: Horizontal resolution: T511, triangular truncation, resolving 511 waves along the great
circle on the globe; Vertical resolution: L60, 60 vertical levels between the earth’s surface and 64 km
height.
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1.3 NCEP/NCAR Reanalysis Data

Monthly means of temperature data are also used in this work. ECMWF provides
operational model level analysis data sets of temperature, averaged over a calendar
month for each of the layers of time at 00 UTC, 06 UTC, 12 UTC and 18 UTC.

1.3 NCEP/NCAR Reanalysis Data

(Author: B.C. Lackner)

To explore the differences between the retrieved radio occultation data and analyzed
data other than ECMWF analyses, NCEP/NCAR reanalysis temperature climatologies
were applied.

As mentioned above, the process of data assimilation precedes the establishing of
analyzed grids, which are the bases for most atmospheric research studies. However,
inhomogeneities in these analyzed grids (caused by various changes over time) limit the
usefulness of the data. Hence, spread over the whole world, different organizations have
established reanalysis projects (e.g., ECMWF, NASA GSFC, NCAR), which aim to
provide relatively “clean” sets of data for further analyses.

1.3.1 The Reanalysis Project

The “National Centers for Environmental Prediction” (NCEP) and “National Center
for Atmospheric Research” (NCAR) cooperated in the “Reanalysis Project” (Kalnay
1999) in order to reanalyze historical data using state-of-the-art models. The project
started in 1989 at NCEP with the initial goal of building a “Climate Data Assimilation
System”, which is not affected by changes introduced by many improvements to the
numerical weather prediction systems. While NCAR collects and organizes the land and
marine surface data archives (including international sources such as the Japanese and
European weather services JMA and ECMWF, as well as US military collections) and
provides them to NCEP together with observed upper and aircraft observations, NCEP
executes the processing, using a current and fixed version of the data assimilation and
operational forecast model. The analyses, forecasts, quality controlled input data, etc.
are again stored in NCAR’s archives.

According to Kalnay (1999) the most difficult task was the assimilation of data from
many different sources and formats as well as their quality control.

Initially, the reanalysis project focused on the period from 1985–1994 (Shea et al.
1994). At the moment various data sets for a huge number of atmospheric parameter
are available from January 1948 up to December 200410. The data sets are updated
yearly.

There are two major products of the reanalysis:

10Temperature fields are among others obtainable as GRIB files from
http://dss.ucar.edu/pub/reanalysis/rean proj des.html and as netCDF (Network Common
Data Format) files from http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml (February 2005).
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1 Data Description

1. Four-dimensional gridded fields of the global atmosphere (including different “re-
forecasts”). Provided monthly means of gridded reanalysis fields were used for this
work.

2. Binary Universal Format Representation (BUFR) archives of the atmospheric and
surface observations for the reanalysis period (including additional information to
each observation as well as meta data11).

The gridded output variables are arranged in four classes, depending on the degree
to which they are influenced by the observations and/or the model. Variables of type
“A” are mainly determined by observations (upper air temperatures), type “B” variables
are determined by both observations and models (variables near surface) and therefore
may be improved by better models. Model-produced variables (“C” and “D”), such as
surface fluxes and precipitation, should be regarded with caution.

The model used for NCEP/NCAR reanalysis is a T62 sigma coordinate system (hor-
izontal resolution 208 km) with 28 height levels. A sigma (σ) coordinate system uses a
transformed pressure coordinate for the vertical resolution. Sigma levels are defined by
σ = p/ps, whereas ps is the surface pressure defined on the model surface topography.
One advantage of sigma level application is that in lower boundaries, sigma levels are
approximately parallel to earth’s smoothed surface. The 28 levels represent the tropo-
sphere and lower stratosphere12. The horizontal resolution corresponds to a 2.5◦× 2.5◦

grid with 144× 73 grid points.
The assimilated observations are (Kalnay 1999):

• upper air rawinsonde13 observations of temperature, horizontal wind, and specific
humidity

• operational TOVS14 vertical temperature soundings from NOAA polar orbiters
over ocean

• temperature soundings over land only above 100 hPa

• cloud tracked winds from geostationary satellites

• aircraft observations of wind and temperature

• land surface reports of surface pressure

11Information about the data, which can be critical for correctly interpreting observations or derived
results.

12Details concerning the levels are available from http://dss.ucar.edu/pub/reanalysis/model vert html
(February 2005).

13According to Shea et al. (1994) a rawinsonde is a radiosonde (expendable balloon-borne instrument
measuring pressure, temperature, and humidity and relaying the information to an observing station)
of which the three dimensional position is measured as a function of time. Because the balloon drifts
with the wind, the position and time information can be used to estimate the winds aloft. These
upper air observations are referred to as “roab” data.

14TIROS–N Operational Vertical Sounder: The TIROS series of satellites were the first to be launched
specifically for atmospheric studies.
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1.3 NCEP/NCAR Reanalysis Data

• oceanic reports of surface pressure, temperature, horizontal wind, and specific
humidity

The model includes parameterizations of all major physical processes such as con-
vections, large scale precipitation, gravity wave drag, radiation with diurnal cycle and
interaction with clouds, boundary layer physics, vertical and horizontal diffusion pro-
cesses, etc. The resulting fields of the reanalysis are output every six hours, but monthly
mean data are available too and are used through out this work.

1.3.2 netCDF Data Format

The reanalysis project aims to ensure the widest possible distribution of the derived
products among researchers through CD-ROMs and different internet pages. Therefore
the data are available as netCDF-files from NOAA’s Climate Diagnostic Center15, too.

NetCDF stands for “network Common Data Format” and is an interface for array-
oriented data access. The software was developed at the Unidata Program Center16 in
Boulder, Colorado, USA (for more details see Rew et al. (2004)). Unidata is a National
Science Foundation sponsored program aiming to make the best use of atmospheric and
related data for promoting education and research. The netCDF software was intended
to provide a common data access method for various Unidata applications.

The software functions as an I/O library, callable from C, FORTRAN, C++ or other
languages. Likewise IDL’s17 I/O facilities allow to read scientific data formats (CDF18,
HDF19 as well as netCDF) and were used in this context.

netCDF is “self-describing” and “portable” meaning that a data set includes infor-
mation defining the data it contains and that the data in a data set are represented
in a form that can be accessed by computers with different ways of storing integers,
characters, and floating-point numbers. Compression of data is possible with netCDF,
but it was not designed to achieve optimal compression of data. Hence, using netCDF
may require more space than special-purpose archive formats that exploit knowledge of
particular characteristics of specific data sets.

One of the goals of netCDF is to support efficient access to small subsets of large
data sets. NetCDF uses direct access rather than sequential access. This can be much
more efficient when the order in which the data are read is different from the order in
which they were written, or when they must be read in different orders for different
applications. As the netCDF-files from the Climate Diagnostic Center contain monthly
temperature means from January 1948 to date, whereas in the context of this work only

15The data can be downloaded for free from http://www.cdc.noaa.gov/ → Climate Data and Resources
(February 2005).

16The netCDF software package is available from ftp://ftp.unidata.ucar.edu/pub/netcdf/ (February
2005).

17Interactive Data Language
18Common Data Format
19Hierarchical Data Format
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1 Data Description

data from March 2002 to February 2004 were required, this feature proved to be very
useful.

1.3.3 Adaption of NCEP Height Levels to RO Data Levels

NCEP/NCAR’s temperature data and appurtenant geopotential heights are made avail-
able in two netCDF-files with 17 pressure levels each, namely 1000, 925, 850, 700, 600,
500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa (with a horizontal resolu-
tion of 2.5◦× 2.5◦ for each level), ranging from earth’s surface to approximately 30 km
height.

Conversion of Geopotential Heights Into Geometric Heights Above the Geoid

While the altitude profiles of the CHAMP radio occultation data are given as geomet-
ric heights (bearing on the earth’s reference ellipsoid), the NCEP/NCAR altitudes are
geopotential heights (measured from mean sea level – MSL). Thus, to compare these
two data sets, it was necessary to convert NCEP/NCAR’s geopotential altitudes into
geometrical ones.

γ(h, ϕ), the normal gravity, is a function of both geometric altitude (h) and geodetic
latitude (ϕ).

The height dependency of gravity can be derived from the hydrostatic equation as-
suming spherical layers. Instead of an air column, a cone is studied of which the sections
coincident with the level of RE and (RE + z) being equal to A0 = 1 m2 and A (see Fig-
ure 1.11). The horizontal extension of the cone section increases with height, whereas
gravity decreases.

Figure 1.11: Derivation of hydrostatic equation (spherical layers).

From the similarity we conclude:

A

A0
=

(RE + z)2

R2
E

(1.22)
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1.3 NCEP/NCAR Reanalysis Data

As gravity is reciprocal to the square of the distance from earth’s center, the height
dependency of gravity can be formulated as follows:

g

g0
=

R2
E

(RE + z)2
(1.23)

Geopotential heights include gravity dependence on the latitude as well. Therefore, the
geopotential is weighted with the normal gravity value from 45◦ latitude (γ45). This
latitude was chosen because it was used by the World Meteorological Organization
to calibrate barometers. As the earth’s gravity model changed since this, a value of
9.80665 m/s2 and a latitude of 45.542◦ is used.

The issue of converting between geopotential (z) and geometric (h) height can be
realized by writing the expression for geopotential height in differential form:

dz =
γ(z)

γ45
dh (1.24)

with γ(z) = γ(ϕ)

(
RE

RE + h

)2

(1.25)

RE is the mean earth radius. Substituting γ(z) in the differential equation results in
following expression:

dz =
γ(ϕ)

γ45

(
RE

RE + h

)2

dh (1.26)

The latitude dependence of gravity weighted by the 45◦ latitude value is approximated
with following series, where fGrav stands for γ(ϕ)

γ45
:

fGrav = 0.99731 + 0.0053 (sin (ϕ))2 (1.27)

Using differences instead of the differential form and converting the formula for geometric
height, we can write:

∆h =
1

fGrav

(
RE + z

RE

)2

∆z (1.28)

h(1) =
1

fGrav

(
RE + 0.5 z (1)

RE

)2

z (1) (1.29)

h (j + 1) = h (j) +
1

fGrav

(
RE + 0.5 [z (j + 1) + z (j)]

RE

)2

[z (j + 1) − z (j)](1.30)

The mean earth radius used in this iteration process is 6 371 km.

The hence received geometric heights for NCEP/NCAR temperature profiles were
used in further considerations.
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1 Data Description

Figure 1.12: Altitude scales. Orthometric height (H), ellipsoid height (h), geoid undulation
(N).

As geopotential heights bear on the geoid20, while CHAMP heights are based on the
reference ellipsoid, the undulation of the geoid is not included in this assessment. Figure
1.12 shows the connection between orthometric height (H, height above the geoid),
ellipsoid height (h, height above the reference ellipsoid) and the undulation of the geoid
(N), which is the difference between these two items. The undulation of the geoid rises
to a magnitude of about 100 m and was not included in this respect.

Interpolation of Heights

After converting the geopotential heights into geometric ones, the NCEP/NCAR data
had to be adapted to a regular height grid with 500 m steps. The left hand graph
in Figure 1.13 shows the profile of one grid point composed of the 17 pressure level
data (which have already been transformed from geopotential height into geometric
height). The 17 levels represent the temperature progression in troposphere and lower
stratosphere well, and the equidistant grid was achieved by linear interpolation between
the given points (the result is depicted on the right graph in Figure 1.13, with the blue
asterisks marking the given pressure level values and the red squares the interpolated
equidistant grid values).

1.4 MSIS Data

(Author: B.C. Lackner)

1.4.1 Model Description

NRLMSISE-00 (for further details see Picone et al. (2002) and Picone et al. (2004)) is an
empirical model of the neutral atmosphere, which enables one to calculate number den-
sities of certain elements (He, O, N2, O2, Ar, H, N), total mass density, and temperature
from earth’s surface to thermosphere. NRL stands for “Naval Research Laboratory”
(where the new model has been developed) and MSIS for “Mass Spectrometer and

20The geoid is the equipotential surface of the geopotential that coincides in the mean with the mean
sea level.
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Figure 1.13: Interpolation of pressure level heights. Left: Profile of 17 pressure level data,
which have already been transformed from geopotential height into geometric height (marked
with blue asterisks). Right: Equidistant height grid (red squares) achieved by linear interpolation
between pressure level data (blue asterisks).

Incoherent Scatter Radar”; the primary data sources for the first model (MSIS-86).
The E indicates that the model extends from ground to space (the original MSIS-86
model only covered altitudes above 90 km). NRLMSISE-00 is a major upgrade of the
MSISE-90 model in the thermosphere and includes further observed values such as satel-
lite drag data, revised O2 and O data and an additional nonlinear solar activity term
for high altitudes. The model does not depend on the calendar year.

Apart from that, the NRLMSISE-00 model complies with MSISE-90 model. Be-
low 72.5 km, the model bases on tabulation of zonal average temperature and pres-
sure by Barnett and Corney, which was also used for CIRA-86 (COSPAR International
Reference Atmosphere; see Section 1.5.1); below 20 km additional data from the Na-
tional Meteorological Center were applied. The model should be used for studies reaching
across several atmospheric boundaries rather than for specialized tropospheric or strato-
spheric analyses.

A FORTRAN source code (driver and subroutine) for all model versions is available
from the internet21. The database underlying the code covers several decades (1961–

21http://uap-www.nrl-navy.mil/models web/msis/msis home.htm (November 2004).
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1997, exact periods depend on included data sources) and the model takes into account
statistical variability while interpolating among or extrapolating the underlying data
sets to estimate composition, temperature, geophysical conditions, and locations that
are not directly covered by the database. Spherical harmonics are applied to represent
the spatial variability of the key parameters defining temperature and number density
profiles. The fundamental variables define nodes and gradients of the temperature pro-
file for altitudes below 120 km. MSISE-90 and NRLMSISE-00 coefficients are the same
below 72.5 km, since all of the “new” data only relate to the thermosphere.

The NRLMSISE-00 input variables to calculate temperatures below 80 km are:

• year (ignored in current model) and day of year (from 1 to 365)

• universal time – UT [seconds]

• local time is included as a function of UT and longitude

• altitude [km]

• geodetic longitude and latitude [degree]

• constant for solar F10.7 cm flux (should be set to “150” below 80 km)

• constant for daily magnetic index AP (should be set to “4” below 80 km)

• mass number (“0” for temperature)

1.4.2 Background Information About the Building of NRLMSISE-00
Climatologies

All considerations in relation to this study were based on monthly means. As the
NRLMSISE-00 Fortran code calculates daily values, the annual temperature variation
(see Figure 1.14) was examined at first in order to determine whether the tempera-
ture values from the middle of every month represent a good approximate value for the
monthly mean, instead of calculating the monthly mean using all days of a month.

Hereafter, two ways were used to calculate monthly temperature means (for January)
at one gridpoint (45◦N, 0◦E):

• usage of the middle (15th day) of the month

• calculation of the arithmetic mean of all days for the respective month

The resulting monthly means differ in the second decimal point: whereas the arith-
metic mean of all days is 250.884 K, the temperature of the 15th day of the month
January is 250.849 K.

Because of the minor deviation, the temperature values of the middle of every month
were used for further contemplations. The NRLMSISE-00 climatologies were calculated
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1.5 CIRA Data

Figure 1.14: Annual temperature variations of NRLMSISE-00 at three different heights (left
column: surface, middle column: 5 km altitude, right column: 15 km altitude) at mid (top) and
high latitudes (bottom).

for 70 hight levels (from 0.5 km to 35 km, 0.5 km steps) with 665 grid points (10◦× 10◦)
each. After that, this data set was used to compute the desired resolutions (10◦× 90◦,
30◦× 20◦, 30◦× 30◦) to compare NRLMSISE-00 with CHAMP RO temperature data.

To verify the correctness of the modified driver and the results of the subroutine, maps
and longitude-height-graphics were compared with results from EGOPS22. An example
of a NRLMSISE-00 map (altitude: 7 km) is shown in the left graph of Figure 1.15; a
longitude × height plot (Eurasian-African sector) in the right graph of the Figure.

1.5 CIRA Data

(Author: B. Pirscher)

1.5.1 CIRA-86 Model Description

The COSPAR23 International Reference Atmosphere, 1986, is a reference atmosphere
of zonal mean temperature, geopotential height/pressure, and zonal wind. A detailed
description is given in Fleming et al. (1990).

CIRA-86 is the fourth CIRA edition; former issues appeared in 1961, 1965, and 1972.
These models were based on direct observational data of rockets and satellites as well
as atmospheric models. They contained different kinds of atmospheric properties in

22End-to-End GNSS Occultation Performance Simulator
23COSPAR: COmmittee on SPAce Research
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Figure 1.15: NRLMSISE-00 temperatures (January 2003). Left: Map of temperature distribu-
tion at 7 km altitude. Right: Latitude × height slice of Eurasian-African sector.

different altitude regions (altogether between 25 km and 2 000 km; mean temperature
profiles were available from 30 km to 300 km).

The 12 monthly tables of CIRA-86 comprise data sets of temperature, zonal wind,
and geopotential height in constant pressure coordinates and temperature, pressure,
and zonal wind in constant altitude levels. The data are given from 80◦S to 80◦N
and extend from the earth’s surface (exception: pressure data set starts at 20 km) to
approximately 120 km. The latitudinal resolution is 5◦ in pressure coordinates and 10◦

in altitude coordinates; the vertical resolution is −0.25 ln(p/p0) (p0 = 1013 hPa) and
5 km respectively.

Three data sources are incorporated in the CIRA-86 model: the “Global Atmospheric
Circulation Statistics, 1958 – 1973”, compiled from Oort, the “Middle Atmosphere Ref-
erence Model Derived from Satellite Data”, and the MSIS-83 empirical model.

Global Atmospheric Circulation Statistics, 1958 – 1973

The troposphere and lower stratosphere (ground to approximately 20 km) of the CIRA-
86 model are taken from Oort’s “Global Atmospheric Circulation Statistics, 1958 – 1973”.
Zonal mean temperatures and zonal wind are available in a latitudinal resolution of 5◦

(between 80◦S and 80◦N) in specific pressure levels. Data from five stations (U.S. Na-
tional Meteorological Center, National Center for Atmospheric Research, Ocean Station
Vessels, British Meteorological Office, and National Climatic Center) were implemented
and edited.

Middle Atmosphere Reference Model Derived From Satellite Data

Because of Barnett and Corney, the publishers of the “Middle Atmosphere Reference
Model Derived from Satellite Data”, these data are often called “BC data”. They
are implemented in the CIRA-86 model in the stratosphere and mesosphere (15 km to
80 km). The data contain temperature, zonal wind, and geopotential height in constant
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1.5 CIRA Data

pressure coordinates as well as temperature, pressure, and density in constant altitude
coordinates. The data are mainly derived from measurements of Nimbus 5 Selective
Chopper Radiometer (SCR) Nadir Sounder as well as Nimbus 6 Pressure Modulator
Radiometer (PMR) Nadir Sounder, but at lower altitudes (1000 hPa to 50 hPa) they
contain data from Oort’s atlas. At about 30 hPa they use data from analyses made by
the Free University of Berlin.

MSIS-83 Empirical Model

Between a height of 86 km and 120 km, the CIRA-86 model bases on the MSIS-83 empir-
ical model. Origins of these data are satellite-, rocket-, and ground based measurements.
Moderate solar and low magnetic activity were supposed when implementing the values
of temperature and total densities.

Combination of the Data Sets

The values of the models were merged to obtain a smooth transition.

In case of the zonal mean temperature, the values were obtained by merging the
data sets of the “Middle Atmosphere Reference Model Derived from Satellite Data” and
the “MSIS-83 empirical model”, as mentioned above. The data of the Oort’s atlas are
included in the BC data set. So, up to about 0.01 hPa (approximately 80 km) only BC
temperatures were incorporated in the CIRA-86 model; between 0.01 hPa and 0.002 hPa
(between about 80 km and 90 km) the data were smoothed using an elemental Gaussian
filter (weights: 1/4, 1/2, 1/4); above 0.002 hPa exclusively MSIS-83 empirical model
data of the thermosphere were used.

1.5.2 CIRA86aQ UoG Model Description

The name CIRA86aQ UoG is put together from the CIRA-86 model, “aQ” meaning
“and humidity” (Q is the symbol of humidity), and “UoG” standing for “University of
Graz” – the point of origin of the model. A technical report of the model is given by
Kirchengast et al. (1999).

Four large modifications were made in this model. The first one was the enhancement
of the pressure tables from 20 km down to the ground, second the substitution of the
wind tables through humidity tables, third the improvement of the resolution of the
temperature and pressure tables (next to humidity tables) in regions below 15 km (from
5 km to 1 km), and forth the latitudinal dimension enhancement from 80◦S and 80◦N
to 90◦S and 90◦N.

Temperature Tables of the CIRA86aQ UoG Model

As mentioned above, the vertical resolution of the temperature below 15 km was im-
proved to 1 km in the CIRA86aQ UoG model. The mathematical method used was
the cubic spline interpolation. The latitudinal extension was achieved by doubling the
values of 80◦S/80◦N.
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Figure 1.16: CIRA86aQ UoG model: Temperatures at 7 km altitude.

The CIRA86aQ UoG Fortran95 Model

The CIRA86aQ UoG Fortran95 Model (Kirchengast et al. 1999) is implemented in the
EGOPS software (details to this software can be found in Kirchengast et al. (2002)).

The model enables one to calculate temperature, specific humidity, water vapor pres-
sure, (total) pressure, mass density, and refraction. The height-, latitude-, and longitude
grid can be selected for a fixed universal time and month (January to December).

It is possible to compute a dry or a moist atmosphere and to achieve a linear or a
cubic spline interpolation (both vertical and/or latitudinal), but for this it is necessary
to go into the source code of EGOPS. The primary selected atmosphere (which is still
used) is a moist one, the vertical interpolation type is a spline interpolation, and the
latitudinal interpolation is linear.

The calculations of the CIRA86aQ UoG temperatures are based on the following in-
put:

• month (January to December),

• height grid: 0 km to 50 km, resolution: 0.5 km,

• latitude grid: 90◦S to 90◦N, resolution: 5◦,

• longitude grid: −180◦ to +180◦, resolution: 5◦,

• time: 0 UT.

Figure (1.16) shows the CIRA86aQ UoG temperatures at 7 km height. By means of this
map, the zoning of the atmospheric parameter is clearly evident.
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2 Errors

2.1 Errors Comparing Observation and Reference Data

(Author: B.C. Lackner )

Nothing in our world can be measured without some error. As fas as users do not deny
or ignore the error of a measurement, this shall not be a problem. Errors can arise from
different sources, and understanding the types of errors may allow one to consider their
effects on a measurement. In regard to CHAMP radio occultation retrieval, three errors
are to be contemplated. It has to be mentioned that in this context “errors” mean the
differences between the radio occultation data set relative to another selected reference
data set.

2.1.1 Observational Error – Bias

A systematic deviation in a measurement is defined as a bias. It can be caused by faulty
equipment, subjectivity of measurer, environmental impacts (e.g., refraction) or other
“undefinable” effects. Biases are differences between the data gathered and what the
data are thought to present. A bias is a tendency of the data to fall more to one side of
the average than the other. Hence this systematic error cannot be reduced by enlarging
the sample – when data are biased, gathering bigger samples means that the average of
the data is certain to differ from the expected value.

In the case of our investigation, the differences between the retrieved CHAMP tem-
perature profiles and the co-located “true” ECMWF (“model”) temperature profiles for
each bin result in the bias (the principal is illustrated in Figure 2.1). In equation (2.1) N
stands for the number of profiles contributing to the temperature value in the analyzed
bin.

∆T bias =
1

N

N∑

i=1

(
T retr

i − T true
i

)
(2.1)

The total observational error (root-mean-square error of bias), including systematic and
random errors, results from the root of the sum of squared bias and standard deviation.
In the calculation routine, the number of occultation events in each bin was checked,
and only for a minimum of three events, the bias was computed by forming differences
between CHAMP and co-located ECMWF profiles and then averaging all the differences
in the bin.
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Figure 2.1: Calculation of bias between CHAMP radio occultation profiles (“retrieved”) and
ECMWF temperature profiles (“model”) for a selected bin.

2.1.2 Sampling Error

In general, a sample is a part of the total; sampling then is the selection of a subset from
a larger whole. The sampling error is associated with an estimate due to sampling. As
more observations are gathered, the sampling error tends to balance itself out (whereas
the bias persists).

Figure 2.2: Sampling error: Difference between “true” ECMWF mean temperature field and
mean field of CHAMP profiles in a selected bin.

Since the scanning of the atmosphere with radio occultation measurements is always
discrete, variations in both time and location occur. The sampling error of the radio
occultation profiles is determined by comparing the “true” (ECMWF) mean temperature
field at the location and date of the occultation event of a bin and the mean field obtained
from “true” profiles (“model mean” T true) in this bin (see Figure 2.2).

∆T sampling =
1

N

N∑

i=1

(
T true

i − T true
)

(2.2)
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2.2 Local Time Considerations

Owing to the nearly polar orbit of CHAMP, occultation events are (referring to the
same surface area) rarer at lower latitudes. But since tropical temperature variations
are rather humble, the sampling error in these regions is not that big.
The influence of the local time of radio occultation events on the sampling error was
also examined and will be dealt with in detail later on.

2.1.3 Total Error

Finally, the total climatological error is a combination of both observational error (sys-
tematic and random errors) and sampling error. For every bin it is the difference between
the mean CHAMP and mean “model” fields (see Figure 2.3).

∆T total =

√
(∆T observational)

2
+ (∆T sampling)

2
(2.3)

The total error was not only computed for the ECMWF-“model” but also for CIRA86aQ-
UoG, NRLMSISE-00, and NCEP/NCAR climatologies; as for the latter three models
just mean fields were available (and not co-located profiles, which are needed to calculate
bias and sampling error).

Figure 2.3: Total error: Difference between mean CHAMP and mean model field.

2.2 Local Time Considerations

(Author: B.C. Lackner )

The lack of continuity in the coverage, leading to sampling error, is a characteristic
problem of (low earth-orbiting) satellite data. In terms of temperature data retrievals,
the local time of the occultation events plays an essential role because of distinct daily
temperature variations. A monthly shift of the local time of a certain (meridional)
sector’s occultation events could dupe a temperature trend without physical relevance
– simply caused by an inappropriate sampling interval. To explore the retrieved data
behavior, the local time for each event was calculated (LocalTimeevent = UTCevent +
λevent · 24

360).
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2.2.1 Investigation of Monthly Local Time Distribution

To get a first impression about the local time distribution of RO events, their local
time was plotted depending on the longitude of the event (see upper two graphs in
Figure 2.4). The graphs show that the events are not uniformly distributed in time but
tend to accumulate “twofold” during a month with a time lag of roughly twelve hours
in between. The time range of the event accumulation varies about three hours from
month to month, as can be seen clearly from the histograms in Figure 2.4. While in May
2003 the peaks of the bimodal distribution of the histogram occur in the early morning
(between 3 a.m. and 6 a.m.) and afternoon (3 p.m. to 6 p.m.), while one month later
in June 2003 the peaks move to midday (12 a.m. to 3 p.m.) and midnight (12 p.m. to
3 a.m.). This scheme applies to the remaining months as well.

Figure 2.4: Local time distribution of RO events May and June 2003. Top: Local time of radio
occultation events as a function of longitude. Bottom: Histogram of number of radio occultation
events with three hour time-steps. A time-shift of approximately three hours per month is clearly
visible.
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2.2.2 Investigation of Seasonal Local Time Distribution

As expected, the local time influence fades when seasons are considered instead of
months. The graphs seem to turnabout. In the histograms, two narrow gaps remain,
while two peaks were formed in monthly considerations, with a twelve hour time lag in
between. The better (although not yet “perfect”) distribution is shown in the upper
graphs of Figure 2.5 as well.

Figure 2.5: Local time distribution of RO events during two seasons (March, April, May –
MAM and June, July, August – JJA) in 2003. Top: Local time of radio occultation events as a
function of longitude. Bottom: Histogram of number of radio occultation events with three hour
time-steps.
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3 Comparison of Data

3.1 CHAMP Radio Occultation Data and ECMWF Analysis
Data

(Author: B. Pirscher)

On account of the availability of co-located ECMWF profiles, the comparison of
CHAMP RO climatologies and ECMWF analyses is divided in the appraisal of the
bias, the sampling error, and the total error. The results below 5 km height will not be
analyzed because of the standard geometric optics approach utilized in the retrieval (the
same applies to the analyses of the other data as well).

3.1.1 Bias

The mean deviation between CHAMP climatologies and ECMWF analyses is referred
to the bias, resulting either from the CHAMP RO measurement and the corresponding
retrieval process or from the ECMWF analysis and the appendant data assimilation
system.

Generally, the bias is marginal, but in some regions larger differences can be found.
They are situated at the low latitude tropopause, in the tropical region between a height
of 25 km and 30 km, at high latitudes in the southern hemisphere (in winter) as well as
at all latitudes above approximately 29 km height. These features are shown in Figure
3.1.

Even though ECMWF analyses are incorporated in the retrieval process at high alti-
tudes, the CHAMP RO climatologies are not dominated by the background information
by 35 km. Interestingly, a positive bias, which constitutes up to +2 K, encounters
above 31 km anyway. A detailed investigation of the bias arising in the middle and high
stratosphere was done by Gobiet et al. (2005b).

Bias at Low Latitudes

The bias, arising during the observation period from March 2002 to February 2004 along
the prime meridian in low latitude regions, is depicted in Figure 3.2 (top).

The CHAMP RO measurements are systematically warmer than ECMWF analyses at
the tropopause level between 15 km and 18 km in low latitude regions. The positive bias
is visible in all months and constitutes up to +2 K. In similar studies the same result was
found by Wickert (2004), Steiner et al., and Gorbunov and Kornblueh (2003). Gorbunov
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Figure 3.1: Bias of CHAMP RO climatology and ECMWF analysis in July 2003. An oscillating
structure can be noticed at high southern latitudes, a positive bias larger than +0.9 K can be
found in the tropopause between approximately 40◦S and 40◦N, a negative deviation can be
recognized, in the low latitude region (20◦S to 20◦N) between 25 km and 30 km height, and a
positive bias occurs above 31 km height at all latitudes.

and Kornblueh (2003) attribute the bias to the lower vertical resolution compared to RO
measurements (RO resolution amounts to about 1 km at that altitude).

But when analyzing single difference profiles, a more complicated situation was found
by Gobiet et al. (2005a). They noticed that ECMWF profiles cannot be thought to be
smoothed versions of CHAMP radio occultation profiles.

A negative bias can be observed at tropical latitudes (10◦S to 10◦N) between a height
of 25 km and 30 km. As can be seen in Figure 3.2 (top) it can be realized during
the whole observation period with variable intensity and changing extension, decreasing
from 2002 to 2004. It averages −1 K; maximum values can be observed in August 2002
(over the Pacific region, 190◦E to 110◦W) when it constitutes more than −2 K. The
cause for that deviation is unidentified and needs further investigation.

Bias at High Latitudes

In the southern hemisphere winter, an interesting feature emerges at high southern
latitudes. The bias gets a wavelike characteristic, oscillating between positive values
up to +3 K and negative values down to −2.7 K. Starting at about 11 km height this
anomaly ranges up to 35 km (Figure 3.1). It is clearly observable from May 2002 to
August 2002 and from March 2003 to September 2003 (Figure 3.2, bottom). Maximum
values can be noticed in July 2002 and in July and August 2003, whereas in 2002 the
wavelike bias is less pronounced than in 2003.
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Figure 3.2: Bias along the prime meridian at low latitudes (top) and at high southern latitudes
(bottom). Top: The positive bias between 15 km and 18 km height can be found during the whole
observation period; the negative bias between 25 km and 30 km altitude varies in intensity during
the months. A positive bias occurs at about 31 km height. Bottom: An oscillating structure
arises from May to August 2002 and from March to September 2003. It is more pronounced in
2003.
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The bias indicates that the ECMWF analysis does not exactly represent the polar
vortex in this region. The large magnitude of the bias, which is larger than errors
resulting from radio occultation measurements, and that there are no resolution-induced
effects nor sampling errors argue for the CHAMP RO data (Gobiet et al. 2005a).

A similar structure cannot be observed in the high latitudinal northern hemisphere,
where the bias rarely exceeds ±0.6 K.

3.1.2 Sampling Error

Due to discrete spatial and temporal sampling through occultation events, the sampling
error affects climatologies arising from radio occultation measurements.

Each month more than 4 000 events are registered, and, due to the high inclination of
the satellite, the majority is recorded in mid latitude regions, less in polar regions. As
we will see, the sampling error will be higher at high latitudes than at low latitudes.

Foelsche et al. (2003) analyzed the sampling error depending on the number of oc-
cultation events. When enlarging the number of events, they determined the sampling
error being reduced, but, in consequence of the same spatial and temporal distribution
of all additional events, the error reduction was minimal.

Since we know about the inhomogeneous distribution of the occultation measurements
relating to the local time (cf., Section 1.1.4), the impact of the temporal sampling will
be considered later in this section.

Comparison Between Low, Mid, and High Latitudes

In general, the sampling error is lower than ±0.6 K, but considerably larger differences
can be noticed at temperate and polar latitudes. There is no contradiction to the lati-
tudinal distribution of the occultation events because of smaller temperature variations
in low latitude regions compared to polar regions.

Low Latitudes: The low sampling rate at low latitude regions (30◦S to 30◦N) and the
small variability of temperature yield a sampling error mostly lower than ±0.3 K during
the whole observation period above 7 km altitude, with only some small fluctuations up
to ±0.9 K.

Mid Latitudes: The sampling error observed at southern and northern mid latitudes
(30◦S to 60◦S and 30◦N to 60◦N) does not show a uniform pattern. Large deviations
can be noticed in very different ways.

In the mid latitudinal southern hemisphere, a large negative sampling error (up to
−5 K) at an altitude of 10 km attracts attention, from 12 km to about 23 km altitude,
a positive anomaly arises, both features can be observed during almost all months. In
March 2003, when the positive sampling error is most prominent, it reaches +3.5 K;
otherwise it is about +1 K to +2 K, but it cannot be noticed in August, September,
and October 2003. Between a height of 25 km and 35 km, negative deviations can be
found in April and May 2002 and from April to July 2003. During the southern summer

44



3.1 CHAMP Radio Occultation Data and ECMWF Analysis Data

Figure 3.3: Sampling error at low latitudes in December 2003. Generally, the sampling error
is very small, but some irregular positive and negative deviations can be found.

Figure 3.4: Sampling error between the CHAMP RO climatology and the ECMWF analysis
from March 2002 to February 2004 at high northern latitudes (80◦N to 90◦N), Eurasian-African
sector. In general, the deviation is very small, but in December 2002 and 2003 a large positive
deviation can be found.
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Figure 3.5: Sampling error at high latitudes in December 2003. Left: Southern hemisphere. No
sampling error occurs in this region. Right: Northern hemisphere. During the polar winter the
polar vortex appears in that region and has a positive impact to the sampling error. It amounts
up to +4 K and is symmetric to the prime meridian. There, a small negative sampling error can
be found.

months, December to February 2002 and 2003, it is less than ±0.6 K. Throughout the
other months, no particular pattern can be recognized.

In the same line, the northern mid latitudes can be described but in a more regular
way. The negative deviation, which can be found at an altitude of 10 km, and the positive
deviations arising between 12 km and 23 km (most prominent in June 2002 and April
2003) are more pronounced compared to the mid latitudinal southern hemisphere. Above
a height of 23 km no characteristic features are observable, mostly no sampling error
arises at that height, only in some cases it is negative (November 2002) and sometimes
it is positive (December 2002).

High Latitudes: Figure 3.4 depicts the sampling error arising between March 2002 and
February 2004 at high northern latitudes (80◦N to 90◦N) in the Eurasian-African sector.
Generally, the deviation is within ±0.3 K, but in northern winter months (especially in
December), a high positive sampling error occurs above a height of 10 km in December
2002 and above 17 km in December 2003.

Figure 3.5 shows the comparison at high northern and high southern latitudes rec-
ognized at the same time (December 2003). During southern summer time, almost no
sampling error can be found at high southern latitudes, whereas in northern polar regions
(where it is winter), a positive deviation can be observed.

The opposite can be noticed in southern winter time when no deviations arise at high
northern latitudes, but higher positive differences (considerably smaller compared to the
northern hemisphere) in southern polar regions.

The observed sampling errors arising at high southern latitudes constitute less than
±0.3 K in December, January, and February 2002 and 2003, while a small positive
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deviation (+1 K) can be found in springtime 2002 and 2003 (exception: March 2002
when a small negative deviation occurs), and a stronger positive sampling error can be
realized from June to September with maximum values in August 2002 and September
2003 (about +4 K). The pattern arising in August 2002 mirrors to the sampling error
arising in the high northern latitude regions in December 2002 and 2003.

Analyzing the sampling error at high northern latitudes, deviations, generally less
than ±0.3 K, can be noticed during June, July, and August 2002 and June, July, August,
and September 2003. Between a height of 10 km and 25 km, some stronger negative
deviations can be found. From September 2002 to December 2002 and from October
2003 to December 2003, an interesting feature develops, which can be seen in Figure
3.5, right. The sampling error appears in an asymmetric shape with maximal values
(approximately +4 K) between 60◦E and 180◦E and between 60◦W and 180◦W and
minimal deviations around the prime meridian. In January 2003 the break down of the
feature can be noticed, while in January 2004 it cannot be observed. During springtime,
no characteristic trait can be found.

Analyse of Local Time Issues

Considering the dependence of the occultation events on the local time as presented in
Section 1.1.4, it might be interesting to select the deviation arising from this fact.

To perform this examination, co-located ECMWF profiles were selected at randomized
time. Figure 3.6 shows this “new” uniform distribution of the radio occultation events
in time.

New artificial sampling error estimates were made and compared to actually mea-
sured ones. Figure 3.7 depicts differences arising from the sampling error measured
in December 2003 at high northern latitudes (see Figure 3.5, right) and the sampling
error, resulting from co-located ECMWF profiles, at randomized time. While the actu-
ally measured sampling error in December 2003 was relatively large, the difference plot
between the actually measured and the “artificial” sampling error does not show large
deviations. Investigating all the other months from March 2002 to February 2004 (the
time series in the Eurasian-African sector at high northern latitudes is depicted as an
example in Figure 3.8), it can be noticed that the deviations generally remain smaller
than ±0.3 K.

The conclusion that the discrete sampling of the CHAMP satellite in time and the
resulting bimodal distribution (cf., Figure 2.4) in the local time of the radio occultation
measurements has no essentially influence on the sampling error can be drawn.

3.1.3 Total Error

The total error is a result of the observational error and the sampling error. Because of
the relationship between the observational error and the bias all features recognized in
the total error analysis can also be found in the above mentioned deviations. Depending
on the season (month) and the considered latitudinal range, it is possible to determine
the provenance of the observed deviation.
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Figure 3.6: Distribution of RO events at uniformly randomized time in December 2003. Left:
Randomized local time of radio occultation events as a function of longitude. Right: Histogram
of the number of radio occultation events with three hour time-steps. The events are uniformly
distributed in time.

The main characteristics of the bias – the positive anomaly in the tropopause between
30◦S and 30◦N on average, the negative deviation between a height of 25 km and 30 km
in an narrower band at the equator and the wavelike structure at high southern latitudes,
which is outstanding in southern latitude winter – are never covered from the sampling
error; they can always be recognized in the total error.

The same is valid for the sampling error. When large sampling errors can be observed
(e.g., in high northern latitude winter), they are reflected in the total error.

When both deviations arise at the same time in a large magnitude (e.g., in high
southern latitude winter, a large bias and a large sampling error can be observed), it
is not possible to distinguish between these errors without examining them separately.
That is very important to know, because while examining the total error from CHAMP
RO measurements and NCEP/NCAR reanalyses, NRLMSISE-00-, and CIRA86aQ UoG
climatologies, it is not possible to determine the derivation of the error. The measured
deviation always arises from all incorporated sources of error.
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Figure 3.7: Difference between the actually measured sampling error and the sampling error
calculated at randomized time at high northern latitudes in December 2003. Since the local time
has no bearing on the sampling error, no deviation can be observed.

Figure 3.8: Time series (from March 2002 to February 2004, at high northern latitudes (80◦N
to 90◦N), Eurasian-African sector) of the difference between the actually measured sampling
error and the sampling error calculated at randomized time.
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Figure 3.9: High southern latitude bias (left) and sampling error (right) in August 2002. The
bias exhibits the well-known vertical structure; the sampling error shows a large positive deviation
nearly everywhere.

Figure 3.10: The composition of the bias and the sampling error is observable in the total
error. The wavelike structure results from the bias; the positive deviation arising from 180◦W
to 60◦W and from 90◦E to 180◦E at all altitudes can be attributed to the sampling error.
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3.2 CHAMP Radio Occultation Data and NCEP Reanalysis

Data

(Author: B.C. Lackner)

Whilst co-located profiles of ECMWF data are available for comparison with the re-
sults of the CHAMP retrieval, only climatologies of monthly means of the NCEP/NCAR
reanalyses were used. Thus neither bias nor sampling error was computed to compare
these data with RO data. The total error was calculated by subtracting NCEP/NCAR
reanalysis data from RO data after averaging the NCEP/NCAR climatologies according
to used binning resolutions.
Latitude × height, latitude × longitude, and longitude × height plots as well as time
series and movies of the temporal variations served to visualize and helped in analyzing
the results.

3.2.1 General Remarks

The differences between the retrieved CHAMP climatologies and NCEP/NCAR reanal-
yses are, as expected, larger compared to ECMWF data, which are included as a priori
information in the retrieval process. Some structures remain all along the monthly
timescale, such as lower tropospherical CHAMP RO temperatures.

Figure 3.11: Left: Big temperature differences between CHAMP RO data and NCEP/NCAR
reanalysis data can be found in the troposphere at an altitude of 7 km (e.g., July 2003). The dark
blue areas indicate differences up to more than −5 K. Right: Outside the tropics and subtropics
(north and south of 30◦) and above the upper boundary of the tropopause (15 km height level is
depicted), CHAMP and NCEP/NCAR-data show quite good agreement (green color). Graphs
of other months are in general quite similar to those of July 2003.

Beside the larger differences in the troposphere, which are also results of compar-
ing “dry” CHAMP RO temperatures with “real” temperatures, including troposphere
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humidity, mentionable varieties mainly occur at higher latitudes during polar winter
seasons. Details will be discussed in the next section. The best temperature agree-
ment between the two “models” is thus given at mid latitudes at altitudes above the
tropopause (see Figure 3.11).

One reason for the differences between CHAMP RO and NCEP/NCAR temperature
climatologies can be found in the data used for (re-)analyses and their characteristics.
Radiosondes (respectively rawinsondes in NCEP/NCAR’s case) observations are not
uniformly distributed. There are much more data available over quite densely populated
northern hemisphere areas than over oceans, which also cover of course the largest part
of the southern hemisphere (Lindzen 1990). Even though the vertical resolution of
these data is fairly high, limitations are given due to required inter- and extrapolation.
Additional data from satellites, such as TOVS, do not lead to “exact” values, as they only
provide a low vertical resolution of the order of several kilometers (Schoellhammer et al.
2003) and therefore are not able to produce detailed information, e.g., under strongly
perturbed conditions, which can be mainly seen at high northern latitudes during winter
time.

3.2.2 Seasonal Considerations

Spring (March, April May) 1 March patterns are mainly influenced from the just
ending northern polar winter, whereas in southern polar areas the differences between
the two climatologies are not considerably distinct.

North of about 60◦ the differences are mainly negative (even up to −10 K in the
Pacific region) and extend from the upper boundary of the troposphere to an altitude
of 30 km. An exception is the Eurasian-African sector where positive deviations appear,
even though the patterns are quite similar in their structure (see Figure 3.12).

The temperature differences in April look much like those in March, but the intensity
of the contrasts wanes.

May is marked by little differences, the four sectors show similar deviations. Strongest
discrepancies are formulated at higher southern latitudes.

Summer (June, July, August) June, the beginning of the northern summer, resembles
May; large differences do appear. In general, the varieties between CHAMP RO and
NCEP/NCAR data migrate from the northern hemisphere to the southern, where the
polar winter is announcing itself. During the three northern summer months (June,
July, August), there is quite a good agreement between the two “models” above the
troposphere in the northern hemisphere. Main differences of less than −2 K are only
found at high altitudes (around 25 km to 30 km) north of 60◦ latitude, whereas at mid
latitudes the varieties range around ±1 K.

Bigger differences occur in the southern hemisphere outside the tropics and subtropics
above a height of 20 km with deviations of more than −3 K. At the high southern

1As long as it is not specifically stated, northern hemisphere seasons are referred to.
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Figure 3.12: Differences between two selected sectors in March 2003. Left: Pacific region.
North of 60◦ huge negative differences between CHAMP and NCEP/NCAR (more than −10 K)
appear. Left: Eurasian-African region: The same area is signed by positive deviations of more
than +5 K.

latitudes (higher than 60◦), a wavelike structure evolves with an amplitude of more than
−3 K at a height of 25 km and about +3 K at 32 km (see lower left graph in Figure
3.13). In contrast to high polar altitudes, remarkably good agreement between RO and
NCEP/NCAR-data is found at lower height levels between 5 km and 20 km (less than
±1 K).

While in June and July there are nearly no differences in the structures in the four dif-
ferent sectors (Pacific, America-Atlantic, Eurasia-Africa, and Asia-Australia), in August
the American-Atlantic and Asian-Australian regions show again deviations in opposite
directions, which increase during the following months.

Autumn (September, October, November) As the sun drifts again to the southern
hemisphere during autumn, a rather symmetrical distribution of temperature differences
of the models is found in October (see Figure 3.14), even though there are differences in
the direction of the temperature variations according to the four sectors considered.

While September is still influenced by the typical structures of the southern winter,
which are even more pronounced in some regions than it was during summer, the big
differences migrate again toward higher latitudes in the northern hemisphere during
October and November.

Furthermore, during autumn the differences between the four sectors are noteworthy.
Whereas CHAMP RO temperatures are up to +10 K higher than NCEP/NCAR values
in the American-Atlantic sector south of around 50◦S (above 12 km) in September and
October, the NCEP/NCAR temperatures surmount the CHAMP RO values by more
than +5 K in the same region in the Asian-Australian sector. During November, these
differences fade again.
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Figure 3.13: Top: Temperature differences between CHAMP RO and NCEP/NCAR data
at high (left graph) and mid northern latitudes (right graph). In summer, the stratospherical
differences between the two models are weakly developed in the northern hemisphere, focusing
on altitudes above 20 km at the high latitudes. The spatial limited positive deviation in the right
graph is geographically situated above eastern Asia. Bottom: In the southern hemisphere the
temperatures match quite well below 20 km, but the differences increase a lot at higher altitudes.
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Figure 3.14: American-Atlantic sector in October 2003: CHAMP RO and NCEP/NCAR tem-
perature differences are arranged quite symmetrically according to the equator.

Winter (December, January, February) The polar northern winter leads to larger
temperature deviations between the two models in the northern hemisphere, as it was
the case during the southern winter in the southern hemisphere. The structures resem-
ble those shown in Figure 3.12 (March 2003) with the differences between the sectors
emerging again. This phenomenon is illustrated in Figure 3.15 as well.

In contrast to the southern polar winter, in which CHAMP RO and NCEP/NCAR
data show good agreement at altitudes between 5 km and 20 km (cf., Figure 3.13), this
is not the case in the northern polar winter. The structures at higher altitudes show
more changes in the northern hemisphere, as if the change of land and ocean surface
also influence high levels.

3.3 CHAMP Radio Occultation Data and MSIS Data

(Author: B.C. Lackner)

As described in Section 1.4.1, NRLMSISE-00 is an empirical model based on zonal
average temperature and pressure tabulation below 72.5 km and additional data from
the U.S. National Meteorological Center below 20 km. In contrast to analysis (ECMWF)
or reanalysis (NCEP/NCAR) data, which are based on a variety of real-time measure-
ments, NRLMSISE-00 climatologies do not alter for different years, as they are the
result of averages over a certain period (depending on the data sources used to imple-
ment the model, mainly originating from 1961 to 1997 in this case). Furthermore, the
model aims to be used for studies reaching across several atmospheric boundaries (up to
thermosphere), and not for troposphere or a part of stratosphere as used in this context.

55



3 Comparison of Data

Figure 3.15: Maps of CHAMP RO and NCEP/NCAR reanalysis temperature differences at two
different heights for January 2003. Left: 25 km altitude. Whereas in the northern hemisphere
the deviations seem to depend on sectors of some longitudes, they are more or less uniformly
distributed in the southern hemisphere. Right: 32 km altitude. A similar picture as at 25 km. In
the northern polar areas, the differences between the models tend to show in opposite directions
for different longitude sectors (ranging from +4 K to −1 K).

3.3.1 General Remarks

Due to above mentioned reasons, NRLMSISE-00 climatologies differ much more from
CHAMP RO climatologies than from ECMWF or NCEP/NCAR. Deviations of much
more than ±2 K predominate most areas. However, the most critical points are again
found in the tropical tropopause and the polar winter regions. Unlike NCEP/NCAR
climatologies, nearly no differences appear according to the four different sectors of
longitude that were considered.

Below about 20 km, a wavelike structure is taking shape at tropical latitudes with
positive deviations (indicating higher CHAMP RO than NRLMSISE-00 temperatures)
between about 10 km and 15 km and negative differences above and below this level.
Some seasons show a further positive deviation in higher levels (see Figure 3.16).

The advantage of a model based on average temperatures – such as NRLMSISE-00 –
is that the independence of climatologies of the years helps to identify years, seasons or
months with stronger abnormalities than average, which can also be seen in some cases
in our examination period.

Varying deviations of CHAMP values from the longtime mean temperatures (NRL-
MSISE-00) during southern winter seasons are evident regarding Figure 3.17. Lower
stratosphere (between 12 km to 25 km) temperatures were much higher than average
over the Antarctic region in southern winter and spring 2002. In September and October
2002, the south polar anomalies were larger than any in the last 20 years (Angell et al.
2002). In contrast to the warm southern winter/spring in 2002, in 2003 (August to
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Figure 3.16: March 2003 differences between CHAMP RO and NRLMSISE-00 climatologies.
Wavelike patterns occur in tropical stratosphere.

Figure 3.17: Differences between CHAMP and NRLMSISE-00 temperatures at high southern
latitudes (Eurasian-Asian sector from 75◦S to 90◦S) from March 2002 to February 2004. While
the retrieved values were much higher than average during August 2002 to October 2002, one
year later, negative deviations appear during the same time in 2003.
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October) for most of the southern polar region, minimum temperatures were below long
term average minimum values, in fact near record low temperatures (Angell et al. 2003b),
resulting in a strong polar vortex.

3.3.2 Seasonal Considerations

Spring (March, April May) Like NCEP/NCAR climatologies, differences in March
to CHAMP RO data are first found at northern mid and high latitudes above 20 km
altitude, decreasing during April and May (more than −10 K in March, about +4 K
in April and May). April 2003 shows, over all longitudes, positive deviations at high
altitudes (around 30 km to 35 km) over the northern polar region, which are contrary to
the negative differences in March and May and seem to be an exceptional case for this
year.

Best temperature agreement can be located at an altitude around 15 km to 30 km
mainly in the southern hemisphere during March, migrating to the northern hemisphere
by April and May. On the other hand, rather large deviations are found during the
whole season at altitudes of 35 km (negative deviations of about −6 K over the tropics
and the northern Atlantic, positive deviations of approximately +4 K and more over
central Asia and parts of the southern ocean (see Figure 3.18).

Figure 3.18: Left: During March 2003 the best temperature agreement between CHAMP
RO and NRLMSISE-00 climatologies is located around 25 km in most parts of the southern
hemisphere. Right: At altitudes of 35 km, huge deviations between the two models occur, which
is evident from dark blue and red colors in this graph, standing for mean temperature differences
of ±4 K.

Summer (June, July, August) During summer, the structures of the differences remain
more or less the same in the northern hemisphere. A relatively narrow band of positive
deviations is located near 13 km altitude at high northern latitudes and 15 km at mid
latitudes, respectively, whereas at higher and lower altitudes negative deviations prevail
(see upper two graphs in Figure 3.19 ).
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Large differences between CHAMP RO and NRLMSISE-00 data are found in the
southern hemisphere (see lower two graphs in Figure 3.19), whereat the high positive
deviations (around 50◦S) in 2002 are much more pronounced than in 2003 (in August
2003 nearly no positive deviations occur at high southern latitudes). At certain height
levels at mid and high southern latitudes, overall differences (positive and negative) of
more than 20 K occur, while negative deviations of more than −16 K appear above
30 km.

Figure 3.19: Top: Temperature differences between CHAMP RO and NRLMSISE-00 clima-
tologies in high (left graph) and mid (right graph) latitudes in June 2003. The only positive
deviations, standing for higher CHAMP RO temperatures, are found in a relatively narrow band
around 13 km (high latitudes) and 15 km (mid latitudes). Bottom: Same picture for southern
hemisphere, where huge (mainly) positive deviations characterize the southern winter season.

Autumn (September, October, November) While in September large differences be-
tween the two models mainly are focused on the southern hemisphere, during October
and November they migrate again slowly to the northern hemisphere, where winter
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is approaching. A striking structure evolves during this season at polar and subpolar
southern latitudes around a height of 20 km to 30 km, where quite big positive differ-
ences appear until November. In December the structures seem to be “mirrored” by the
equator, intensifying during the following months (see Figure 3.20).

Figure 3.20: While in November, positive deviations of more than +8 K at heights of 20 km to
30 km occur in polar and subpolar southern regions (left graph), one month later, in December,
the structure seems to be “mirrored” by the equator and is now situated over northern high
latitudes with deviations of more than +10 K (right graph).

Winter (December, January, February) During these three months, the largest dif-
ferences between CHAMP RO and NRLMSISE-00 data are located above the northern
polar area. The structures shown in Figure 3.20 increase in January with CHAMP RO
temperatures exceeding NRLMSISE-00 values by more than +20 K in some places. In
general, mid and high northern latitudes are characterized by huge differences between
the two models at all levels in January.

In the southern hemisphere, to a large extent, negative deviations occur, which top
at high altitudes (around 30 km and higher) as well. In the course of February, the
pronounced northern structures fade again but still remain stronger than the southern
ones.
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3.4 CHAMP Radio Occultation Data and CIRA86aQ UoG

Data

(Author: B. Pirscher)

While computing the total errors between the CHAMP RO and the CIRA86aQ UoG
climatologies from January to December 2003, some interesting features can be found.

In general, the CIRA86aQ UoG climatology is significantly colder compared to the
CHAMP RO climatology. Deviations up to −6 K dominate the structure arising from
the comparison between both data sets (CHAMP minus CIRA86aQ UoG), but partly
emerging positive total errors show very large dimensions as well. In December 2003,
for example, at high north latitudes above 10 km height, the deviation is larger than
+20 K.

Longitudinal Behavior of the Total Error

Since CIRA86aQ UoG is comprised a model of zonal mean temperature (as well as
zonal mean geopotential height/pressure and zonal wind), the land-see distribution is
disregarded. This effects the positive total error, which is less pronounced above the
Pacific (160◦W to 110◦E) and the American-Atlantic region (110◦W to 20◦W) compared
to regions above big landmasses (sectors above Eurasia-Africa (20◦W to 70◦E) and Asia-
Australia (70◦E to 160◦E)), where the deviation remains higher. Figure 3.21 depicts this
situation in January 2003. While the deviations in the southern hemisphere and at the
northern low latitudes are quite similar in the Pacific and Eurasia-Africa sectors, above
the maritime sector a smaller extension of the positive total error can be noticed.

A converse situation between the sectors arises in September 2003 (not shown), when
a big positive deviation up to +10 K can be found between 40◦S and 70◦S from a height
of 12 km to 30 km in the Eurasian-African sector, and a big negative deviation (−10 K)
can be observed at the same latitudinal range from a height of 15 km to 30 km. The
situation above Asia and Australia still refers (but less distinctive, about +4 K) to the
situation realized above Eurasia-Africa. In the American-Atlantic sector, the deviations
are rather negative, but they do not show that significant pattern realized in the Pacific
region.

A similar situation occurs in February and March 2003 at mid northern latitudes
between 40◦N and 70◦N, but the highest total error remains within the limits of ±5 K.

Latitudinal Behavior of the Total Error

Depending on the season and the considered latitudinal range, some characteristic fea-
tures can be found.

Because of the constant solar radiation in low latitude regions, hardly any fluctua-
tions arise during one year. The CHAMP RO climatology and the CIRA86aQ UoG
climatology represent this region in a similar way, so that the total error remains the
same.
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Figure 3.21: Comparison between one maritime sector (Pacific, left) and one sector situated
above a big landmass (Eurasia-Africa, right). Whereas the total error is overall about the same in
the southern hemisphere and at low latitudes in the northern hemisphere, the positive deviation
is smaller in the Pacific region at mid and high latitudes compared to the Eurasian-African area.

At mid and high latitudes the solar radiation has a higher impact to the arising
climatologies, and some seasonal features emerge in the total error examination.

Low Latitudes: Focusing on the low latitudes, a negative total error between −2 K and
−6 K predominates the arising structures. Only small regions with minor deviations can
be found.

During the whole year of 2003, the total error remains smaller than ±2 K at the low
latitudes from 10 km to 15 km, and from an altitude of 25 km to 30 km. From June
to September 2003, another band with a “small” total error occurs between 17 km and
20 km height. In this connection, “small” means within the limits of ±2 K.

Mid and High Latitudes: Because of the deviation being affected by seasonal circum-
stances, the mid and high latitudes will be discussed in that context. Figure 3.22 depicts
four months (January, April, July, and October) representing the four seasons (winter,
spring, summer, and fall).

During the northern winter months November to January (Figure 3.22, top left), a
strong positive total error can be noticed at the northern latitudes northwards of 40◦N.
Starting at a height of 10 km, it reaches more than +10 K from 24 km to 30 km north of
75◦N. At southern latitudes small deviations with different signs can be found between a
height of 10 km and 15 km, and from 19 km to 28 km a small negative deviation occurs
at the same time.

Due to the weakening of the formation in February and March, a vertical structure
results in April (Figure 3.22, top right), when positive deviations can be observed at
high northern and high southern latitudes from a height of 10 km to 15 km and from
about 25 km, in between a negative deviation up to −3.6 K arises. At the mid and
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low latitudes, some regions characterized by small total errors can be realized between
10 km and 15 km and between approximately 25 km and 30 km. Larger dimensions of
this deviation are prevented because of a large region (40◦S to 40◦N between 15 km and
25 km height) exhibiting a negative total error (about −5.4 K).

From April to July (Figure 3.22, bottom left) the positive total error at high northern
latitudes (above 25 km) disappears. The deviation stays positive from 10 km to 15 km
and it becomes negative from 19 km to 27 km. The structure is similar to that arising
in January 2003 at high southern latitudes. The counterpart to the feature arising in
January at the northern latitudes does not occur in July, but emerges in September
and is most prominent in October (Figure 3.22, bottom right), when in the northern
hemisphere the positive total error grows.
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Figure 3.22: Seasonal circumstances arising in the total error between CHAMP RO climatolo-
gies and the CIRA86aQ UoG model. In general, the total error is negative, but in January a big
positive deviation can be found at high and mid northern latitudes above a heighz of 10 km. In
April and in July a relatively symmetric pattern can be observed. In October, when the positive
total error is building up at the northern high latitudes, a large positive deviation occurs at high
southern latitudes.

64



3.5 Further Comparisons

3.5 Further Comparisons

3.5.1 EGOPS MSISE-90 Data in Comparison With NRLMSISE-00
Temperature Data

(Author: B.C. Lackner)

To examine differences between MSISE-90 data used in EGOPS and NRLMSISE-00
data, the latter were subtracted from the EGOPS temperatures at each grid point and
height. The MSISE-90 model used in EGOPS is a parametrization of the MSISE-90
model using Chebyshef polynomials and spherical harmonics and is described by Høeg
et al. (1998).

Because of the minor differences between the two “MSIS-models”, the colors in the
plots rang, different from previous graphs, from −1 K (dark blue) to +1 K (red).

While the data sets match quite well below about 20 km, the differences increase with
higher altitudes (see Figure 3.23).

Figure 3.23: Maps of differences between EGOPS MSISE-90 and NRLMSISE-00 temperature
values in January. Left: Below 20 km altitude (map shows 15 km height level) the differences
are minor, ranging mainly between ±0.2 K (apart from polar and subpolar regions). Right: At
higher altitudes (map shows 25 km height level) the deviations increase and rise to their highest
values over tropical and polar regions.

Over tropical/subtropical regions, wavelike structures emerge with “fixed” wave crests
at heights of about 21 km (positive deviations of +0.4 K to +0.6 K, standing for lower
NRLMSISE-00 values), 26 km (negative deviations up to −0.8 K, mainly during northern
autumn and winter) and 31 km (again positive deviations of more than +0.8 K during the
whole year), that is to say every 5 km, which seems to be caused by the parametrization
of the MSISE-90 model. The amplitude of this pattern increases with height. While at
mid latitudes the differences between the models are pronounced to a lesser extent, the
wavelike structures turn up again over polar regions (see Figure 3.24), but there they
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change their position at altitude during the year.

Figure 3.24: Differences between EGOPS MSISE-90 and NRLMSISE-00 in January. Below
20 km nearly no differences appear (apart from polar areas), whereas at higher altitudes wavelike
structures emerge above all over tropical and subtropical regions.

The absolutely highest deviations between EGOPS MSISE-90 and NRLMSISE-00
temperatures are found at high altitudes. The maximal difference between the two
models below 35 km appears at a height of 31.5 km (ϕ = 0◦, λ = 112.5◦).

3.5.2 CIRA86aQ UoG Data in Comparison With NRLMSISE-00
Temperature Data

(Author: B. Pirscher)

CIRA86aQ UoG and NRLMSISE-00 temperature data result from atmospheric inves-
tigations lasting many years. They differ in the general kind of the model as well as in
incorporated data. Whereas CIRA86aQ UoG is a zonal model, NRLMSISE-00 exhibits
small latitudinal variations in temperature.

The total error analysis is performed for the months January to December (indepen-
dent of the year) because the CIRA86aQ UoG model does not exist for different years
(the same applies to NRLMSISE-00 model as well).

The total error resulting from the comparison between CIRA86aQ UoG and NRL-
MSISE-00 climatologies reaches its highest values at the northern high latitudes. The
deviations (CIRA86aQ UoG minus NRLMSISE-00) achieve −12 K in December and
grow up to +16 K in January.

The deviation will be analyzed in longitudinal slices (Pacific, Eurasia-Africa, Asia-
Australia, and America-Atlantic) and in latitudinal regions (low latitudes, mid latitudes,
and high latitudes).
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Longitudinal Behavior of the Total Error

Concerning the total error variations at longitude, some large fields of positive and
negative deviations can be found, similar to the total errors found between CHAMP
RO climatologies and the CIRA86aQ UoG model. From January to April and from
November to December, a high negative total error can be noticed in the Pacific sector
and in the Asian-Australian region (less pronounced) above 11 km altitude from 40◦N
to approximately 85◦N. At the same time and location (above an altitude of 15 km),
a positive deviation arises over the Eurasian-African area and the American-Atlantic
sector (less stable but with larger maximum values). Figure 3.25 depicts this situation
in January between 160◦E and 110◦W (Pacific) and between 20◦W to 70◦E (Eurasia-
Africa).

In September and October a high negative total error (−6 K) can be found at high
and mid southern latitudes in the Pacific and Asian-Australian sectors from 50◦S to
the polar region, whereas the other two sectors show an oscillating structure with more
positive proportion in September and a much smaller negative pattern in October.

Apart from those features, no oppositional behavior can be realized in the four sectors.

It seems that the total error deviations still result from the zoning performed in the
CIRA86aQ UoG model.

Figure 3.25: Total error arising in the Pacific and in the Eurasian-African sector. When above
the ocean, a negative deviation can be noticed between 40◦N and 85◦N from a height of 11 km
to 29 km above Eurasia and Africa, and a bigger positive deviation already arises around 6 km
height.

Latitudinal Behavior of the Total Error

When large positive/negative deviations can be found at high northern or southern lati-
tudes (60◦N/S to 90◦N/S), they also extend in mid latitude regions (30◦N/S to 60◦N/S),
and only low latitudes remain unaffected. This behavior of total error follows from the
general differences between both models.
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A wavelike structure predominates in the total error arising at low latitudes during
all months. At the earth’s surface, up to about 5 km altitude, a positive deviation can
be found at any time. This positive anomaly extends (+3 K) to a height of 15 km,
from May to October, unless a small negative deviation breaks this band. Every five
kilometer height the sign turns around, and the deviations amount between −2 K and
+4 K.

This oscillating structure results from the vertical interpolation type (cubic spline
interpolation) chosen to generate the CIRA86aQ UoG climatologies.

A wavelike pattern can also be noticed at high and mid latitudes at the time when
no significant differences between both climatologies occur (essentially between May
and September at high northern latitudes and between January and August as well as
in December at high southern latitudes). The zonal structure is less stable and less
pronounced compared to the oscillating feature arising in low latitude regions.
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(Authors: B.C. Lackner, B. Pirscher)

CHAMP RO data are characterized by being discrete in space and time. In our work,
and in general as well, climatologies are used to analyze and map data sets. The received
maps are not exact data; they include a substantial amount of interpolation and there-
fore should better be addressed as “analyzed data” (Lindzen 1990). The same applies to
ECMWF and NCEP/NCAR (re)analyses as well as NRLMSISE-00 and CIRA86aQ UoG
data. Nevertheless, always having this fact in mind, large differences between the four
investigated data sets can be determined. We generally termed these differences “errors”
in this work, but it is important to note that this is meant purely in a relative sense
(“error” of some data set relative to the selected reference data set).

All in all, ECMWF analyses data proved to be the best data set compared to CHAMP
retrieved temperatures. Over most areas the deviations (total error) remained within
±1 K between 7 km and 29 km altitude. Larger deviations at lower heights could not be
interpreted because of the geometric optics approximation. The reasons for the warm
bias above 29 km have to be looked at in detail in future investigations.

The warm bias (standing for higher CHAMP than ECMWF temperatures) at the low
latitude tropopause, which is present during the whole observation period (cf., Figure
3.2, top), is worth mentioning. Compared with this, NCEP/NCAR reanalysis data tend
to overestimate tropopause temperatures at low latitudes (see left graph of Figure 4.1).
Randel et al. (2002) also came to this conclusion in a study focusing on comparing clima-
tological data sets for the middle atmosphere, which are used in the research community.

In contrast, at high southern latitudes during winter time (May to September 2002
and May to October 2003), wavelike patterns form at altitudes above tropopause when
comparing CHAMP RO and ECMWF data (cf., Figure 3.2, bottom). These features
have been discussed in detail in Section 3.1.1. The oscillating structure cannot be found
in error analyses between CHAMP RO data and NCEP/NCAR reanalysis (see Figure
4.1, right).

While NCEP/NCAR and CHAMP temperature profiles go more or less together below
heights of 20 km at high southern latitudes during July, the wavelike vertical appearance
of ECMWF profiles are clearly evident in the right graph of Figure 4.1.

Basically, deviations between CHAMP and NCEP/NCAR temperatures are slightly
bigger compared to ECMWF deviations. Analyses (ECMWF) and reanalyses (NCEP/-
NCAR) climatologies are mainly based on radiosondes and satellite data at higher al-
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Figure 4.1: Profiles of CHAMP RO (red), ECMWF (green), and NCEP/NCAR (dark blue)
temperatures in July 2003 at the equator and at 80◦S and 150◦W (pacific region). Left: At the
equatorial tropopause, NCEP/NCAR temperatures are clearly higher compared to CHAMP RO
and ECMWF, whereas the ECMWF temperature profile shows colder values (resulting in a warm
bias CHAMP RO minus ECMWF) between 15 km and 18 km altitude. Right: Up to 20 km,
CHAMP and NCEP/NCAR climatologies agree quite well at high southern latitudes, while an
oscillating structure of the ECMWF profile is clearly visible. Above 20 km a cold total error can
be noticed between CHAMP and NCEP/NCAR (derived from CHAMP minus NCEP/NCAR),
while the ECMWF profile keeps its wavelike structure.
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Figure 4.2: CHAMP RO temperatures around the north and south pole during northern (De-
cember 2003) and southern (July 2003) winter time at 25 km altitude. Left: Due to the to-
pography, the polar vortex in the northern hemisphere is less pronounced and shows a bipolar
structure with higher temperatures over East Asia and Alaska and lower values centered over
Europe. Right: In southern winter a strong, symmetrical polar vortex is situated in the antarctic
region.

titudes. Since the character of the data assimilation strongly influences the received
data, certain facts have to be considered. These include the spatially discrete ascent
of radiosondes (mainly over densely populated northern hemisphere areas) and the low
vertical resolution of temperature data derived from satellite soundings (TOVS). This
results in the inability to produce detailed information under strongly perturbed con-
ditions, which can mainly be seen at high northern latitudes during winter time. This
in turn results in the fact that some atmospheric patterns do not clearly appear in the
models.

It seems that the polar vortex influences atmospheric structures at high latitudes,
above all during winter time. In the winter months, the polar vortex results from a
radiative cooling of the air over the poles. Due to the topography, the polar vortex is
significantly more pronounced and stable in the southern hemisphere (see Figure 4.2,
left) than it is in the northern hemisphere, where land and ocean surfaces repeatedly
alternate (cf., Figure 4.2, right).

Concerning CHAMP temperatures and ECMWF analyses, the big sampling error aris-
ing in December 2002 and 2003 at high northern latitudes as well as in September 2003
at high southern latitudes, seems to result from sampling taking place outside of the
polar vortex (where temperatures are higher) and therefore shows higher temperatures
than expected.

Compared to ECMWF and NCEP/NCAR (re)analyses, NRLMSISE-00 as well as
CIRA86aQ UoG temperatures arise from long-time average atmospheric parameters.
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Figure 4.3: Time series (March 2002 to February 2004) of differences between CHAMP RO
and NRLMSISE-00 climatologies at 85◦N (80◦N to 90◦N) in the Eurasian-Asian region. Sudden
stratospheric warmings took place between November and March. The biggest temperature
deviations between CHAMP and NRLMSISE-00 data topped about +15 K in winter 2002/03,
and during winter time 2003/04 even more than +20 K occurred in January and February around
20 km.

That is why they do not reflect the actual atmospheric state but represent “average”
atmosphere conditions and can, for example, be used to investigate the variations of
certain parameters across a few atmospheric boundaries.

Because of the zonal structure of CIRA86aQ UoG climatologies and the older issue
date, NRLMSISE-00 data were used to investigate temporal variations of temperature
during the period considered (cf., Section 3.3).

Big differences between the models in northern winter at high latitudes attracted
attention, seeming to be caused by “Sudden Stratospheric Warming” (SSW) events1.
SSWs are characterized by short-term (within a few days) stratospheric temperature
increase by up to 50 K accompanied by a weakening of the polar vortex. They are
initiated by the propagation of planetary wave disturbances from the troposphere into
the stratosphere. SSWs occur in the northern hemisphere because of orography and
land-sea temperature contrasts.

In the northern hemisphere, stratospheric midwinter warmings have been observed
between December and March.

In order to track SSWs in northern stratosphere winters, CHAMP RO climatologies
were compared with NRLMSISE-00 data.

Winter 2002/2003 In winter 2002/2003 stratospheric temperatures were extremely
low in November and December.

1They are also called “Stratospheric Midwinter Warmings”. Major (including stratospheric warming
and a total change of circulation at 10 hPa) and minor (can be intense too, but they do not result in
a reversal of the circulation at the 10 hPa level) midwinter warmings are distinguished.
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In November, the monthly mean temperature at 22 km altitude was the lowest ob-
served since 1964 (Vintersol 2003). At the end of December a strong stratospheric
warming developed. Further warmings were observed around mid January propagating
downwards to tropopause level and then again in February and March. The biggest
temperature deviations between CHAMP and NRLMSISE-00 data topped about +15 K
(see Figure 4.3).

Winter 2003/2004 Minimum temperatures observed during winter 2003/04 in the
lower stratosphere were remarkably above average (cf., Manney et al. (2005) and Lab-
itzke and Naujokat (2004)), and clearly higher than in winter 2002/03. Differences of
even more than +20 K occurred in January and February around 20 km (cf., Figure 4.3).

Figure 4.4 depicts the temporal and vertical progression of a major midwinter warming
in winter 2003/04 (November 2003 to February 2004) at three different altitude levels,
namely 35 km (top row), 25 km (middle row), and 15 km (bottom row).

As can be seen, stratospheric temperatures rose dramatically in December (first at
higher levels) with subsequent significantly warming throughout the arctic stratosphere
and downward progression in January and February. The following negative tempera-
tures starting at high levels in January propagate downwards during February as well.
A very strong polar vortex is re-established in February above 30 km altitude.
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Figure 4.4: Top: Temporal and vertical progression of a major midwinter warming in winter
2003/04 (November 2003 to February 2004) at three different altitude levels, namely 35 km (top
row), 25 km (middle row), and 15 km (bottom row). Stratospheric temperatures rose in December
(first in higher levels) with subsequent significant warming throughout the arctic stratosphere and
downward progression in January and February. The following negative temperatures starting
at high levels in January propagate downwards during February. A very strong polar vortex is
re-established in February above 30 km altitude. Bottom: NCEP/NCAR daily mean reanalysis
temperatures from November 1, 2003 to February 28, 2005, at three pressure height levels.
While at high altitudes (green line, about 30 km height) the increase of temperature starts in
mid December, there is a time-lag at lower altitudes.
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Factor Analysis and Principal
Component Analysis

75





5 Introduction to Component and Factor
Analysis

5.1 General Considerations

(Author: B.C. Lackner)

In this part of the work Principal Component Analysis (PCA) and Factor Analysis
(FA) will be looked at in detail. These are the two most commonly applied types of
the great family of methods for multivariate (statistical) analysis. The term “factor
analysis” is used twofold in this context. One the one hand, it stands for the variety
of different mathematical models applied to uncover latent structures in data sets (such
as principal component analysis, cluster analysis etc.), on the other hand, it is an own
mathematical model, which will be discussed later on. Getting into the subject, Garson
(2005) found a very cute non-technical approach to explain the goal of factor analysis:

“A mother sees various bumps and shapes under a blanket at the bottom of
a bed. When one shape moves toward the top of the bed, all the other bumps
and shapes move toward the top also, so the mother concludes that what is
under the blanket is a single thing, most likely her child. Similarly, factor
analysis takes as input a number of measures and tests, analogous to the
bumps and shapes. Those that move together are considered a single thing,
which it labels a factor. That is, in factor analysis the researcher is assuming
that there is a “child” out there in the form of an underlying factor, and he or
she takes simultaneous movement (correlation) as evidence of its existence.”
(Garson 2005)

Factor analysis techniques are multivariate methods. They deal with data containing
observations on two or more variables each measured on a set of objects. The measured
values of one variable on all objects and the measured values of all variables on one
object respectively, are the items of vectors. It is characteristic for factor analysis to
look at these vector items in their entirety. Only their common distribution as well as
their relationship among each other are of interest.

Even though factor analysis had its beginning in psychology, it is no longer restricted
to a certain discipline. Depending on the purpose of the study and the disciplines, there
are two main applications:
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• Data reduction: To reduce a large number of variables to a smaller number of
“factors” for modeling purposes is the most known application of factor analytic
techniques.

• Undercover the underlying structure: Factor analysis tries to unveil patterns of
relationship among many dependent variables. A smaller subset of variables is
selected from the entire data set, based on the highest correlations of the original
variables.

Following these main applications, two key concepts can be formulated. Exploratory
Factor Analysis is the most common form of factor analysis techniques. There is no
prior theory and one seeks to uncover the underlying structures of a relatively large set
of variables, assuming that any indicator may be associated with any factor.

On the other hand, Confirmatory Factor Analysis tries to determine if the num-
ber of selected factors meet the assumptions on the basis of a pre-established theory.
In other words, the purpose of this kind of analysis is to confirm a hypothesized factor
structure. It plays an important role in social sciences where researchers, for instant, try
to determine, if measures created to represent a latent variable really belong together
(Garson 2005).

Dependent on which variances or correlations are of interest, several “factor analytical
data modes” can be distinguished. A clear description of Cattell’s Data Cube, which
is depicted in Figure 5.1, present Reyment and Jöreskog (1993). Cattell was the first
who described phenomenons in terms of three fundamental properties or dimensions,
namely objects, variables, and occasions (the latter standing for time). This idea of

Figure 5.1: Left: Cattell’s Data Cube consists of objects, variables, and occasions. According
to Reyment and Jöreskog (1993). Middle: For S-mode analysis, which was performed on selected
CHAMP RO data, an object-by-occasion slab was cut out of the data cube. Right: A S-mode
factor analysis results in a factor matrix as depicted. The gray accentuated columns signify
factors, which can be neglected as they do not contribute much to the total variance of the data
set.

data classification, originating from psychology, can be transferred to nearly any study,
where such kind of data are investigated. A strategy to analyze data is to consider pairs
of two dimensions, leaving the third one fixed. This is equivalent to cutting out any
one slab of the data cube. There are six possible pairs, leading to six possible analysis
modes, which are referred to as O-, P-, Q-, R-, S-, and T-mode analyses.
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• O- and P-mode analyses examine variable-by-occasion slabs. The data matrix
shows the variation of characteristics of an object over a period of time and there-
fore it is a form of time series analysis.

• Q- and R-mode analyses investigate object-by-variable slabs. R-mode analysis is
most common in social sciences and often not labeled as such, as it is assumed to
be the “normal” kind of analyses. Q-mode factor analysis is also called “inverse
factor analysis” as it seeks to cluster the cases rather than the variables at a given
point of time.

• In S- and T-mode analyses, the data matrix builds up of an object-by-occasion
slab. From this it follows that one variable, measured on a number of objects
located at various points of time, is analyzed.

On each of these slabs, some form of factor analysis can be performed. In atmospheric
sciences, different arrangements of meteorological variables, grid points, and time series
take the place of Cattell’s dimensions. The most frequently used mode in atmospheric
sciences is S-mode (Jolliffe 2002). There, one fixed meteorological variable is measured at
a certain number of grid points for several times, which results in an object-by-occasion
slab. Such kind of slabs of Cattell’s cube (blue accentuated area in left Figure 5.1)
were used for our investigations in this part of the work, which were carried out with
selected CHAMP RO temperature fields and will be discussed in detail, subsequent to
the theoretical description of principal component and factor analysis.

As PCA and FA are mostly treated in the form of R-mode in literature, the notation of
an object-by-variable data set will also be used throughout this work, where the spatial
locations are the variables, the different times are the objects, and the meteorological
variable (temperature) is fixed (cf., Section 5.2).

Factor analysis as an own method and principal component analysis seem to resemble
each other, as both can be used to analyze the structure of covariance or correlation
matrices with the goal to either reduce the dimensionality of variables or to estimate
latent variables. But the aims of the two methods are not the same.

Principal component analysis, short PCA, which will be described in detail in
Chapter 6, transforms a set of p variables linearly and orthogonally into a number of
new hypothetical variates, called components, which are uncorrelated. To define these
new variables, the latent roots (arranged in descending order) and respective vectors of
a covariance or correlation matrix are used. The new variables are chosen such that
the first variable accounts for the maximum variance of the data, the second for the
maximum residual variance and so on. In most cases, few new variables explain a large
proportion of the total variance found in the data.

Factor analysis aims in explaining the covariances of the variables in terms of a
much smaller number of hypothetical variables, called factors (the theory of factor anal-
ysis will be discussed in Chapter 7). In general, the correlation matrix is used and the
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5 Introduction to Component and Factor Analysis

first question to be answered is whether there are any correlations between the variables
or not. If there are correlations, factor analysis seeks for a new variable such that all
partial correlation coefficients between the original variables are zero after eliminating
the effect of this new variable. If not, two new variables are postulated and so on (Lawley
and Maxwell 1971).

Thus, for the beginning we just want to record that factor analysis is covariance- or
correlation oriented, whereas principal component analysis is variance-oriented.

5.2 The Factor Model

(Author: B. Pirscher)

5.2.1 Data Matrix

Statistical methods are an essential part in the investigation of large samples. Compared
to the past, larger amounts of data are collected, and the rate will continue to accelerate
in the next decades.

Meteorological data are recorded at different times at diverse locations; afterward they
are organized and reproduced in a data matrix. A feasible data matrix XXX is depicted in
Table 5.1; it is composed of n objects and p variables, resulting in a (n× p)-matrix.

Variable 1 Variable 2 Variable j Variable p

Object 1 x11 x12 . . . x1j . . . x1p

Object 2 x21 x22 . . . x2j . . . x2p

...
...

... . . .
... . . .

...

Object i xi1 xi2 . . . xij . . . xip

...
...

... . . .
... . . .

...

Object n xn1 xn2 . . . xnj . . . xnp

Table 5.1: Structure of a data matrix. Each variable is assigned to one column, each object
(observation) to one row.

In case of the CHAMP RO temperatures, the grid point information (latitude, longi-
tude, height) is arranged in the columns of the data matrix (each grid point represents
one variable), whereas the temporal information of the time series can be found in the
rows. The spatial resolution depends on the analyzed atmospheric field, two global areas
(Eurasian-African latitude×height slice and a map at an altitude of 15 km) as well as
two regional fields (situated at the high southern latitudes and at the equator) were
investigated. The time series always stayed the same and contained 36 monthly means
(from March 2002 to February 2005).
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5.2 The Factor Model

5.2.2 Description of the Model

The derivation of the model follows to a large extend the one of Reyment and Jöreskog
(1993).

The data matrix XXX can be analytically made up of the two matrices FFF and AAA with

XXX(n×p) = FFF (n×p)AAA
′
(p×p). (5.1)

The matrix FFF is called matrix of factor scores (principal components); each column
vector of FFF represents a hypothetical variable. The n elements in one column reflect
the amount of variance of this factor. The coefficients of the linear combination, the
elements of AAA, are known as factor loadings.

To achieve the aim of data reduction, it is possible to single out the first k hypothetical
variables from FFF . Then the observed data matrix XXX is portioned into a “systematic”
part FAFAFA′ and an “error” part EEE. The systematic part is proposed to be educible as a
linear combination of a few factor variables that describe or explain the interdependence
of a set of variables in terms of the factors (Anderson 1984). The factor loading matrix
AAA combined with the matrix FFF results in an estimate of the data set XXX.

XXX(n×p) = FFF (n×k)AAA
′
(k×p) +EEE(n×p) (5.2)

The matrix of residuals EEE contains the error terms; k specifies the number of factors
being used, necessarily k ≤ p (cf., Section 8.1).

Transforming equation (5.2) in scalar notation results in

xij =
k∑

l=1

filajl + eij . (5.3)

Any particular row, xxx′ of XXX can be written as

xxx′ = fff ′AAA′ + eee′ (5.4)

and equation (5.2) yields, written in vector algebra,

xxx = AfAfAf + eee. (5.5)

xxx′ = (x1, . . . , xp) is one of the selected objects of the data matrix, fff ′ = (f1, . . . , fk) is
the vector of the matrix FFF yielding, as the product with AAA, an optimal estimate of XXX,
and eee′ = (e1, . . . , ep) is the corresponding vector of residuals.

Equation (5.5) is generally known as the fundamental model equation for factor ana-
lytic techniques. It reveals that each observed variable is composed of a weighted sum
of factors plus an error term eee, which results from the difference between the actually
observed vector xxx and the estimated state vector AfAfAf (Reyment and Jöreskog 1993).
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5 Introduction to Component and Factor Analysis

The model equations of the variables are

x1 = a11f1 + a12f2 + · · · + a1kfk + e1

x2 = a21f1 + a22f2 + · · · + a2kfk + e2
...

...

xp = ap1f1 + ap2f2 + · · · + apkfk + ep,

(5.6)

whereas the best estimate for (x1, . . . , xp) is

c1 = a11f1 + a12f2 + · · · + a1kfk

c2 = a21f1 + a22f2 + · · · + a2kfk

...
...

cp = ap1f1 + ap2f2 + · · · + apkfk.

(5.7)

5.3 Geometrical Considerations

(Author: B.C. Lackner)

5.3.1 Variable, Object, and Factor Space

The vectors of the variables can be interpreted as coordinate axis of a p-dimensional
space in such way that each column of the data matrix XXX forms one coordinate axis. In
this variable space, the n objects are depicted by n points and their coordinates are
given by a p-tuple of (variable) values.

On the other hand, objects can be as well understood as coordinate axis. In this
object space, the coordinate axis correspond to the p column vectors of the data
matrix XXX and each variable is depicted by a radial vector with n items whose starting
point is the origin of the coordinate system.

The length of a radial vector xxxi is the distance from the end-point to the origin of
the coordinate system (

√∑
(xij − 0)2 =

√∑
(xij)2 = |xxxi|). Hence, in a rectangular

coordinate system, the magnitude of a vector is its geometrical length.

By analogy with the variable space, a factor space can be created by taking the p
columns of the factor matrix FFF as coordinate axis. Due to the orthogonality of the fac-
tors, a rectangular coordinate system arises. Usually, only k factors are selected, which
form a k-dimensional subspace of the factor space.

According to the relation XXX = FFFAAA′, the variable vectors of XXX can be mapped in the
factor space by the factor matrix FFF . For every variable vector xxxi exists a radial vector
fff i in the factor space. The end-point coordinates of xxxi are the factor loadings in the
factor space.
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5.3.2 Eigenvalues and Eigenvectors

The following considerations are based on Reyment and Jöreskog (1993). To understand
the geometrical role of eigenvalues and eigenvectors, it is advisable to consider a data
set with two variables. On condition that the variables are standardized and normally
distributed, a bivariate scatter diagram will show the contour of an ellipse (uncorrelated
variables will form a circle, perfectly correlated variables a line). If more than two
variables are considered, a p-dimensional hyper ellipsoid will be formed, which can be
described by www′RRR−1www = const. In this equation RRR is the correlation or the covariance
matrix and www is a vector containing the coordinates of the points on the hyper ellipsoid.
Now, the axis of the (hyper) ellipsoid can be formulated:

• The major axis is determined by the points furthest away from the centroid. The
result of this maximization problem (find the points on the ellipsoid which squared
distance to the origin www′www is maximized) leads to the characteristic equation RRRwww =
λwww, with www′www = λ. One may conclude that www has to be an eigenvector of RRR,
corresponding to the largest eigenvalue λ. Geometrically, the eigenvector defines
the direction of the major axis of the (hyper)ellipsoid, whereas the length of the
axis is given by the root of the eigenvalue.

• In a similar way, the second axis is constructed with the second largest eigenvalue
and its corresponding eigenvector and so on.

In summary it may be said that the eigenvectors point out the directions of the
maximum variances. The eigenvector of the largest eigenvalue indicates the direction of
the maximum variance, the eigenvector of the second largest eigenvalue indicates, as the
eigenvectors are linearly independent, the direction of the maximum variance orthogonal
to the first one and so on. In the same way it is obvious that, as the root of an eigenvalue
stands for the length of an axis, an eigenvalue of zero indicates a corresponding axis of
zero length, suggesting that the dimensionality of the space containing the data points
is less than the original space.
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6 Principal Component Analysis

(Author: B. Pirscher)

6.1 Introduction to Principal Component Analysis

Principal Component Analysis (PCA) was originated by Pearson (1901) who devel-
oped the mathematical foundation of PCA; Hotelling (1933) derived and formalized the
solution of the principal components.

The method has become one of the best known techniques of exploratory multivariate
data analysis and has found applications in many areas of scientific research. The tech-
nique has been applied for example in astronomy by Kanbur and Mariani (2004) who
investigated light curves of RR Lyrae, in medicine by Dutta et al. (2005) who exam-
ined artherosclerotic human coronary arteries, in geology by Thy and Esbensen (1993)
who looked for lava and dike compositions, in social science by Scherer and Avellaneda
(2001) or Brockett et al. (2002), in physics by Natraj et al. (2005), and, as in that case,
in climatology.

The Principal component analysis is a multivariate statistical method, which aims at

• reducing the number of variables in a data set and

• detecting some structures (dominant patterns of variation) in the relationship be-
tween the variables.

An orthogonal transformation of variables generates a new set of uncorrelated hypo-
thetical variables, the factor scores fff whose synonym is “principal components” (PC) in
PCA. The new variables are sorted into descending order according to their amount of
accounted variance. So, the first principal component represents most of the variance,
the second one accounts for a maximum of the remaining variance. Each further PC
accounts for a maximum amount of residual variance. Cumulatively, all the new vari-
ables account for 100 % of the intrinsic variation. With the view of getting a smaller
dimension only few new variables should account for a huge amount of variation, so most
of the intrinsic information will be conserved.

The mathematical technique used in PCA is called eigenanalysis. That means that
a square symmetric matrix (the covariance matrix or the correlation matrix) will be
solved for their eigenvalues and eigenvectors. The eigenvector associated with the largest
eigenvalue has the same direction as the first principal component. The eigenvector
associated with the second largest eigenvalue determines the direction of the second
principal component and it is perpendicular to the first one.
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6 Principal Component Analysis

6.2 Definition of Principal Components

To define the principal components (PC) it is necessary to fall back on the mathematical
model given in equation (5.2) resulting in

xxx = AfAfAf (6.1)

in vector notation.
Suppose that xxx′ = (x1, . . . , xp) is a vector of one object consisting of p variables being

analyzed. Then, the principal components fff ′ = (f1, . . . , fp) are calculated by a linear
combinations of xxx.

f1 = aaa′1xxx = a11x1 + a21x2 + · · · + ap1xp =
∑p

i=1 ai1xi

f2 = aaa′2xxx = a12x1 + a22x2 + · · · + ap2xp =
∑p

i=1 ai2xi

...
...

...

fp = aaa′pxxx = a1px1 + a2px2 + · · · + appxp =
∑p

i=1 aipxi

(6.2)

and, in general,

fj = aaa′jxxx = a1jx1 + a2jx2 + · · · + apjxp =

p∑

i=1

aijxi, j = 1, . . . , p (6.3)

with aaa′j = (a1j , a2j , . . . , apj) being a vector of constants. It is normalized to unit length,

so that aaa′j aaaj =
∑p

i=1 a
2
ij = 1, which denotes an orthogonal transformation.

As mentioned above the variance of the original data set is portioned to the principal
components f1, . . . , fp, whereas the first few fj will express most of the variation and
the last ones can be considered to be constant.

6.3 Derivation of Principal Components

The calculation of the principal components fff and the parameters aaa are based on the
calculation of the covariance matrix ΣΣΣ or the correlation matrix PPP ; the following im-
plementation will be based on the covariance matrix, details concerning the correlation
matrix will be discussed afterward.

The first principal component f1 has to fulfill the requirements that

1. Var(f1) = Var(aaa′1xxx) → Maximum and

2. aaa′1aaa1 = 1.

Because of

Var(f1) = Var(aaa′1xxx)

= E[aaa′1xxx− E(aaa′1xxx)]
2

= E[aaa′1[xxx− E(xxx)]]2

= aaa′1E[(xxx− E(xxx))′(xxx− E(xxx))]aaa1

= aaa′1ΣΣΣaaa1

(6.4)

86



6.3 Derivation of Principal Components

with ΣΣΣ being the covariance matrix, the first condition leads to the maximization of the
product aaa′1ΣΣΣaaa1 under the constraint of aaa′1aaa1 = 1.

Applying the technique of the lagrange multipliers (cf., Appendix B.1) to the function
aaa′1ΣΣΣaaa1 yields

L(aaa1, λ) = aaa′1ΣΣΣaaa1 − λ(aaa′1aaa1 − 1). (6.5)

To get an extremum it is necessary to set the derivation of (6.5) to zero:

∂(aaa′1ΣΣΣaaa1)

∂aaa1
= 2ΣΣΣaaa1 and

∂(λaaa′1aaa1)

∂aaa1
= 2λaaa1, (6.6)

getting
∂L

∂aaa1
= 2ΣΣΣaaa1 − 2λaaa1 = 0 (6.7)

and

(ΣΣΣ − λIIIp)aaa1 = 0 (6.8)

with IIIp being the (p× p)-identity matrix.

Since equation (6.8) is a homogeneous system of equations, a nontrivial solution only
exists if the matrix (ΣΣΣ − λIIIp) is singular, and

det(ΣΣΣ − λIIIp) = 0.

This equation is equal to the characteristic equation (cf., Appendix A.1.10), thus λ is
an eigenvalue of the covariance matrix ΣΣΣ. To decide which eigenvalue is suitable to the
first principal component, look at

Var(aaa′1xxx) = aaa′1ΣΣΣaaa1

= aaa′1λIIIpaaa1

= λaaa′1IIIpaaa1

= λaaa′1aaa1

= λ

(6.9)

and notice that the largest (first) eigenvalue is the appropriate one. The first principal
component f1 = aaa′1xxx is composed of aaa1 being the eigenvector of ΣΣΣ associated with the
largest eigenvalue λ1 and the data vector xxx.

The derivation of the second principal component is similar to the first one. On con-
dition that the second principal component has to explain maximum residual variance,
aaa′2aaa2 = 1 and aaa′2aaa1 = 0, it follows that

(ΣΣΣ − λIIIp)aaa2 = 0 (6.10)

and the eigenvector aaa2 associated with the second largest eigenvalue λ2 of ΣΣΣ belongs to
the second principal component f2 = aaa′2xxx.
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In general, the jth principal component fj is aaa′jxxx and its variance is Var(aaa′jxxx) = λj ,

with λj being the jth largest eigenvalue of the covariance matrix ΣΣΣ and aaaj being the
corresponding eigenvector.

Writing each eigenvector aaaj , j = 1, . . . , p in one of the columns of the matrix AAA(p×p),
equation (6.2) can be written as

fff = AAA′xxx. (6.11)

Because AAA(p×p) is an orthogonal matrix, the principal components fff = (f1, . . . , fp) are
defined by an orthogonal linear transformation of xxx.

Leaving vector notation for a short moment and going over to matrix algebra yields

FFF =XXXAAA (6.12)

with FFF being the matrix of principal components, XXX the data matrix, and AAA the matrix
of eigenvectors.

6.4 Properties of Principal Components

6.4.1 Covariance Matrix of Principal Components

Calculating the covariance matrix of fff , it can be noticed that it results in a diagonal
matrix whose diagonal elements are the eigenvalues of ΣΣΣ, hence it is named ΛΛΛ

ΛΛΛ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λp



. (6.13)

The diagonal structure results from the mutual uncorrelation (independence) of the
principal components. In this connexion it can be found that

ΛΛΛ = Var(fff) = Var(AAA′xxx) = AAA′ΣΣΣAAA (6.14)

and (because of AAA being an orthogonal matrix with AAAAAA′ = IIIp)

ΣΣΣ = AAAΛΛΛAAA′. (6.15)

Equations (6.14) and (6.15) describe the relationship between the covariance matrix
of the principal components and the covariance matrix of the original data set.
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6.4.2 Variance of Principal Components

It is actually known that the eigenvalues of the covariance matrix can be interpreted as
variances of the principal components. Because of

p∑
l=1

Var(fl) =
p∑

l=1

λl

= tr(ΛΛΛ)

= tr(AAA′ΣΣΣAAA)

= tr(ΣΣΣAAAAAA′)

= tr(ΣΣΣ)

=
p∑

l=1

Var(xl),

(6.16)

it can be recognized that the sum of variances of the original data set is equal to the sum
of variances of the principal components, provided that tr(AAA′ΣΣΣAAA) = tr(ΣΣΣAAAAAA′) which is
true if AAA and ΣΣΣ are square matrices1. That means that the total variance of the original
data setXXX is broken up into p components, whereas each of these components is obtained
by projecting XXX onto one of the eigenvectors aaaj .

The jth principal component fj accounts for a particular proportion of total variation.
In relative terms it contains

fraction of total variation(fj) =
λj
p∑

l=1

λl

· 100 (6.17)

and the first k principal components explain

fraction of total variation

(
k∑

l=1

fl

)
=

k∑
l=1

λl

p∑
l=1

λl

· 100, k ≤ p, (6.18)

of the total variation; both proportions are given as percentage.

6.4.3 Use of the Correlation Matrix

Using the correlation matrix PPP (p×p) to derive principal components results in

fff = AAA′zzz, (6.19)

where the columns of AAA (the rows of AAA′, respectively) contain the eigenvectors of the
correlation matrix and zzz are the standardized variables of xxx. The determination of the
correlation matrix (more precisely the sample correlation matrix) can be found in Section
6.4.5.

1The trace of a product of two square matrices is independent of the order of the multiplication.
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The derivation of the principal components basing on the correlation matrix is the
same as that basing on the covariance matrix.

Applying equation (6.16) to the correlation matrix yields that the sum of variances
of the principal components (being equal to the sum of variances of the standardized
variables) is equal to p, the number of variables. That is because the correlation matrix
PPP only consists of ones in the principal diagonal so that the trace of the correlation
matrix is p.

Furthermore, these sums equal to the sum of eigenvalues of the correlation matrix

p∑

l=1

λl = p. (6.20)

The proportion of total variance accounted for the jth principal component is

fraction of total variation(fj) =
λj

p
. (6.21)

The eigenvalues and eigenvectors of the covariance and the correlation matrix are dif-
ferent and cannot be transfered into each other by a simple mathematical formula. Even
if the principal components derived from the correlation matrix are rescaled by multipli-
cation with the standard deviation, they will be different from the principal components
calculated from the covariance matrix. The reason is that principal components are
invariant under orthogonal transformations of xxx but not under oblique transformations,
and the transformation from xxx to zzz (standardized variable) is counted among the latter
(Jolliffe 2002).

The advantage of the correlation matrix over the covariance matrix is that the variables
are standardized and their variances equal to one so that all variables can be weighted
equally. That is useful, if the variables are measured in different units because they
will be more directly comparable. Jolliffe (2002) mentions two disadvantages of the
correlation matrix PCs namely that it is more difficult to base statistical inference and
that they are less easy to be interpreted.

The covariance matrix is appropriate, if all variables have the same unit because the
variables having a large variance will dominate the first principal components and that
is the favored property calculating PCs. Nevertheless, the correlation matrix can also
be successfully used in this case.

Jolliffe (2002) shows, considering an example, that the correlation matrix is more
suitable for calculating PCs than the covariance matrix if the variances (thus the stan-
dard deviations) of the individual variables are widely scattered. The reason is that the
first few “covariance based” principal components mainly contain information about the
relative sizes of variances.

6.4.4 Principal Components With Small Variances

If there are linear dependencies between original variables, some eigenvalues of the co-
variance matrix will be zero. Supposing that m eigenvalues are zero, the rank of ΣΣΣ is
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(p − m) rather than p. Any principal component with zero variance defines an exact
constant linear relationship between some of the elements of xxx, which results from redun-
dant information of the original data set. Knowing these relationships allows to reduce
of the number of variables in the data without loosing any information.

The number of zero eigenvalues arising from the covariance matrix is equal to the
number of zero eigenvalues arising from the correlation matrix.

6.4.5 Sample Principal Components and Matrix Notation

Jolliffe (2002) mentions some different ways of centering a data matrix. One possibility
is the centering by either medians or modes but it is also possible to center the data
about the mean for each variable, or to refer them to the mean of each variable and to
each observation.

The second possibility, the reference of the variables to their means x̄j will be applied
when calculating the sample covariance matrix.

The mean of one variable, which is defined as

x̄j =
1

n

n∑

i=1

xij , j = 1, . . . , p (6.22)

is used when calculating the deviation scores of the variables

yij = xij − x̄j . (6.23)

xij and yij can be thought to be the ijth element of the matrices XXX and YYY containing
the original data and the deviation scores, respectively. The anomalies yij are the values
of the jth variable (xj) measured around its mean x̄j for any i observation.

Because the covariance matrix ΣΣΣ is never known exactly, the deviation scores can be
used to calculate the sample covariance by

sjj′ =
1

n− 1

n∑

i=1

(xij − x̄j)(xij′ − x̄j′ ) (6.24)

and it is convenient to define the sample covariance matrix by

SSS =
1

n− 1
YYY ′YYY . (6.25)

YYY (n×p) is the data matrix in deviated form; it is composed of n rows (number of objects)
and p columns (number of variables).

If the data form a random sample from a multivariate distribution with finite second
moments, then SSS is an unbiased estimate of the true covariance matrix.

The calculation of the principal components by the sample covariance matrix is equal
to the calculation mentioned above. Strictly speaking, the eigenvalues and the eigenvec-
tors of the sample covariance matrix have to be denoted by λ̂1, . . . , λ̂p and âaa1, . . . , âaap,
respectively.

91



6 Principal Component Analysis

Following that notation and using simple matrix algebra, the principal components
can be calculated by

FFF = YYYAAA. (6.26)

Each column of the matrix AAA contains one eigenvector of the sample covariance matrix.

Because of the adjustment of the variables by a constant value, the principal compo-
nents will have zero mean values instead of f̄1, . . . , f̄p.

The sample correlation matrix RRR consists of the elements

rjj′ =
1

n− 1

n∑

i=1

(xij − x̄j)

sj

(xij
′ − x̄j

′ )

sj′
(6.27)

with rjj′ being the correlation coefficient between the variables j and j
′

. x̄j and x̄j
′

are the actually known sample means of xj and xj′ , sj and sj′ are the corresponding
standard deviations,

sj =

√√√√ 1

n

n∑

i=1

(xij − x̄j)
2, i = 1, . . . , p. (6.28)

Because of

zij =
xij − x̄j

sj
(6.29)

being known as z-standardized data the sample correlation matrix follows from

RRR =
1

n− 1
ZZZ ′ZZZ (6.30)

and the PCs are calculated by

FFF = ZZZAAA (6.31)

with AAA containing the eigenvectors of the correlation matrix.

6.4.6 Normalization of Principal Components

Instead of the common normalization aaa′jaaaj = 1, it is possible to use other kinds of
normalization techniques. When using the command PCOMP in IDL the normalization
results from

f̃j =
√
λjfj (6.32)

and, interestingly,

ãaaj =
√
λjaaaj . (6.33)

In that case, the principal components and the coefficients should be renormalized.

92



6.4 Properties of Principal Components

Another common practice (especially in meteorological and climatological applica-
tions) is the renormalization by

f̃j =
1√
λj

fj (6.34)

and

ãaaj =
√
λjaaaj (6.35)

so that Var(f̃j) = 1.

Since

ãaa′jãaaj = λj (6.36)

the lengths of the eigenvectors are proportional to their respective eigenvalues.

Using matrix notation equation (6.35) yields

ÃAA = AAAΛΛΛ1/2 (6.37)

and the renormalized eigenvectors can be found in the columns of the matrix ÃAA.

The covariance matrix restates (cf., equation (6.15))

ΣΣΣ = AAAΛΛΛAAA′ = ÃAAÃAA
′

(6.38)

and analogical the correlation matrix can be calculated by

PPP = ÃAAÃAA
′
. (6.39)

knowing that the matrix ÃAA differs if it is calculated from the covariance or the correlation
matrix because of AAA and ΛΛΛ being different.

By means of the matrix ÃAA the fraction of total variation accounted for by a factor can
be calculated by

fraction of total variation(f̃j) =

p∑
i=1

ã2
ij

p∑
i=1

λi

· 100, (6.40)

which is the same as equation (6.17).

In atmospheric science the eigenvectors defining the principal components are often
referred to empirical orthogonal functions (EOFs). The term “coefficient” or “loading”
applies to the eigenvectors or to the renormalized eigenvectors, calculated by equation
(6.35).

Jolliffe (2002) notes that the normalization used in equations (6.34) and (6.35) has
the disadvantage that the components and coefficients are less easy to interpret and to
compare because each set has a different normalization on its coefficients.

von Storch and Zwiers (2003) mention that the units, which are normally carried by
the principal components will be transferred to the renormalized eigenvectors.
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6 Principal Component Analysis

6.4.7 Transformation From Principal Components to Original Data

The interrelation between the principal components FFF and the deviated original data
set YYY = (XXX − X̄XX) is given by

FFF = Y AY AY A = (XXX − X̄XX)AAA, (6.41)

where the jth column of X̄XX consists of the jth column mean x̄xxj .

Moreover it is already known that

YYY = FAFAFA′

(XXX − X̄XX) = FAFAFA′

XXX = FAFAFA′ + X̄XX.

(6.42)

If k principal components account for a large amount of variation present in the original
data and only k principal components will be taken into following considerations it is
possible to calculate the error, arising from the reduction of the data set by

EEE(n×p) =XXX(n×p) −XXX∗
(n×p) (6.43)

with

XXX∗
(n×p) = FFF ∗

(n×k)AAA
∗′

(k×p) + X̄XX(n×p). (6.44)

FFF ∗
(n×k) only contains the first k principal components and AAA∗′

(k×p) contains the first k

eigenvectors of the covariance/correlation matrix2.

6.5 Summary

The main steps performing a PCA are summarized in Figure 6.1. Following the arrows
the way from the original data matrix results in the principal components and factor
loadings as well as in the visualization and interpretation of the results.

As can be seen, the technique is mostly based upon the eigenvalues and eigenvectors
of the covariance or the correlation matrix, hence the name “eigentechnique” is really
appropriate.

The principal component analysis of some atmospheric fields was done in IDL. To
check the correctness of the code, some tests, which were derived from the theoretical
background were made. The essential formulas were already mentioned in the sections
above, but they will be litest below again. The notation is still the same, but in the
enumeration one to four, SSS denotes the covariance matrix as well as the correlation
matrix. F̃FF and ÃAA follow from the renormalization by equation (6.34) and equation
(6.35), respectively.

2Some selection rules determining the first k principal components will be discussed in Section 8.1.
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Figure 6.1: The way of calculation processes when performing a PCA. Following the arrows
it is possible to understand the way of the principal component analysis. The dotted boxes
denote possibilities of calculation, which do not have to be necessarily done. The determination
of the number of PCs and the varimax rotation are described in detail in Sections 8.1 and 8.2,
respectively.
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6 Principal Component Analysis

1. YYY = FAFAFA′ = F̃FFÃAA
′
,

2. AAA′AAA = III and ÃAA
′
ÃAA = ΛΛΛ,

3. AAAAAA′ = III and ÃAAÃAA
′
= SSS,

4. AAA′SASASA = ΛΛΛ and ÃAA
′
SSSÃAA = ΛΛΛ2,

in case of covariance matrices:

5. (FFF ′FFF )/(n− 1) = ΛΛΛ and (F̃FF
′
F̃FF )/(n− 1) = III,

6. tr(SSS) = tr(ΛΛΛ) = tr[(FFF ′FFF )/(n− 1)] and tr[(F̃FF
′
F̃FF )/(n− 1)] = p,

7. AAA[(FFF ′FFF )/(n− 1)]AAA′ = SSS and ÃAA[(F̃FF
′
F̃FF )/(n− 1)]ÃAA

′
= SSS.

6.6 Numerical Results of a Short Example

A short example should demonstrate the results calculated with the principal component
analysis.

The numerical outputs calculated with the PCA serve to get a better idea of the
method, to check one’s own code and to compare the results to the four implemented
factor analysis techniques. The eigenvalues, eigenvectors, renormalized coefficients, and
the accounted amount of variance will be given from calculations of the covariance ma-
trix as well as from the correlation matrix. A comparison between the results following
from these different matrices will be drawn. Afterward the results calculated with vari-
max rotation will be presented (anticipating the theoretical background of the varimax
procedure, which will be discussed in detail in Section 8.2). Later on, the example will
be expanded to the selection rules.

The data set stems from Mardia et al. (1979) and represents marks in open-book and
closed-book examinations.

Five variables,

• Mechanics (closed-book),

• Vectors (closed-book),

• Algebra (open-book),

• Analysis (open-book), and

• Statistics (open-book)

were collected in 88 observations, hence the analyzed data were given in a (88×5)-matrix.

Before doing the principal component analysis the mean of each variable was sub-
tracted from the original data set.
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6.6 Numerical Results of a Short Example

Sample Covariance Matrix and Sample Correlation Matrix: The calculation of the
sample covariance matrix yields

SSS =




305.768 127.223 101.579 106.273 117.405

127.223 172.842 85.157 94.673 99.012

101.579 85.157 112.886 112.113 121.871

106.273 94.673 112.113 220.380 155.536

117.405 99.012 121.871 155.536 297.755




and the sample correlation matrix amounts

RRR =




1.000 0.553 0.547 0.409 0.389

0.553 1.000 0.610 0.485 0.436

0.547 0.610 1.000 0.711 0.665

0.409 0.485 0.711 1.000 0.607

0.389 0.436 0.665 0.607 1.000



.

Eigenvalues: As it is shown in Table 6.1, the eigenvalues calculated from the sample
covariance matrix SSS are considerably larger compared to the eigenvalues, which are based
on the sample correlation matrix RRR. That is because the correlation matrix follows from
standardized variables whose variance is one, hence the sum of the eigenvalues, which is
always given by the trace of the matrix equals to the number of variables, which is five
in this case.

λ1 λ2 λ3 λ4 λ5

SSS 686.989 202.111 103.747 84.630 32.153

RRR 3.181 0.740 0.445 0.388 0.247

Table 6.1: Eigenvalues of the covariance matrix and the correlation matrix.

Not Rotated Eigenvectors: Comparing the eigenvectors derived from the covariance
matrix and the correlation matrix (shown in Table 6.2) it can be noticed that the values
of the loadings differ a little bit, but all in all they are similar.

Differences concerning the signs of the eigenvectors can be found in the fifth eigen-
vector where all elements show opposite signs. The reason is that the calculation of
eigenvectors is independent of their direction and that results in an arbitrary sign. When
the eigenvectors are of opposite signs, the corresponding principal components have to
be of opposite signs too, because the composition of the two parameters will yield an
approximation of the actually measured data.

Concerning the fourth eigenvector it can be recognized that the sign of the third
element also differs but in both cases it is the element with the lowest loading.
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6 Principal Component Analysis

ano rot
1 ano rot

2 ano rot
3 ano rot

4 ano rot
5

SSS 0.505 0.749 0.300 0.296 0.079

0.368 0.207 −0.416 −0.783 0.189

0.346 −0.076 −0.145 −0.003 −0.924

0.451 −0.301 −0.597 −0.518 0.286

0.535 −0.548 0.600 −0.176 0.151

RRR 0.400 0.645 0.621 0.146 −0.131

0.431 0.442 −0.705 −0.298 −0.182

0.503 −0.129 −0.037 0.109 0.847

0.457 −0.388 −0.136 0.666 −0.422

0.438 −0.470 0.313 −0.659 −0.234

Table 6.2: Not rotated eigenvectors of the covariance matrix and the correlation matrix.

The sum of squared elements of each column is always one because of one is the length
of all eigenvectors. The sum of squared elements of each row, the communality, is also
always one, because, if k = p, 100 % of total variation is accounted for.

Figure 6.2 left, displays the five variables diagrammed with respect to their first two
factor loadings (eigenvectors) calculated with the covariance matrix. Because of the
similarity, the results calculated with the correlation matrix are not shown. Variables
marked with straight letters denote not rotated eigenvectors, italic letters display vari-
max rotated eigenvectors being examined later on in detail.

Because of the first few loadings representing a large amount of intrinsic variation, only
a few of them will be interpreted. The number of “most important” eigenvectors can be
determined by some selection rules being discussed in Section 8.1. Assuming that two
eigenvectors reflect the most prominent patterns only two of them will be interpreted.
Mardia et al. (1979) attribute the first eigenvector representing an “average” because all
variables have a medium positive weight. The second eigenvector distinguishes between
the first two variables, which have positive loadings and the three other variables, which
have negative loadings. Remembering the meaning of the variables it is evident that it
differentiates between open-book and closed-book examinations.

Principal Components (Factor Scores): The principal components calculated with the
covariance matrix and the correlation matrix are given in a (88×5)-matrix, respectively,
and the results will not be given in numerical values.

Figure 6.2 right, shows a scatter plot in which all 88 individuals are drawn with respect
to their first two principal components, calculated by means of the covariance matrix.
Because of the results are nearly identical, those of the correlation matrix are not shown.

Analyzing the forming depicted in the scatter plot it can be seen that the first principal
component accounts for more variance than the second principal component.
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6.6 Numerical Results of a Short Example

Figure 6.2: Left: Variables depicted with respect to their first and second factor loadings
(EOFs) calculated by means of the covariance matrix. Straight letters denote not rotated EOFs,
italicized characters denote varimax rotated EOFs. Right: Scatter plot of 88 individuals with
respect to their first two principal components also calculated from the covariance matrix.

Renormalized Coefficients: The renormalized coefficients are calculated with equation
(6.35), which means that each eigenvector is normalized by the square root of its corre-
sponding eigenvalue. Because of the differences in the magnitude of the eigenvalues, the
resulting renormalized coefficients shown in Table 6.3, differ if they are calculated with
the covariance matrix or the correlation matrix; only the signs will remain the same.

It can be seen that, due to the renormalization, the magnitude of the columns can
not be compared to each other. The interpretation of the first eigenvector as “average”
cannot be done with the renormalized coefficients, but the splitting of the first two
variables and the last three ones can be seen in the second renormalized coefficient of
both matrices.

Percentage of Explained Variance: The percentage of variance explained by each prin-
cipal component can be calculated from the respective eigenvalue divided by the sum of
all eigenvalues or, which is equivalent, by means of the renormalized coefficients whose
squared sum of the elements situated in the corresponding column have to be divided
by the sum of all eigenvalues (cf., equations (6.17) and (6.40), respectively). The results
of the calculations can be seen in Table 6.4.

Comparing the amount of explained variance calculated with the covariance matrix
and the correlation matrix it can be noticed that the distribution is similar to each other.
The first principal component accounts for a little bit more than 60 % in both cases, the
second one about 15 %. Cumulatively the first two PCs explain 80 % (covariance matrix)
and 78 % (correlation matrix).

Varimax Rotated Eigenvectors: Anticipating the theoretical background of the vari-
max rotation the numerical results applied to the example will be given. The only
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6 Principal Component Analysis

ãno rot
1 ãno rot

2 ãno rot
3 ãno rot

4 ãno rot
5

SSS 13.248 10.645 3.054 2.725 0.450

9.655 2.949 −4.233 −7.202 1.071

9.060 −1.079 −1.480 −0.030 −5.239

11.824 −4.278 −6.077 4.767 1.619

14.013 −7.788 6.114 −1.617 0.858

RRR 0.713 0.555 0.414 0.091 −0.065

0.769 0.380 −0.470 −0.186 −0.090

0.898 −0.111 −0.025 0.068 0.420

0.815 −0.334 −0.091 0.415 −0.210

0.782 −0.405 0.208 −0.410 −0.116

Table 6.3: Not rotated renormalized coefficients of the covariance matrix and the correlation
matrix.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

SSS 61.9115 % 18.2142 % 9.34971 % 7.62689 % 2.89765 %

RRR 63.6196 % 14.7914 % 8.89930 % 7.75785 % 4.93181 %

Table 6.4: Explained variance of the principal components, calculated with the covariance
matrix and the correlation matrix.

mention to the technique is that the method contributes to facilitate the interpretation
of the intrinsic results. It can be applied to the eigenvectors as well as to the renormal-
ized coefficients whereas in the first case it generates as much near zero values and only
a few larger values (lower than one) for each variable.

Table 6.5 represents the varimax rotated eigenvalues if all eigenvectors have been
rotated, and if the rotation is only applied to the first and second eigenvector.

Comparing the results yielded from the calculation of the covariance matrix and the
correlation matrix it can be noticed that the first two eigenvectors are practically iden-
tical, the third and the fourth are interchanged.

Applying the varimax rotation only to the first and second eigenvector changes the
results; the clearness of the results is clouded because the varimax rotation is dependent
on the number of eigenvectors being rotated. That is one of the disadvantages of rotation
techniques. Nevertheless, as can be seen in Table 6.5 for each calculated value always
the same elements are the largest. The rotated first eigenvector yields the fifth element
being the most important one and the second eigenvector yields the first element being
the most pronounced one; independent of which matrix is used.
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avar rot
1 avar rot

2 avar rot
3 avar rot

4 avar rot
5

SSS 8.813e–08 1.000 3.347e–09 −3.424e–09 −6.487e–09

−3.325e–09 3.424e–09 2.610e–08 −1.000 −2.212e–09

−2.151e–09 6.487e–09 −1.343e–08 −2.177e–09 −1.000

−1.219e–08 −3.402e–09 −1.000 2.610e–08 −1.245e–08

1.000 −9.284e–08 1.229e–08 3.326e–09 2.151e–09

SSS −0.0960 0.898

0.148 0.396

0.313 0.165

0.539 0.061

0.762 −0.074

RRR 1.619e–07 1.000 6.356e–08 −8.641e–09 7.477e–10

3.251e–09 −6.348e–08 −1.000 2.807e–09 −2.532e–08

1.903e–09 7.478e–10 9.373e–09 −3.002e–09 1.000

−3.607e–09 −8.641e–09 −2.807e–09 1.000 −3.260e–09

1.000 −1.794e–07 −2.858e–09 −3.608e–09 1.901e–09

RRR −0.075 0.755

0.075 0.613

0.478 0.203

0.599 −0.031

0.634 −0.108

Table 6.5: Varimax rotated eigenvectors of the covariance matrix and the correlation matrix.
Varimax rotation is operated to all five eigenvectors as well as to only the first two eigenvectors.

Varimax Rotated Renormalized Coefficients: Because the coefficients are not normal-
ized to unit length but to the lengths of the respective eigenvalues the rotation causes
a shifting to values other than zero or one, depending on the magnitude of the eigen-
values. Nevertheless, the rotation will yield distinctive differences between the values of
each variable.

Table 6.6 shows the varimax rotated renormalized coefficients for all as well as only
two rotated coefficients. Again, the dependency of the number of rotated elements on
the varimax rotation can be seen.

Percentage of Explained Variance of Rotated Eigenvectors/Renormalized Coeffi-
cients: The percentage of variance accounted for by rotated eigenvectors can only be
calculated by means of the rotated renormalized coefficients. Again the squared sum of
one column will be divided by the sum of the eigenvalues.

As can be seen in Table 6.7 the amount of variance is more evenly distributed on
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ãvar rot
1 ãvar rot

2 ãvar rot
3 ãvar rot

4 ãvar rot
5

SSS 2.504 16.293 −2.535 −4.286 −3.040

2.178 3.447 −2.467 −11.960 −2.662

3.547 2.745 −3.814 −3.049 −8.303

4.170 2.351 −13.210 −2.906 −3.810

15.689 2.593 −4.591 −2.845 −3.966

SSS 3.268 16.678

5.481 8.477

7.623 5.014

11.797 4.351

15.734 3.078

RRR 0.143 0.932 −0.245 0.145 0.174

0.166 0.262 −0.910 0.188 0.202

0.334 0.258 −0.287 0.359 0.781

0.281 0.158 −0.196 0.890 0.257

0.909 0.150 −0.165 0.266 0.230

RRR 0.194 0.882

0.350 0.784

0.762 0.488

0.840 0.264

0.860 0.188

Table 6.6: Varimax rotated renormalized coefficients of the covariance matrix and the correla-
tion matrix. Varimax rotation is applied to all five renormalized coefficients and to the first and
second renormalized coefficient.

the five principal components as were the unrotated principal components. The rotated
variables together account for the same amount of intrinsic variation, but no longer
gradually account for the maximum possible variation.
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6.6 Numerical Results of a Short Example

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

SSS 25.875 % 26.777 % 20.064 % 16.875 % 10.409 %

RRR 21.298 % 21.027 % 20.711 % 20.954 % 16.011 %

Table 6.7: Explained variance of the varimax rotated eigenvectors, calculated with the covari-
ance matrix and the correlation matrix.
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7 Factor Analysis

(Author: B.C. Lackner)

One year ago, in 2004, the 100th anniversary of factor analysis was celebrated on the
conference “Factor Analysis at 100”.

Factor analysis (short FA) as such was “invented” by a psychologist named Charles
Spearman in 1904. Until the middle of 1930s, the mathematical technique caused no
problems, since only few factors with a priory known structure were assumed and used
for interpretations (Kaplunovsky 2004). During the 1930s, Thurstone came up with a
“center of gravity” method for the estimation of loadings, which led in the end to the
centroid method, which will be presented in Section 7.2.4. Less than ten years later,
factor analysis was first put on statistical footing.

Nearly at the same time, principal component analysis was introduced by Hotelling,
competing in a certain kind with the “older” factor analysis, as the differences and aims
of both methods were not clearly defined and the discourse about this topic lasted for
several years (sometimes it seems, it is continuing to this day). In the 1960s, Lawley
and Maxwell (1971) presented a common factor model as a statistical model and until
today, quite a variety of methods, being based on different hypothesis and mathematical
models, are available.

This chapter will deal with the mathematical model “factor analysis”. As PCA, factor
analysis tries to explain the correlation between a large set of variables in terms of a
small number of underlying factors, which cannot be observed directly. This implies that
when a researcher obtains a measurement for a certain variable, this measurement is the
result of the influences of underlying factors, which are assumed to be linear. According
to Tucker and MacCallum (1997), the factor model implies two parts of factors:

• Common factor: This part of the factors affects more than one of the observed
variables.

• Specific factor: This is a factor on which only one variable has an impact.

In addition to these two types of factors, the observed variables are as well influence by
an error of measurement, which is included in the model as a supplementary factor. The
components of this “unobserved” error part are assumed to be uncorrelated.

There is a direct relation between the errors of a measurement and the reliability of the
variables: Low measurement errors will result in a high reliability. Measurement error
and specific factors are united to “unique factors”. The common and specific factors
together stand for the “reliable” ones.
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The distinction of different types of factors (common, specific and error) helps to ex-
plain, how the factors account for the variance of the observed variables, which is as well
given by three parts.

Figure 7.1: Schematic representa-
tion of different variances (according to
Pohlmann (2005)).

The part of variance, which is, in general, of
highest interest, is given by the variance of a vari-
able shared with common factors and is named
“common variance” or communality. A second
part arises from the specific factors and is therefore
labeled “specific variance” or specificity. The third
and last part of the variance is connected with
the errors of measurement and is termed “error
variance”. The latter is frequently combined with
the specific variance and together they form the so
called “unique variance” or uniqueness (compare
Figure 7.1). As the common variance is given by
the communality h2, the uniqueness of a variable
is (1−h2), as it is the proportion of a variables’ variance that is not shared with a factor
structure.

Thus, factor analysis can be considered as a method explaining the covariation between
observed variables. Usually, observed variables tend to be correlated with each other to
varying degrees and according to factor analysis, these correlations are given due to the
influence of common factors as different observed variables may be effected by the same
factor (Tucker and MacCallum 1997). In other words, only the common factors account
for the correlations in the observed variables, while specific factors and measurement
errors are able to influence nothing but one single variable.

7.1 The Mathematical Model

To put the preceding consideration into a mathematical model, we will start from a data
vector xxx with mean µ and covariance ΣΣΣ. Then the factor model is defined as follows:

xxx− µ = AAAfff + uuu. (7.1)

In this equation, AAA is the (k × p) matrix of factor weights, called loadings, fff , the col-
umn vector of one factor (with k components), stands for the common factors, and the
p elements of the column vector uuu, the unique factors, contain specific and error factors.
All factors are uncorrelated among each other and the common factors are each stan-
dardized (mean of zero and variance of one).

The factor loadings AAA are the analogue to the renormalized coefficients in principal
component analysis. The items of the matrix are the correlation coefficients between the
variables and the factors. The variance in all variables accounted for by each factor is
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given by summing up the squared factor loadings for one factor and dividing the result
by the number of variables (p). These variances show the relative importance of the
different factors in explaining the variance of the given data.

It is possible for a loading aii to exceed the value one. Then, ψii will be negative,
which is an unacceptable solution, as ψii is a variance.

The sum of squared factor loadings for all factors results in the variance of one variable
accounted for by all factors, the communality h2. These squared multiple correlations
may be interpreted as the reliability of the indicator, but their values must always be
considered in relation to the interpretability of the factors. Furthermore, a communality
larger than one stands for an uncorrect solution, which may be based on a too small
sample size or too many/few selected factors.

The covariance matrix of uuu is the diagonal matrix ΨΨΨ = diag(ψ11, . . . , ψpp). The covari-
ance matrix ΣΣΣ of the variables xxxi is defined as E(xxxxxx′) and contains the covariances σij of
xxxi and xxxj , and the variances σii. The variances consist of two parts (see equation (7.2)),

where the first part of the variance,
∑k

j=1(aij)
2, stands for the communality h2

i , the
second part, ψii, is the unique variance as described in the introduction to this chapter.

σii =
k∑

j=1

(aij)
2 + ψii (7.2)

Combining ΣΣΣ = E(xxxxxx′) with equation (7.1) yields:

E(xxxxxx′) = E
[
(AAAfff + uuu) (AAAfff + uuu)′

]
(7.3)

E(xxxxxx′) = E
[(
AAAffffff ′AAA′ +AAAfffuuu′ + uuufff ′AAA′ + uuuuuu′

)]
. (7.4)

As common and unique factors are assumed to be uncorrelated, the expected value
E (fffuuu′) = 0 (then also E (uuufff ′) = 0), the second, and third term of equation (7.4) will
become zero. Taking additionally into consideration that E(ffffff ′) = IIIp and E(uuuuuu′) = ΨΨΨ,
equation (7.4) results in

ΣΣΣ = AAAAAA′ + ΨΨΨ. (7.5)

In factor analysis AAA and ΨΨΨ are unknown and have to be estimated from the data XXX.
FA’ task is to find out, whether for a specified value of k < p an unique ΨΨΨ with positive
diagonal values and an unique (p × p) matrix AAA, which satisfies equation (7.5), can be
defined (Lawley and Maxwell 1971).

To determine, whether equation (7.5) is fulfilled for a given k, the difference s between
the number of distinct elements of ΣΣΣ, (1

2p(p + 1)), and the number of free parameters
of AAA and ΨΨΨ, (p + pk − 1

2k(k − 1)), is considered (under the condition that k > 1 and
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AAA′ΨΨΨ−1AAA = diagonal):

s =
1

2
p(p+ 1) −

[
p+ pk − 1

2
k(k − 1)

]
(7.6)

=
1

2
(p− k)2 − 1

2
(p+ k). (7.7)

Depending on the value of s, three cases can occur (Mardia et al. 1979):

1. s < 0: In this case, the model contains more parameters than equations and an
infinity of exact solutions for A and ΨΨΨ can be found, resulting in the fact that the
model is not well-defined.

2. s = 0: The factor model contains as many parameters as ΣΣΣ and offers no simplifi-
cation.

3. s > 0: There are more equations than parameters and therefore it is not possible
to solve the model exactly. So, the aim is to look for an approximate solution to
receive simpler explanations for the data by the factor model. This is usually the
case.

7.1.1 Factor Scores

The different factor analysis techniques, which will be discussed in Section 7.2, result in
an estimation for AAA and ΨΨΨ. In finding a solution for AAA, many mathematical constraints
are taken so that the factor matrix FFF , containing the “new”, hypothesized variables,
drops out of the equation (cf., equations (7.1) and (7.5)).

In practice, AAA, ΨΨΨ, and µ, are not known in advance but estimated from the same data
the factor scores are in demand. Even though it would be attractive to estimate the
factor scores, loadings, and unique variances at the same time from the data, this is not
possible as there are too many parameters (Mardia et al. 1979).

In literature many methods to estimate factor scores can be found. Here, only two of
them will be presented in the following. Factor scores are the factor analysis analogue
to PCA’ principal components.

Bartlett’s Weighted Least Square Estimator Method

The unknown factor scores are treated as parameters to be estimated. Starting from the
factor model (equation (7.1)), xxx is supposed to be an observation from a distribution
with meanAfAfAf , covariance matrix ΨΨΨ; AAA and ΨΨΨ are known (Anderson 1984). Furthermore,
µ = 0. The log likelihood of this distribution is given by

L(xxx;fff) = −1

2
(xxx−AAAfff)′ΨΨΨ−1 (xxx−AAAfff) − 1

2
log |2πΨΨΨ| . (7.8)
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The first derivative of L with respect to fff is set equal to zero and reshaped to obtain
an estimate f̂̂f̂f (Mardia et al. 1979).

∂l

∂fff
= 0 (7.9)

AAA′ΨΨΨ−1 (xxx−AAAfff) = 0 (7.10)

AAA′ΨΨΨ−1xxx−AAA′ΨΨΨ−1AAAf̂̂f̂f = 0 (7.11)

AAA′ΨΨΨ−1AAAf̂̂f̂f = AAA′ΨΨΨ−1xxx (7.12)

f̂̂f̂f =
(
AAA′ΨΨΨ−1AAA

)−1
AAA′ΨΨΨ−1xxx (7.13)

In equation (7.13) the term
(
AAA′ΨΨΨ−1AAA

)
is not necessarily diagonal. According to Mar-

dia et al. (1979), Bartlett’s factor scores have the favorable property of being an unbiased
estimate. However, the estimated factor scores are not necessarily uncorrelated, even if
the factor loadings are orthogonally rotated (Hu n.y.).

Knowing the factor scores and the factor loadings, the specific factor scores û̂ûu can be
estimated by û̂ûu = xxx−AAAfff .

Anderson-Rubin Method

Anderson and Rubin modified the routine to calculate Bartlett’s factor scores in a way
that the derived factors are uncorrelated (Hu n.y.). The estimates for the factors fff∗ are
given through:

fff∗ =
[(
AAA′ΨΨΨ−1AAA

) (
III +AAA′ΨΨΨ−1AAA

)]−1/2
AAA′ΨΨΨ−1 (xxx− µ) (7.14)

7.2 Description of the Four Implemented FA-Techniques

Factor analysis, unlike PCA, is unaffected by rescaling of variables. Since generally in
practice rather the relationship between the variables is of interest than their scaling,
data are usually summarized by the sample correlation matrix RRR and not by the (esti-
mated) covariance matrix SSS (Mardia et al. 1979). The model (cf., equation (7.5)) then
becomes:

RRR = AAAAAA′ + ΨΨΨ. (7.15)

In this section, a description of four different factor analysis techniques for extracting
factors from a data set is given. Two of them are algebraic methods, one is a statistical
and one a geometrical one.

7.2.1 Iterative Principal Factor Analysis According to Mardia (PFA)

Principal factor analysis, also known as “principal axis factoring” or “common factor
analysis”, is one of the most commonly applied techniques of factor analysis. It proceeds
very much like principal component analysis, even though there are subtle differences.
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A detailed treatise of the calculation procedure described in the following can be found
by Mardia et al. (1979).

Principal factor analysis can be applied for a k-factor model under the constraint that
s (cf., equation (7.6)) is positive. At the outset, the correlation matrix RRR is needed to
estimate AAA and ΨΨΨ (thought for standardized variables) in equation (7.15).

In a first step, the communalities ĥ2
i , (i = 0, . . . , p) are estimated. For this, two

methods are described in literature:

1. To derive the ith communality, the square of the multiple correlation coefficient of
the ith variable with all other variables is calculated.

2. The first estimate for the communality is given by the largest correlation coefficient
between the ith variable and one of the other variables: ĥ2

i = maxi6=j |rij |. This

estimation method for ĥ2
i was used within the scope of this work.

As in principal component analysis, where the eigenvalues and eigenvectors of a co-
variance or correlation matrix are calculated, a similar procedure is used in principal
factor analysis but, in contrast to the covariance or correlation matrix, a so called re-
duced correlation matrix, given by RRRreduced = RRRoriginal −ΨΨΨ, is employed. The ones
in the main diagonal of RRRoriginal are replaced by the estimated communalities ĥ2

i , as
ĥ2

i = 1 − ψ̂ii. In the following, the eigenvectors uuui and the corresponding eigenvalues
λi (which have to be sorted according to their magnitude) of the reduced correlation
matrix RRRreduced are used to estimate the factor loading matrix Â̂ÂA applying the spectral
decomposition theorem:

Â̂ÂA = UUUΛ1/2, (7.16)

where the matrix UUU contains the eigenvectors of RRRreduced (each eigenvector stands in one
column) and Λ1/2 is a diagonal matrix with the roots of the eigenvalues in the main
diagonal.

Iterative Process

The estimates obtained in this way are systematically biased (Reyment and Jöreskog
1993). Therefore, to improve the results of principal factor analysis as described above,
an iterative process is recommended. Starting with the first results for factor loadings
(cf., equation (7.16)), improved values for the communalities are gained by

ψ̂ii = 1 −
k∑

j=1

â2
ij , (i = 0, . . . , p) (7.17)

ĥ2
i = 1 − ψ̂ii, (7.18)

leading to a new reduced correlation matrix, which can again be decomposed. These
steps are repeated until stable results or a desired accuracy is given.

A principal factor analysis solution is permissible, if all ψ̂ii are non-negative (a negative
ψii is an unacceptable solution, for ψii is a variance). Negative ψii can be caused by

110



7.2 Description of the Four Implemented FA-Techniques

a too small sample size or too many/few selected factors. Since the sample size is
generally a given quantity, only the number of selected factors can be changed to achieve
a permissible solution.

7.2.2 True Factor Analysis According to Jöreskog (True FA)

In the 1960s, Jöreskog succeeded in developing a remarkable factor model (see Reyment
and Jöreskog (1993)). The derived equation system of this model, even though it is
founded on statistics, yields a direct solution without having to apply an iterative rou-
tine. There is as well no need to estimate starting values so that, in general, the results
are reached quicker than with other methods. Jöreskog formulated several factor anal-
ysis solutions, but in the context of this work, only a scale-free method, named “true
factor analysis”, is considered.

Starting again from equation (7.15), one supposes that ΨΨΨ is known, so that

RRR−ΨΨΨ ≈ AAAAAA′. (7.19)

Then, the columns of AAA are chosen as eigenvectors of RRR − ΨΨΨ (corresponding to the k
largest eigenvalues), so that the sum of squares in each column equals the corresponding
eigenvalue (Reyment and Jöreskog 1993).

As discussed in Section 7.2.1, there are several methods to estimate the communalities
ĥ2

i , which also lead to ΨΨΨ. Reyment and Jöreskog (1993) state that it has been shown
that the squared multiple correlation coefficient provides the best possible lower bound
for the communalities, and that such an estimate of ΨΨΨ results from

Ψ̂̂Ψ̂Ψ =
1

(diag RRR−1)
. (7.20)

As the estimate of ΨΨΨ in equation (7.20) is systematically biased (too large), Jöreskog
proposed to multiply it with a scalar θ, which is less than one and has to be estimated
from the data as well.

Ψ̂̂Ψ̂Ψ = θ
1

(diag RRR−1)
(7.21)

To obtain Jöreskog’s scale free estimation of AAA and ΨΨΨ, equation (7.19) is pre- and
postmultiplied by ΨΨΨ−1/2:

ΨΨΨ−1/2RRRΨΨΨ−1/2 − IIIp ≈ ΨΨΨ−1/2AAAAAA′ΨΨΨ−1/2. (7.22)

The eigenvalues and eigenvectors of the left hand side of the equation lead to an
estimate for AAA. Using as well equation (7.20), the eigenvalues and eigenvectors of

(diag RRR−1)1/2 RRR (diag RRR−1)1/2 − IIIp (7.23)

have to be found.

111



7 Factor Analysis

Hence, to estimate θ and the factor loadings AAA, the eigenvalues λ1, λ2, . . . , λp and
the corresponding eigenvectors, which are summarized in the (p × p) matrix UUU , of the
auxiliary matrix RRR∗ are calculated. This matrix is scale-invariant, so it does not matter
whether to employ the covariance or correlation matrix.

RRR∗ = (diag RRR−1)1/2 RRR (diag RRR−1)1/2 (7.24)

Selecting k factors, the least square estimate of θ̂ is the average of the (p−k) smallest
eigenvalues of this auxiliary matrix RRR∗. To determine the number of factors, on the one
hand the eigenvalues of RRR∗ can be enlisted (or visualized with a scree plot), on the other
hand it has to be ensured that θ̂ is less than one.

The least square estimates of the factor loadings AAA are given by means of the sample
correlation matrix, the eigenvectors (in UUUk), the eigenvalues (in Λk), and the weighting
factor θ̂; see equation (7.26).

θ̂ =
1

p− k

p∑

m=k+1

λm (7.25)

ÂAA = (diag RRR−1)1/2 UUUk

(
ΛΛΛk − θ̂IIIk

)1/2
(7.26)

7.2.3 Maximum Likelihood Factor Analysis (ML-FA)

In the 1940s, factor analysis was put on “statistical footing” by Lawley, implementing
maximum likelihood estimations. However, as late as the mid 1960s, there was no good
way for computing the estimates. The advantage of this method is that there are tests
available to check, whether the model fits the data well. The drawback of the method
shows up in a slowly converging iterative process, so that it is recommended to use the
results of another method as starting values (in the context of this work, the results of
principal factor analysis were used). Anyhow, a multitude of algorithms can be found
in literature to improve the calculation procedure.

Unlike principal, true, and centroid factor analysis, which have no distributional as-
sumptions, maximum likelihood factor analysis expects the data to be multi-normally
distributed (Weber 1974). A normal, or Gaussian, distribution is characterized by two
parameters, the mean of the variables and the variance. This probably most known
distribution is unimodal and symmetric about the mean. The multivariate normal, or
spherical, distribution, is a generalization of the normal. The first two moments (mean
and variance) are complemented by two further moments, namely skewness and kurtosis,
which jointly describe the multi-normal distribution. Furthermore, it should be noted
that the multivariate normal distribution is not a mere composite of univariate normal
distributions and that even if every variable in a set is normally distributed, it is still
possible that the combined distribution is not multivariate normal (Rigdon 1996).

To estimate the factor loadings AAA, one starts from the covariance matrix ΣΣΣ, using
the information given by the covariance matrix SSS of the sample XXX. As the sample is
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expected to be a part of a multi-normal population, the distribution function for the
elements of the covariance matrix can be formulated. This distribution was derived by
Wishart and therefore is named “Wishart distribution”. The Wishart distribution is the
multivariate analogue to the chi-square distribution1 and is related to the multivariate
normal in the same way the chi-square is related to the univariate normal (Rigdon 1996).
The Wishart distribution is given through:

f(SSS) = c |ΣΣΣ|−
1
2
n |SSS|

1
2
(n−p−1) exp

[
−n

2
trace

(
SSSΣΣΣ−1

)]
, (7.27)

with c as a constant depending on the sample size.

The likelihood of a given covariance matrix SSS is taken equal to the value of the density
function for that observed covariance matrix. Hence, the likelihood, named with L of
an observed SSS is given by L = f(SSS).

For further considerations, a logarithmic conversion, the so called “log-likelihood”, is
commonly investigated.

ln (L) = ln (c) − 1

2
n ln |ΣΣΣ| + 1

2
(n− p− 1) ln |SSS| − n

2
trace

(
SSSΣΣΣ−1

)
(7.28)

This expression is to be maximized according to the loadings a and unique variances ψ
(given by ΣΣΣ and SSS). As the log-likelihood is an increasing monotonic function of the
likelihood L, the maximum of ln(L) occurs with the maximum of L. Hence, maximizing
the log-likelihood maximizes the likelihood (Tucker and MacCallum 1997). For that, the
first derivative has to be equated to zero.

While early computing procedures were made up of alternating iterations between
solutions for the factor loading matrix AAA and the unique variance matrix ΨΨΨ, more effec-
tive methods, like the “gradient” or “Newton-Raphson” method are used nowadays, to
achieve a maximum likelihood solution.

Expectation Maximization Algorithm According to Nielsen

The EM (expectation-maximization) algorithm is a possible computational device for
maximum likelihood estimations. The idea is to treat the unobservable common factors
fff as missing data under the assumption that fff and ΨΨΨ have a joint normal distribution
(Anderson 1984). The advantage of the EM algorithm is, among other things, that it
converges fast.

The EM algorithm used in this work is taken by Nielsen (2004). In the E-step of the
algorithm, the expectation of the covariances is calculated on the basis of trial values of
the parameters AAA and ΨΨΨ. For the first step, the results for AAA and ΨΨΨ from principal factor

1The chi-square (χ2) distribution is an univariate distribution resulting when univariate-normal vari-
ables are squared and possibly summed. The distribution is squared to the right and has a minimum
of zero, the mean is equal to its degrees of freedom and the variance is equal to twice the degrees of
freedom, on condition that the mean of the original variables is zero (Rigdon 1996).
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analysis were employed. Three equations have to be calculated within the E-step:

ΣΣΣFFF =
(
IIIk +AAA′ΨΨΨ−1AAA

)−1
(7.29)

E (FFF ) = ΣΣΣFFF AAA
′ΨΨΨ−1ZZZ (7.30)

E
(
FFFFFF ′

)
= nΣΣΣFFF + E (FFF ) E

(
FFF ′
)

(7.31)

ΣΣΣFFF is an estimate for a covariance matrix of the factor scores; the matrix ZZZ, first men-
tioned in equation (7.30), stands for the standardized variables of XXX; n is the number of
objects (months in case of the investigated atmospheric data sets).

During the M-step, as the name already indicates, the likelihood function is maximized
on the basis of the results of the E-step. Updated values of the parameters AAA and ΨΨΨ are
derived. The two equations belonging to this step are:

AAA = ZZZ E
(
FFF ′
)
E
(
FFF FFF ′

)−1
(7.32)

ΨΨΨ =
1

n
diag

(
ZZZZZZ ′ −AAA E (FFF ) ZZZ ′

)
. (7.33)

The two steps alternate and the procedure usually converges to the maximum likelihood
estimators. In the example discussed in Section 7.3 the algorithm was continued until
the maximal difference of any element of AAA or ΨΨΨ from one M-step to another was less
than 0.05.

7.2.4 Centroid Factor Analysis (Centroid-FA)

The centroid factor analysis is the oldest method of factor analysis and goes back to
Thurstone, who introduced it in the 1930s. Hence, this method was developed prior
to the advent of large scale computers and at those days, it was very successful, be-
cause it is based on simple summations, which can be easily carried out with a desk
calculator. Nevertheless, the method shows quite a few weak spots, like a certain arbi-
trariness (which shows up in the signs of the loadings) and it depends also, in contrast to
the other methods described, on the scale of the measured values (using the covariance
matrix leads to other results than using the correlation matrix). The here presented
calculation procedure follows the description of Weber (1974).

The centroid method developed by Thurstone is a geometric method. The p variables
can be presented as radial vectors starting from the origin of an orthogonal coordinate
system. The idea of the geometric formulation is, to define a new coordinate system with
the same origin as the primary one, whose abscissa passes through the radial vectors end
points’ center of gravity and therefore is called center of gravity axis. The standardized
vector along this axis corresponds to the first factor (which is also named first “centroid”
in the case of centroid factor analysis).

For an algebraic solution, the factors are extracted one by one, always starting again
with a new residual correlation matrix to calculate the next factor. The procedure con-
tinues, until the final residuals are small enough so that the resulting factors only have
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small absolute factor weights.

The pure algebraic solution of Thurstone’s geometrical model is based on summation
and some other basic arithmetical operations as described in the following.

Extraction of the First Factor

In a first step, as in principal factor analysis, the ones in the main diagonal of the
correlation matrix have to be replaced by the estimated communalities ĥ2

i , which are
the absolutely highest correlation coefficients of the corresponding row/column of the
correlation matrix. This reduced correlation matrix is the starting point for further
calculations.

To achieve the values of the factor loadings for the first factor, the sum ti of each
column (or row) of this reduced matrix is calculated.

ti =

p∑

j=1

rreduced
ji , i = 1, . . . , p (7.34)

To continue, one has to derive the root of the total of these sums, called T .

T =

√√√√
p∑

i=1

ti (7.35)

Out of these sums, the factor loadings ai1 for the first factor are achieved by

aaa1 =
ti
T
, i = 1, . . . , p. (7.36)

To continue, a (p× p) matrix, given by aaaaaa′ leads to the first residual correlation matrix
RRRreduced

1 = RRR− aaa1aaa
′
1, which is the starting point for the extraction of the second factor.

Extraction of the Following Factors

The sum of the rows and columns of the residual correlation matrix are approximately
equal to zero, which is a result of the construction of the centroid, being the origin of
the new coordinate system. As from this residual matrix, the loadings of the second
factor cannot be extracted in the same way as for the first factor, a further step has
to be taken before continuing: The signs of one or more variates are changed (plus is
turned to minus and contrariwise), which is equivalent to turning the sign of one or more
columns and corresponding rows. Only the diagonal elements always stay positive.

The goal is, to achieve a residual correlation matrix with as many positive values as
possible, to be able to create a new centroid. The process of changing signs in columns
and rows is called “mirroring” (only the sign of one coordinate of a point in a two-
dimensional space is changed) or “reflection”.
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If many variables are employed, a multitude of different possibilities leads to an ac-
ceptable solution and because of that, the centroid factor analysis looses its objectivity.

After the mirroring procedure, the loadings of the second factor are calculated by the
same summations and mathematical operations as it was done for the first factor. Before
that, the new communalities of the residual correlation matrix have to be determined as
well and are again set in the main diagonal. Following to the calculation procedure, the
loadings of the variates, whose signs were changed, have to get back their initial signs.
If negative values occur during the summation of columns, the signs of these columns
have to be turned as well, before beginning the factor extraction process.

These steps are continued, until the residual correlation matrix mainly contains very
small values, which means that the correlations are already exhausted.

According to Lawley and Maxwell (1971), the results can be improved by compar-
ing the first estimates of the communalities with the calculated values. If the values
differ significantly, the loadings should be extracted once more by using the calculated
communalities instead of the highest (absolute) correlation coefficients. In the exam-
ple mentioned below (Section 7.3), the loadings were recalculated until the differences
between the estimated and calculated values for the communalities were less than 0.01
(two steps were needed to achieve this required accuracy), whereas for the atmospheric
data sets, a difference value of 0.1 was considered as sufficient.

7.3 Differences in the Results of the 4 Methods Presented on

an Example

To compare differences in the results of the four different implemented factor analysis
methods, a small data set of Mardia et al. (1979), composed of n = 88 observations
(students) and p = 5 variables (examination marks on different topics with open or
closed books) was employed (cf., Section 6.6).

The correlation matrix, which is the starting point for all implemented factor analysis
methods, for this sample is again given by:

R =




1.000 0.553 0.547 0.409 0.389

0.553 1.000 0.610 0.485 0.436

0.547 0.610 1.000 0.711 0.665

0.409 0.485 0.711 1.000 0.607

0.389 0.436 0.665 0.607 1.000




If not quoted differently, for each method, k = 2 factors were chosen.

7.3.1 Examined Matrices and the Eigenvalues

As described in Section 7.2, each of the methods makes use of another matrix to extract
the factors, which should explain the data’s variances. The cornerstones of each method
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are summarized below.

Iterative PFA: A reduced correlation matrix RRRreduced = RRR − ΨΨΨ is employed. For the
first iteration step, the ones in the diagonal of the correlation matrix are replaced
by a first estimate for the communalities, which is the largest correlation between
the ith and another variable. During the following iteration steps, the recalculated
values for the communalties are used to define the actual reduced matrix.

True FA: An auxiliary matrix RRR∗ = (diagRRR−1)1/2RRR (diagRRR−1)1/2, with RRR−1 being the
inverse of the correlation matrix of the data is applied, to achieve the eigenvalues
and eigenvectors for further estimations.

ML-FA: Iterative PFA is used before calculating maximum likelihood factors using an
EM-algorithm, during which no inherent matrix is examined.

Centroid-FA: The same reduced correlation matrix as in iterative PFA is used in the
beginning to calculate loadings of the first factor. To obtain the further loadings,
a so-called “residual correlation matrix” is derived, using the loadings and the
reduced correlation matrix of the previous factor.

While in iterative principal factor analysis and in true factor analysis, the eigenvalues
and eigenvectors are calculated by the decomposition of a certain matrix, in maximum
likelihood and centroid factor analysis, the corresponding eigenvalues are given by the
sum of the squares of the factor loadings of each factor. Table 7.1 shows the different
eigenvalues of the example.

While the first two eigenvalues of principal, ML-, and centroid factor analysis are very
similar, the ones of true factor analysis vary in size. The eigenvalues of the auxiliary
matrix RRR∗ in this method seem to be very high, compared to the other methods. But
it has to be taken into account that the values of this auxiliary matrix are weighted to
achieve the required values of AAA and ΨΨΨ. The eigenvalues, which are derived from the
factor loadings are again similar to those of the other methods.

Slight differences between the methods occur in the decrease of the eigenvalues’ amount
from the first to the fifth eigenvalue. In iterative principal factor analysis, the decrease
of the eigenvalues is taking shape strongest, resulting even in one negative eigenvalue,
whereas in centroid factor analysis the last three eigenvalues are larger than those of the
other methods considered (see Figure 7.2).

How Many Different Factors are Needed?

A major question of a typical factor analysis is how many different factors are needed
to explain the variances of an original data set in an appropriate way. There is a variety
of selection rules and some of them will be explained in detail in Section 8.1.

Most of these rules originate from principal component analysis, even though they
are recommended for factor analysis. Anyhow, for atmospheric data sets like those,
which will be discussed in Section 9.2, these rules do not seem to be appropriate. Factor
analysis is much more sensitive to the number of selected factors than PCA. Following the
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Method EV1 EV2 EV3 EV4 EV5 Comment

Iterative PFA 2.840 0.357 0.083 0.022 –0.053 3 steps until desired pre-
cision, i.e., for each ele-
ment of ΨΨΨ: max |ΨΨΨstep i −
Ψstep (i−1)| < 0.05

2.833 0.338 0.050 0.009 –0.033 after 3 iteration steps

True FA 7.005 1.334 0.812 0.741 0.655 Eigenvalues of RRR∗

2.862 0.379 0.080 0.049 ∗ Eigenvalues derived from
factor loadings extracting 4
factors

ML-FA 2.831 0.354 0.087 0.021 ∗ Results from PFA as ini-
tial guess; Eigenvalues de-
rived from factor loadings
extracting 4 factors

Centroid-FA 2.839 0.356 0.093 0.065 0.037 Eigenvalues derived from
factor loadings extracting 5
factors

∗ . . . calculation not possible due to mathematical constraints

Table 7.1: Differences of the eigenvalues according to the four implemented factor analysis
methods.

requirements of the selection rules, in most cases too many factors would be extracted,
resulting in some negative values for the ψii and therefore in a non permissible solution
(cf., Section 7.1). The problems of the different methods arising when using atmospheric
data sets will be discussed in Section 9.2. At this place it just should be noted that the
results of a scree plot (cf., Section 8.1), as shown in Figure 7.2, are a good starting point
for the selection of the number of factors. In the case of our example, two factors were
chosen.

7.3.2 Factor Loadings and Unique Matrix ΨΨΨ

As discussed in detail in Section 7.1, the goal of factor analysis is to find a solution for
the model equation RRR = AAAAAA′ +ΨΨΨ, where AAA is the matrix of the factor loadings and ΨΨΨ a
diagonal matrix containing the unique variances.

The four implemented methods of factor analysis led to slightly different results for
the factor loadings, which are presented in Table 7.2 as well as the varimax rotated factor
loadings.

The aim of factor rotation is to make the output more understandable and to facilitate
the interpretation. The sum of the eigenvalues is not affected by rotation, but it alters
the eigenvalues of particular factors and changes the factor loadings (Garson 2005). A
detailed description of factor rotation and the varimax rotation method is found in Sec-
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Figure 7.2: Differences in the eigenvalues (derived from the factor loadings) of the four im-
plemented methods. While the first two eigenvalues of all methods are quite similar, the detail
graphic on the right side shows the fanning out of the eigenvalues number three to five.

tion 8.2.

In general, the differences between the factors calculated with the four methods are
minor and range, considering one variable, between 7.8 % to 8.7 % with the exception
of factor two. Here, the loadings of the third variable differ about 67 % between true
(factor loading = −0.037) and centroid (factor loading = −0.113) factor analysis, with
reference to the absolutely higher value. Large differences from 10.4 % to 22 % are also
found for variables one, two and four regarding these two methods. Anyhow, these
differences disappear after rotating the factors, where again a maximum difference of
around 8 % is achieved. If this fact is valid for data sets in general, varimax rotation of
factor loadings seems to reduce differences in the loadings resulting from the four factor
analysis methods.

The effect of factor rotation is clearly visible in this example. As expected, the five
different variables seem to be characterized by two underlaying factors (marks depend
rather on open- and closed books than on the five topics). While the first two variables
(standing for closed books) of the rotated loadings of the first factor have rather small
values, the three remaining variables (standing for open books) are strongly pronounced.
The second factor is given the other way round: Here, the first two variables are highly
loaded, whereas the last two variables are rather humble.

The matrix ΨΨΨ contains the variable-specific, unique variances, which cannot be ex-
plained by common factors. In other words, the values of ΨΨΨ explain, how much purely
random or unique variance each observed variable includes. Following values were
achieved with the four different factor analysis techniques for the diagonal of ΨΨΨ:

Iterative PFA: 0.4640 0.4062 0.2276 0.3350 0.3962
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Method Factor Loadings ΣΣΣp
i=1a

2
i Tot. Var.

Factor 1

Iter.PFA 0.645 0.711 0.877 0.779 0.733 2.833 56.66 %

True FA 0.632 0.700 0.879 0.785 0.740 2.826 56.52 %

ML-FA 0.692 0.753 0.865 0.750 0.698 2.843 56.85 %

Cent.FA 0.648 0.715 0.890 0.769 0.718 2.830 56.59 %

Factor 2

Iter.PFA 0.347 0.296 –0.065 –0.242 –0.259 0.338 6.76 %

True FA 0.371 0.317 –0.037 –0.205 –0.229 0.334 6.68 %

ML-FA 0.358 0.309 –0.045 –0.231 –0.254 0.343 6.87 %

Cent.FA 0.315 0.284 –0.113 –0.263 –0.253 0.326 6.53 %

Varimax Rotated Factor 1

Iter.PFA 0.265 0.349 0.709 0.749 0.725 1.781 35.63 %

True FA 0.266 0.353 0.713 0.744 0.723 1.780 35.60 %

ML-FA 0.286 0.364 0.682 0.717 0.693 1.673 33.47 %

Cent.FA 0.274 0.345 0.740 0.749 0.704 1.798 35.96 %

Varimax Rotated Factor 2

Iter.PFA 0.682 0.687 0.520 0.322 0.279 1.390 27.79 %

True FA 0.683 0.682 0.515 0.325 0.278 1.380 27.60 %

ML-FA 0.724 0.728 0.535 0.318 0.267 1.513 30.25 %

Cent.FA 0.666 0.688 0.508 0.315 0.289 1.358 27.16 %

Table 7.2: The (rotated) factor loadings according to the four implemented factor analysis
methods.

True FA: 0.4589 0.4084 0.2419 0.3379 0.3832
ML-FA: 0.4675 0.4080 0.2314 0.3211 0.3830
Centroid-FA: 0.4720 0.4136 0.2009 0.3470 0.4175

In contrast to the loadings, the values only differ minor regarding the four methods, even
though a slight increase of the deviation can be noticed from the third value on, which
is mainly given due to diverging values of the centroid method. Apart from the third
value (deviation of about 17 % between true and centroid factor analysis), the differences
between the methods stay below 8.2 % (as reference, the highest value of each variable
was considered).

Total Variance Explained by the Factors

While the first factor pattern delineates the largest pattern of relationship in the data,
the second the next largest pattern and so on, the amount of variation in the data de-
scribed by each factor decreases successively with each factor. The ratio of the sum of
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the values of the squared loadings (communality h2) to the number of variables (p), mul-
tiplied by 100, equals to the percentage of total variation in the data that is patterned.
It is a measure for the order, uniformity, or regularity in the data.
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Factor 1 56.66 % 56.52 % 56.85 % 56.56 %

Factor 2 6.76 % 6.68 % 6.87 % 6.42 %

Varimax rotated Factor 1 35.63 % 35.60 % 33.47 % 35.96 %

Varimax rotated Factor 2 27.79 % 27.60 % 30.25 % 27.16 %

Factor 1+2 63.42 % 63.20 % 63.72 % 62.98 %

Table 7.3: Variance of the exemplary data set explained by two selected factors.

Table 7.3 shows the amount of the variances explained by the selected two factors. As
the factor loadings are only influenced by the common factors, the unique variance is
excluded from this consideration. All in all, about 63 % of the variance of the observed
data can be explained by the selected two factors. While in the unrotated case, the
largest part of the variance is explained by the first factor, rotation leads to a more
equal distribution of the explained variances, anyhow, the total variance stays the same.

There are nearly no differences in the variances regarding the four methods for un-
rotated factor loadings. For varimax rotated factor loadings, the maximum likelihood
method leads to an even more uniform distribution of the variances than the other three
methods.

How Well do the Hypothesized Factors Explain the Observed Data?

Having extracted the common and unique variances, the original correlation matrix can
be reproduced making use of the estimates for Â̂ÂA and Ψ̂̂Ψ̂Ψ in equation (7.15). A residual
correlation matrix,

RRRresidual = RRRoriginal − Â̂ÂA Â̂ÂA′ − Ψ̂ΨΨ, (7.37)

can be investigated to check, whether the selected factors succeed in reproducing the
original correlations, which is the fact, when the elements of the residual correlation
matrix are small. Table 7.4 shows the maximal absolute value of any item of the residual
correlation matrix for the four methods, as well as the root mean square (RMS) of all
elements of the matrix, which is defined by

RMS =

√√√√√
∑
i,j
r2ij

p2
. (7.38)
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Largest absolute value of RRRresidual 0.0260 0.0208 0.0780 0.0112

RMS of all elements of RRRresidual 0.0054 0.0021 0.0241 0.0009

Table 7.4: Selected values of the four residual correlation matrices, indicating how well the
number of selected factors reproduce the original correlation matrix.

Generally, the residual correlation matrices of all four methods just show small values,
nevertheless, some interesting facts occur in this example. Even though centroid factor
analysis is the oldest and, in the age of the computer no longer used, method, the most
accurate results were achieved with it. Anyhow, because of the arbitrariness of the
method (cf., Section 7.2.4), which will also be shown in the atmospheric data set, it is
not given preference to it.

Just as centroid factor analysis surprises with good results in this example, maximum-
likelihood factor analysis leads to the worst. Unfortunately, it is beyond the scope of
this work to analyze the reasons for this fact.

Iterative and principal factor analysis achieve about the same accuracy, with root
mean square deviations between the “true” and calculated correlation matrix of less
than 1 %, which surely can be considered as a “good” result.

7.3.3 Factor Scores

In Section 7.1.1, two different methods to calculate the factor scores, knowing the fac-
tor loadings, the unique variance matrix ΨΨΨ and the original data, namely according to
Bartlett and Anderson-Rubin, were presented.

To get a feeling for the two factor scores, factor pattern coefficients (AAAfff), not including
the unique factors uuu, were calculated and subtracted from the original data (cf., equation
(7.1)). Since the unique factors are achieved by estimation as well (employing the original
data, the factor scores and factor loadings), it would be possible to include them.

But, on the assumption that the unique factors uuu are more or less the same for all
methods (as the factor loadings and unique matrix ΨΨΨ do not differ much), the differ-
ences between the original data and the calculated factor pattern coefficient (as described
above) served for the comparison of Bartlett’s and Anderson-Rubin’s factor scores.

In Table 7.5, “min” and “max” stands for the minimal and maximal value of the
formed differences between original data and factor patterns; “RMS” is the root mean
square of all elements of the difference matrix. The rather high values may go back to
the fact that the unique factors are not included in the calculation.

Very similar to the factor loadings and ΨΨΨ, there are no striking differences between
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Not Rotated Results Varimax Rotated Results

Method min max RMS min max RMS

Bartlett’s Factor Scores

Iter. PFA −26.47 23.94 9.65 −7.16 81.66 39.39

True FA −22.77 24.79 7.91 −7.33 82.42 39.44

ML-FA −22.04 24.26 7.98 −6.04 80.93 39.74

Cent.FA −33.17 28.80 14.23 −6.35 82.12 39.69

Anderson-Rubin’s Factor Scores

Iter. PFA −27.61 20.98 9.79 −10.46 67.87 31.65

True FA −26.18 21.16 8.71 −10.67 68.32 31.55

ML-FA −25.60 21.60 8.67 −9.31 70.76 32.09

Cent.FA −32.26 24.12 12.28 −9.67 68.77 32.15

Table 7.5: Minimal and maximal differences as well as root mean square between original data
and reproduced data employing factor pattern coefficients excluding the unique factors.

the four factor analysis techniques, which was expected, as the factor scores depend on
the factor loadings and ΨΨΨ. But it also seems that there are only minor differences in the
results, no matter whether Bartlett’s or Anderson-Rubin’s method is used to calculate
the factor scores.

As iterative principal factor analysis proved to be the most appropriate technique for
atmospheric data sets (at least for those, which were investigated in the context of this
work, cf., Section 9.2), Bartlett’s factor scores were used for further considerations.
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8 Common Properties and Differences of
PCA and FA

(Authors: B.C. Lackner and B. Pirscher)

8.1 Determination of the Number of Factors

Principal component analysis and factor analysis aim to reduce the number of variables
and thereby to reduce the dimensionality of the original data matrix. It appears to be
reasonable to “cut” the factors at one well-defined value, which is determined by one
particular selection rule. There are a lot of different methods extracting each another
number of variables. It depends on the PCA’/FA’ goal, which method emerges to be
the appropriate one.

8.1.1 Cumulative Percentage of Total Variation

Reducing the number of factors entails that the total amount of variation of the original
data cannot be reproduced exactly because

p∑

l=1

Var(xl) =

p∑

l=1

Var(fl) >
k∑

l=1

Var(fl) (8.1)

with k < p.

The total percentage of variation accounted for by the first k factor scores tk is defined
as

tk =

k∑
l=1

Var(fl)

p∑
l=1

Var(fl)

· 100 =

k∑
l=1

λl

p∑
l=1

λl

· 100. (8.2)

One possibility of reducing the number of variables is to select a fixed cumulative
percentage of intrinsic total variation, which should be accounted for by the factor scores.
Then the favored number k is set by the smallest value for which the desired percentage
is exceeded
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k∑
l=1

λl

p∑
l=1

λl

· 100 > t∗. (8.3)

The chosen value of accounted variation t∗ is arbitrary, it is located between 70 % and
90 %, sometimes up to 99 %, depending on the data set. If a small number of PCs are
very dominant and some sources of variation, which are arranged behind are wanted to
be analyzed, the cut-off value should be selected higher than 90 % but if there are a lot
of variables contributing comparably little of the total variation, it is justifiable to use a
cut-off value even smaller than 70 %.

8.1.2 Kaiser’s Rule

Calculating the factor scores by means of the correlation matrix, the Kaiser’s rule states
that the number of selected factor scores should be equal to the number of eigenvalues
λ larger than one1. The reason is that only factor scores with variances larger than
one contain more information than the original variables. All variables associated with
eigenvalues smaller than one can be neglected because of their small content of informa-
tion. According to Jolliffe (2002), the influence of sampling variation can be inhibited if
the limit is chosen more tolerant, he proposes λ > 0.7.

If factor scores of the covariance matrix are given the rule of Kaiser has to be modified
because of their non standardized variances. Jolliffe (2002) mentions that the average
value of the eigenvalues λ̄ or rather 0.7λ̄ could be chosen as cut-off value, but problems
may arise if covariance matrices have widely differing variances because then too few
factor scores will satisfy the criterion.

8.1.3 Scree Test

The scree graph is a graphical representation of the eigenvalues, which are arranged
according to their size and plotted on the ordinate against their index on the abscissa.
A break from a steep to a shallow slope in the graph represents the last principal com-
ponent, which should be taken into further consideration. The mathematical point of
view says that the criterion evaluates the difference between three adjoined eigenvalues
λj−1, λj , and λj+1. Factors corresponding to eigenvalues whose differences are fairly
constant can be neglected. The test is still a subjective criterion because no explicit
formula can be specified.

Alternatively, in atmospheric sciences the logarithm of the eigenvalue (log λ) can be
plotted against the index; this is known as log-eigenvalue (LEV) diagram. The number
of principal components, whose logarithmic eigenvalues are connected to a straight line,
should be discarded.

1In case of FA, the eigenvalues are derived by summing up the squared factor loadings of the respective
factor.
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8.1.4 Application to the Example

As the results of FA depend on the number of extracted factors (cf., Section 8.3), only
PCA’ results are to be examined at this point.

Cumulative Percentage of Total Variation Table 8.1 shows the cumulative percentage
of information explained by the factors of the covariance matrix and the correlation
matrix. Dependent on the chosen cut-off value, two or more factors could pass the
criterion. Choosing the usual value of 90 %, four factors could be retained in further
calculations, independent of the matrix used.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

SSS 63.620 % 78.411 % 87.310 % 95.068 % 100.000 %

RRR 61.912 % 80.126 % 89.476 % 97.103 % 100.001 %

Table 8.1: Cumulative percentage of information explained by the factors of the covariance
matrix and the correlation matrix.

Kaiser’s Rule Recalling the eigenvalues calculated from the covariance matrix and the
correlation matrix (depicted in Table 6.1) of the example discussed in Section 6.6, the
number of selected factors can be specified by means of the Kaiser’s rule.

Looking at the covariance matrix it can be recognized that two eigenvalues are larger
than the average of all eigenvalues (λ̄ = 221.93) meaning that two factors will pass the
criterion. Being more tolerant and using the cut-off value at 0.7λ̄ = 155.35, the number
of selected factors will be the same.

If factor scores of the correlation matrix are used the determining value is one, also
being the average of the eigenvalues. Because of only one eigenvalue being larger than
one, only one factor satisfies this criterion; if the criterion is expanded to 0.7 the second
factor can be added.

Scree Test and LEV-Test Figure 8.1 shows the scree plot (left) and the LEV diagram
(right) for the open/closed book example. The “elbow” in the scree plot clearly occurs
at the second eigenvalue, so only two principal components could be taken into following
considerations. The same is obtained looking at the LEV diagram. All eigenvalues from
the second one upward can be connected with an imaginary straight line.

The results obtained from calculations with the covariance matrix are similar to the
plots shown in Figure 8.1, except for the dimensions of the eigenvalues and the logarith-
mic eigenvalues. Furthermore, the LEV diagram obtained from the correlation matrix is
easier to be interpreted, because of the logarithmic eigenvalues of the covariance matrix
decreasing more even and the roughly straight line connecting practically all logarithmic
eigenvalues.
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8 Common Properties and Differences of PCA and FA

Figure 8.1: Left: Scree graph created for the open/closed book example, generated with the
correlation matrix. Right: LEV diagram obtained from the same data set applied to the same
matrix.

Summary Table 8.2 summarizes the number of factors being retained by several selec-
tion rules discussed above. The cut-off value of the cumulative percentage of explained
variance is chosen to be 90 %. The values given in parentheses are the number of factors
being retained by the enhanced Kaiser’s rule.

It can be seen that the number of the most important factors is very similar, most
methods yield two factors to be selected. In most cases, the behavior of the selection
rules is not as uniform.

Cum. Variance Kaiser’s rule Scree-Test LEV-Plot

SSS 4 2 (2) 2 2

RRR 4 1 (2) 2 2

Table 8.2: Number of factors passing the examination with different rules.

8.2 Rotation of Factor Loadings

A main interest in doing multivariate statistical analysis is to simplify the variables of
an abstract data field and to find typical patterns hidden behind the data. Sometimes a
lot of variables contribute to the first factors and the interpretation of the result is very
difficult. Rotating the factors facilitates the interpretation of the results.

According to von Storch and Zwiers (2003), some arguments pro and contra the ap-
plication of rotation of the factor loading matrix have to be considered.

1. Advantages:
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• The technique produces compact patterns, which can be used for further
investigations;

• Rotated factor loadings are less sensitive to the distribution of observing lo-
cations than not rotated factor loadings;

• Rotated factor loadings are often statistically more stable than not rotated
factor loadings;

2. Disadvantages:

• There is no strong rotation criterion, it can be chosen arbitrarily;

• The results are sensitive to the normalization of the factor loadings;

• If the number of selected factors has changed, the calculation has to be re-
peated;

• There may be a loss of information about the dominant sources of variation
in the data.

Performing a rotation technique means changing the factor loadings/coefficients, which
can be interpreted as projections of the variables onto the factors. The configuration of
the variables remains the same. An oblique rotation yields factors without the constraint
of orthogonality, which results in measurable correlations between them. These correla-
tions can be examined. In orthogonal rotation techniques the axes remain perpendicular
to each other and the factors stay uncorrelated.

All rotation methods’ purpose a “simple structure”, which means that the number
of variables, which are loading on the factors should be minimized to get a better in-
terpretability. Variables, which are associated with more than one factor in the same
magnitude, should be reassigned to one particular factor.

Reyment and Jöreskog (1993) cite Thurstone (1935), who defined some criteria to
establish a simple structure. These criteria are that:

• Each factor loading matrix/matrix of coefficients AAA should contain at least one
zero in each row;

• Each factor loading matrix/matrix of coefficients AAA should contain at least k zeros
in each column (k is the number of extracted factors);

• Every pair of factors should have some variables being “high loaded” on one factor
and “low loaded” on the other;

• Every pair of factors should have some variables being low loaded on both factors;

• Every pair of factors should have only a few variables, which have non vanishing
loadings on both.

Following these criteria the new factor loading matrix BBB should have a lot of near-
zero values and some high loadings and the new factors are independent on most of the
variables.
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Generally, the matrix of rotated factor loadings (or rotated empirical orthogonal func-
tions) BBB can be calculated by

BBB = ATATAT , (8.4)

where AAA is the matrix of unrotated factor loadings/coefficients and TTT is the transforma-
tion matrix, which turns out to be

TTT =

(
cosϕ − sinϕ

sinϕ cosϕ

)
, (8.5)

with the angle ϕ being the quantity of interest.

Bortz (1989) mentions the following rotation techniques:

∗ Binormamin ∗ Oblimax ∗ Quartimin

∗ Biquartimin ∗ Oblimin ∗ Tandem

∗ Covarimin ∗ Parsimax ∗ Varimax

∗ Equimax ∗ Promax ∗ Varisim

∗ Maxplane ∗ Quartimax

Most of them realize oblique rotations, and some orthogonal rotations.

8.2.1 The Varimax Procedure

The most popular orthogonal rotation technique is the varimax procedure, which has
been developed by Kaiser (1958). The technique aims at maximizing the variance of
the squared loadings in each factor; factors with medium loadings on a variable will be
amplified or damped.

The variance of squared loadings of the factor j is defined as

s2j =
1

p

p∑

i=1

(a2
ij)

2 − 1

p2

(
p∑

i=1

a2
ij

)2

, (8.6)

with p being the number of variables and aij being the elements of the unrotated factor
loading matrix.

Simplicity is achieved if the accumulated variance of the selected k factors is maximized

Q =
k∑

j=1

s2j → Maximum. (8.7)

All pairs of factors j and j′ are rotated, one after the other, so that the respective
sum s2j + s2

j
′ will be a maximum
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s2j + s2
j
′ =
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1
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(a2
ij)
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)2

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Q results from

Q =
1

p

k∑

j=1

p∑

i=1

(a2
ij)

2 − 1

p2

k∑

j=1

(
p∑

i=1

a2
ij

)2

. (8.9)

According to Bortz (1989), the conditional equation of the determination of the angle
ϕ following from the rotation of the factors j and j

′

is

C =

2 ·
[
p

p∑
i=1

(a2
ij − a2

ij
′ ) · (2aij · aij

′ ) −
p∑

i=1
(a2

ij − a2
ij

′ ) ·
p∑

i=1
(2aijaij

′ )

]

p ·
[

p∑
i=1

(
(a2

ij − a2
ij′

)2 − (2aijaij′ )
2
)]

−
[(

p∑
i=1

(a2
ij − a2

ij′
)

)2

−
(

p∑
i=1

(2aijaij′ )

)2
] ,

(8.10)
where the absolute value |C| is equal to

|C| = tan(4 · ϕ). (8.11)

The last step in the calculation of the angle of rotation, is to determine the proper
quadrant, in which the angle is situated.

• If the enumerator and dominator are positive, the transformation matrix is

TTT =

(
cosϕ − sinϕ

sinϕ cosϕ

)
. (8.12)

• If the enumerator is positive and the dominator negative, the transformation ma-
trix is

TTT =

(
cos(45◦ − ϕ) − sin(45◦ − ϕ)

sin(45◦ − ϕ) cos(45◦ − ϕ)

)
. (8.13)

• If the enumerator is negative and the dominator positive, the transformation ma-
trix is

TTT =

(
cosϕ sinϕ

− sinϕ cosϕ

)
. (8.14)

• If the enumerator and dominator are negative, the transformation matrix is

TTT =

(
cos(45◦ − ϕ) sin(45◦ − ϕ)

− sin(45◦ − ϕ) cos(45◦ − ϕ)

)
. (8.15)
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Each rotation between two factors j and j
′

delivers one transformation matrix TTT jj
′

and, because of k factors being rotated, there will be k(k−1)/2 transformation matrices.

The resulting transformation matrix after one cycle of rotation is

TTT ∗ = TTT 12 · TTT 13 · . . .TTT jj
′ . . . (8.16)

and the matrix of rotated factor loadings BBB can be calculated by

BBB = ATATAT ∗. (8.17)

After the calculation of BBB, the accumulated variance of the squared loadings of each
factor will be computed once more, with (bij) being incorporated in the calculation of
Q. As long as the old and the new values of Q differ to a certain amount, the rotation
cycle will be continued and iterated until Q reaches a maximum.

If all variables nearly have the same communality, it is possible to normalize the rows
of the factor loading matrix to unit length by dividing each element in the row by the
square root of the associated communality. After rotation, the elements have to be
transformed back to their original lengths.

A further aspect is that the fraction of total variance accounted for by a factor changes
performing a varimax rotation, the variance will be more evenly distributed among the
factors. The accounted variance of each factor can be calculated by equation (6.40),
with the rotated renormalized loadings being the input variable ã.

8.3 Differences between PCA and FA

In the Chapters 6 and 7, an example of Mardia et al. (1979) was employed, to demon-
strate the properties of PCA and the four FA techniques, respectively. Now, the dif-
ferences between the two methods should be investigated by means of the same example.

To understand the differences, let’s call once more the models to mind:

PCA : xxx = AAAfff(+eee) (8.18)

FA : xxx = AAAfff + uuu. (8.19)

The error term eee in equation (8.18) is put in parenthesis because its amount depends on
the number of extracted factors. The more components are used to explain the data’s
variance, the smaller is the error term; if all principal components are selected, eee is equal
to zero. As the number of extracted factors is determined within the calculation process,
the same goes for the amount of the error term.

In contrast, the uniqueness uuu (see equation (8.19)) always plays an important role
in FA. To be able to compare PCA and FA results, the renormalized PCA coefficients
and principal components have to be used. Then, the PCA coefficients and FA factor
loadings, which are stored in AAA, have the same meaning; they are weighting values for
the principal components/factor scores fff .
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The differences between the two methods can be tracked in the coefficients/factor
loadings AAA, the principal components/factor scores fff , and the uniqueness uuu. While AAA
and fff only differ in their amount, uuu is a key player. In Chapter 5 we mentioned that
PCA is variance oriented, whereas FA is covariance oriented, which also leads us to the
methods’ differences.

PCA does not distinguish between common (affected by more than one variable) and
unique (only affected by one variable) variances and both can be found in the principal
components. Compared with this, the goal of FA is to separate common and unique
variances by putting the common variances in the matrix AAA and the unique variances in
the covariance matrix of uuu that is ΨΨΨ. This allocation of variances implies that, as in FA
only the factor loadings are used to calculate the amount of total variance in the data
(the unique factors uuu or the unique variances ψψψii are not included), the total explained
variance with FA is generally less than with PCA (the meaning of common and unique
variance in regard to the differences between PCA and FA will be dealt with later on).

Concerning atmospheric data sets this means that FA includes for example the pos-
sibility to spot those grid points and areas, which are strongly determined by unique
variances and therefore are not covered in large-scale patterns. Even though PCA does
not include this possibility, preference may be given to this method due to shorter cal-
culation process and the independence on the number of selected factors, which will be
discussed below.

Actually, in PCA the term “factor loadings” corresponds to the eigenvectors as well
as to the renormalized coefficients calculated from the correlation matrix or from the
covariance matrix. Because the four implemented factor analysis techniques refer to the
correlation matrix, the comparison is only performed on this type of matrix.

Table 8.3 shows that the first and the second factor loadings generally point to the
same direction (same sign). The first factor loadings always offer a positive sign and the
second ones are positive in the first and the second element and negative from the third
to the fifth element.

The differences between the loadings calculated with principal component analysis
and the four implemented factor analysis techniques are depicted in Table 8.4.

As can be seen, there are systematical differences between the loadings. The first
coefficients of PCA always take values, which are higher than those calculated with FA;
the mean differences range between 0.0424 (iterative PFA) and 0.0482 (true FA) with
variances between 0.00042 (iterative PFA) and 0.00069 (maximum likelihood FA). The
smallest mean differences occur, when the factor analysis calculations are performed
with the iterative principal factor analysis; similar differences to PCA are obtained with
maximum likelihood factor analysis.

The differences of the second factors are more pronounced compared to the first ones.
The mean differences range between −0.0264 (true FA) and 0.023 (centroid FA), with
definitely stronger variances (compared to the first factor loadings) between 0.01644 (it-
erative PFA) and 0.01846 (centroid FA). The first and the second elements are always
higher if the calculations are performed with PCA but elements three to five (where
all factor loadings were negative) are lower if calculated with PCA. So, the differences
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8 Common Properties and Differences of PCA and FA

Factor Loading 1

PCA 0.713 0.769 0.898 0.815 0.782

Iter.PFA 0.645 0.711 0.877 0.779 0.733

True FA 0.632 0.700 0.879 0.785 0.740

ML-FA 0.692 0.753 0.865 0.750 0.698

Cent.FA 0.648 0.715 0.890 0.769 0.718

Factor Loading 2

PCA 0.555 0.380 −0.111 −0.334 −0.405

Iter.PFA 0.347 0.296 −0.065 −0.242 −0.259

True FA 0.371 0.317 −0.037 −0.205 −0.229

ML-FA 0.358 0.309 −0.045 −0.231 −0.254

Cent.FA 0.315 0.284 −0.113 −0.263 −0.253

Table 8.3: Differences of the factor loadings according to the PCA and to the four implemented
factor analysis methods.

between the elements are stronger in case of PCA and less in case of FA.

In principal component analysis, different choices of k principal components do not
affect the components or coefficients, that is to say that no matter how many components
are extracted, the principal components, the explained variances, and the coefficients of
the first, the second, and so on factor will always stay the same. This is not the case
in factor analysis, which shows a large sensitivity to the number of k extracted factors.
Figure 8.2 shows the changes of the first factors’ loadings (left side graphs) and of the
unique variances, which are found in the diagonal of the matrix ΨΨΨ (right side graphs),
according to the number of k selected factors (different line colors in the graphs) and
to three factor analysis techniques (maximum likelihood factor analysis results are not
depicted as they do not differ much from iterative principal factor analysis, which was
used to achieve the starting values for this technique). Due to mathematical constraints
(cf., Section 7.3 and Section 9.2), a maximum of only two factors could be extracted for
iterative principal factor analysis, four for true factor analysis whereas all five factors
could be selected for centroid factor analysis.

The differences are better pronounced for the unique variances: The larger the number
of extracted factors, the smaller are the unique variances. Furthermore, for principal and
centroid factor analysis, the absolute differences between the unique variances for each
variable are decreased by selecting more factors. For only one extracted factor, the
highest unique variance is given for the first, second, fourth, and fifth variable, whereas
the lowest for the third variable. In general, the largest decrease of the unique variances
is given by selecting two factors instead of only one factor. A further increase of extracted
factors results in an additional decrease of the unique variances, which however is less
pronounced.
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8.3 Differences between PCA and FA
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Figure 8.2: Factor Analysis: Dependence of common and unique variances on the number of
selected factors.
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8 Common Properties and Differences of PCA and FA

Difference between Factor Loading 1 mean

PCA – Iter.PFA 0.068 0.058 0.021 0.016 0.049 0.0424

PCA – True FA 0.081 0.069 0.019 0.030 0.042 0.0482

PCA – ML-FA 0.021 0.016 0.033 0.065 0.084 0.0438

PCA – Cent.FA 0.065 0.054 0.008 0.046 0.064 0.0474

Difference between Factor Loading 2 mean

PCA – Iter.PFA 0.208 0.084 −0.046 −0.092 −0.146 0.0016

PCA – True FA 0.184 0.063 −0.074 −0.129 −0.176 −0.0264

PCA – ML-FA 0.197 0.071 −0.066 −0.103 −0.151 −0.0104

PCA – Cent.FA 0.240 0.096 0.002 −0.071 −0.152 0.0230

Table 8.4: Differences between the loadings calculated with the PCA (“coefficients”) and the
loadings calculated with the four implemented factor analysis techniques, as well as mean of
differences.

A similar, but inverse and less pronounced, performance is shown in regard to the
factor loadings. The more factors are extracted, the larger become the variables’ load-
ings. For principal and centroid factor analysis the differences between the loadings of
one factor are again diminished by increasing the number of selected factors.

As the common variance explained by a factor is given by the sum of the squared
loadings for this factor (divided by the number of variables), different values are achieved
according to the number of extracted factors.

Table 8.5 shows the explained variances of PCA and centroid FA according to the
number of extracted factors. As the results of the four different factor analysis techniques
are quite similar for Mardia’s example, centroid factor analysis was taken, because with
this technique up to five factors could be extracted without mathematical constraints.
The differences between PCA and FA are clearly visible: PCA is not dependent on the
number of extracted factors; each factor always contributes the same amount to the
explained variance and all five factors together explain 100% of the data’s variance. FA
results, by contrast, change with a varying “k”. The total variances increase and the
unique variances decrease with a rising number of extracted factors. Hence, also the
allocation of common and unique variances on the two matrices depends on k, as the
total of common and unique variances always amount to 100 %.

While an increasing k leads to the explanation of a larger part of the total variance
in PCA (where 64 % are explained by one factor and 100 % by all five factors), only
a comparatively small increase of the “total” (which is in fact the common) variance
explained can be noticed in FA (55 % are explained by one factor and 68 % by all five
factors), because the resting variance can be found in the unique factors.
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8.3 Differences between PCA and FA

# of selected factors k = 1 k = 2 k = 3 k = 4 k = 5

Principal Component Analysis

Factor 1 63.62 % 63.62 % 63.62 % 63.62 % 63.62 %

Factor 2 – % 14.79 % 14.79 % 14.79 % 14.79 %

Factor 3 – % – % 8.90 % 8.90 % 8.90 %

Factor 4 – % – % – % 7.76 % 7.76 %

Factor 5 – % – % – % – % 4.93 %

Total 63.62 % 78.41% 87.31% 95.07 % 100.00%

Centroid Factor Analysis

Factor 1 55.23 % 56.59 % 57.03 % 57.31 % 56.79 %

Factor 2 – % 6.53 % 7.04 % 7.21 % 7.12 %

Factor 3 – % – % 1.90 % 1.56 % 1.86 %

Factor 4 – % – % – % 0.94 % 1.30 %

Factor 5 – % – % – % – % 0.74 %

Total 55.23 % 63.12% 65.98% 67.02 % 67.81%

Unique Variances of Centroid Factor Analysis

ψ11 61.27 % 48.13 % 47.08 % 44.88 % 43.81 %

ψ22 51.06 % 40.73 % 40.47 % 40.00 % 37.92 %

ψ33 18.98 % 19.48 % 22.53 % 20.28 % 20.24 %

ψ44 42.57 % 33.95 % 26.88 % 27.04 % 26.07 %

ψ55 49.99 % 42.10 % 33.15 % 32.70 % 32.90 %

Mean Unique Variance 44.77 % 36.88% 34.02% 32.98 % 32.19%

Table 8.5: Explained variances of PCA and centroid FA according to the number of extracted
factors.
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9 PCA and FA – Application to
Atmospheric Data

9.1 Data Sets

(Author: B. Pirscher)

By means of principal component analysis and iterative principal factor analysis, some
CHAMP retrieved atmospheric temperature data were investigated. The goal was the
locating of some atmospheric patterns in four different regions arising in a time period of
3 years (between March 1, 2002 until February 28, 2005) yielding a 36 months observation
period. Two global fields and two regional areas were analyzed for this purpose. To test
the stability of principal component and factor analysis, each field was investigated in
regard to two different resolutions (horizontal or vertical), one coarser and one finer,
making an impact on the number of grid points.

1. The first investigated temperature field is located in the longitudinal sector of
Eurasia-Africa (20◦W to 70◦E). The latitudinal resolution is 30◦ (yielding mean
temperature values for low, mid, and high latitudes in the northern and southern
hemisphere); the vertical resolution is 2 km and 5 km (from ground to a height of
34 km/35 km). Regarding the higher vertical resolution, the retrieved data span
from a height of 2 km to 34 km resulting in 17 vertical levels, the lower vertical
resolution includes 7 vertical levels from 5 km to 35 km. Altogether that makes
102 and 42 grid points, respectively.

2. The second global field comprises the temperature at an altitude of 15 km. The
horizontal resolutions are 15◦× 45◦ and 30◦× 45◦ (latitude × longitude), arising
in 12 and 6 latitude bins and 8 longitude bins, respectively. The first case yields
96 grid points, the second one only 48.

3. Regarding to the high southern latitudes, temperature data were analyzed between
57.5◦S and 87.5◦S. Building the zonal mean in 5◦ intervals (yielding 6 latitude
bands), the vertical resolution was chosen to be 2 km and 5 km, resulting in 17
and 7 vertical levels. Therefore, the temperature data are given in 102 and 42 grid
points.

4. The second regional field is set at the low latitudes to investigate the tropical
tropopause. Zonal means for every 5◦ latitude between 17.5◦S and 17.5◦N were
calculated, yielding 7 latitudinal regions; the vertical area is located between 12 km
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9 PCA and FA – Application to Atmospheric Data

and 22 km; the vertical resolution is once 1 km and once 2 km, resulting in 11 and
6 vertical layers and 77 and 42 grid points, respectively.

9.1.1 Pre-Treatment of Data

Multivariate statistical methods require the data being mean corrected. Generally, the
mean of each variable is subtracted from the original data so that the variables are
centered to zero. Then, the calculated factors FFF also have zero means. In the context
of atmospheric data, every grid point contributes to one variable.

Investigating monthly means of atmospheric data, seasonal impacts are expected to
dominate the first factors. Following Feeney and Hester (1967) (cited in Jolliffe (2002)),
who removed a linear trend from some stock market prices before doing a principal com-
ponent analysis, which yielded the first PC being similar to the second PC resulted from a
previous analysis without removed trend, it should be possible to analyze monthly mean
atmospheric data by diminishing the seasonal impact by calculating and subtracting the
respective mean for each month (e.g., arithmetic mean of all Januaries).

Other possibilities adjusting the data to a mean would be the calculation of the mean
from all objects or from all objects and all variables, but that does not seem to make
sense.

Therefore, two different ways were chosen for the pre-treatment of the data:

1. The centering of the grid point data to the mean of all three years (abbreviated
by “3-year mean”);

2. The centering of the data to their twelve monthly means (abbreviated by “monthly
mean”).

9.1.2 Details on the PCA/FA of Atmospheric Fields

Figure 9.1 summarizes the different calculation procedures before applying the PCA/FA
to atmospheric fields.

The examination of each atmospheric field was split in two sections, in the investigation
of the results after the elimination of the 3-year mean and in the analysis of the results
following from monthly mean corrected data.

While for PCA in each case the calculation was done by means of the sample correla-
tion matrix RRR and the sample covariance matrix SSS, for FA only the correlation matrix
RRR was applied (cf., Section 9.2).

Because the PCA is a technique, which is based on the decomposition of the covariance
matrix or the correlation matrix (each is positive semi definite) in its eigenvalues and
eigenvectors, it is always possible to perform the calculation procedure (even though
the results need not make sense in all cases). For both methods Reyment and Jöreskog
(1993) require the number of variables being larger than the number of objects, but the
investigated atmospheric fields never met this demand.

Furthermore, Reyment and Jöreskog (1993) state that “the number of objects must
be sufficiently large to bring about stability in the variances and covariances (or cor-
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Figure 9.1: Pre-treatment of atmospheric data sets before performing PCA and FA calculations.

relations)”. The stability of the PCA/FA was looked at by analyzing the principal
components/factor scores, the coefficients/loadings and, in particular, the reconstruc-
tion of the data fields by means of the PCs/factor scores and the coefficients/loadings.
The reconstruction is not possible if the data matrix is not suitable to be investigated
by a PCA/FA.

For some applications, a reduction of the number of variables for further calculations is
desired. This can be achieved by different criteria all yielding different numbers. When
analyzing a data set by looking for atmospheric patterns, most of the criteria yield a too
large number of extracted factors, but only a few of them can be physically interpreted.
According to von Storch and Zwiers (2003), the physical interpretation is often limited
to the first factor, because of the constraint of orthogonality, which has to be applied
to them: Each column of the matrix AAA (which contains the coefficients/factor loadings)
has to be orthogonal to all the others. The number of the “most important factors” will
be shown in a tabular scheme, but the interpretation will only be based on the first few
factors.
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9 PCA and FA – Application to Atmospheric Data

9.2 Factor Analysis Specific Problems With CHAMP RO

Temperatures

(Author: B.C. Lackner)

While the results of the four different factor analysis techniques in the example of Mar-
dia et al. (1979), which was discussed in Section 7.3, differ only insignificantly, applying
the “real” atmospheric data set of CHAMP RO temperatures to the four selected areas
(see Section 9.1), larger differences and difficulties, up to the impossibility to achieve
results, showed up in the calculation process.

In contrast to PCA, only the results derived from the correlation matrices were con-
sidered, because employing the covariance matrices in the calculation process failed in
as good as all cases. In addition, factor analysis as such is said to be invariant in regard
to the type of the used matrix (even though the practice showed that this seems not to
be valid for the calculation routines).

Table 9.1 presents if for the four factor analysis techniques implemented a problem
occurred during the calculation process dependent on

• the selected atmospheric data set,

• the resolution (coarse or detailed grid),

• and the deviation score correction (3-year mean stands for centering the data to
the mean of the variables and monthly mean stands for centering to the twelve
monthly means).

Even a quick glance to the table shows that there are just very few “+”, which indicate
no problems during the calculation process. The symbol turning up most frequently
is the “⊗”, standing for a variety of problems during the calculation procedure, even
though results could be achieved. These problems will be discussed more detailed in the
following section. In general, they can be addressed as:

1. Problems with the variances, e.g., the variance of the first extracted factor is not
the largest one as it is supposed to be.

2. The total variance explained by the selected number of factors is greater than
100 %.

3. Some values of the matrix ΨΨΨ are negative, which is an unacceptable solution since
the items of this matrix are variances.

4. To achieve a mathematical meaningful result, only one factor could be extracted,
which means that a rotation cannot be carried out.

5. Certainly, there is no conspicuousness in the results, but the plotted factors show
strange properties.
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9 PCA and FA – Application to Atmospheric Data

In general, worse results appeared when a data set with a detailed resolution was
investigated (this goes for all techniques apart from centroid factor analysis, where in
one case, namely the monthly mean centered global maps with detailed resolution, no
problems showed up during the calculation process, whereas for the coarse resolution
problems occurred). Iterative principal factor analysis shows two striking examples for
this fact, namely the global latitude×height field of the Eurasian-African sector and the
south polar region. The problems arising there affected the factors and resulted either in
a jagged appearance (Eurasian-African longitude slice) or in singular peaks (south polar
region) of them (cf., Figure 9.2), even though the loadings of the coarse and detailed
data sets just differed insignificantly.

For all detailed resolved data sets and also for the coarse resolution of global maps it
was impossible to carry out the calculation with respect to true factor analysis. This
problem resulted from negative values of the inverse of the correlation matrix and will
be discussed particularly in Section 9.2.2.

The following sections will deal with special features, which have to be considered
when applying atmospheric data sets such as CHAMP RO temperatures to the different
factor analysis techniques as well as method specific problems with these data. All tables
(apart from the one for iterative principal factor analysis, which caused no problems for
the remaining coarse resolved data sets at all) are divided in two parts, one containing
“general and method specific values”, like the maximal number of factors that may be
extracted to get a mathematically acceptable result or the number of computational
steps until the required accuracy was given, the other demonstrating “method specific
problems” and, in the case of true factor analysis, possible solutions.

As the most usable results were derived from iterative principal factor analysis of
coarse resolved data sets, the results (only of data sets with coarse resolution) of this
technique were used for the interpretation in the Sections 9.4 to 9.7.

9.2.1 Iterative Principal Factor Analysis and CHAMP RO Data

This most commonly applied factor analysis technique proved to be a useful method
for atmospheric data sets, regarding the computational effort, even though several facts
have to be considered. Table 9.2 shows some method specific values and further values
used for the selected data sets.

The number of factors that should be extracted, was at first estimated according to
the amount of eigenvalues of the decomposed reduced correlation matrix (cf., Section
7.2.1). It happened that, if too many factors were selected, negative ψii values turned
up. For the selected atmospheric data sets, a maximum of 4 to 17 factors could be
extracted so that all variances ψii stayed positive. The total variance explained by these
values ranged between 72.2 % and 99.6 %, which is quite high.

The number of factors that was selected in the following, arose on the one hand from
the maximal possible number as described above, and on the other hand from scree
plots. Mostly, a relatively small number of extracted factors already explained quite a
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9.2 Factor Analysis Specific Problems With CHAMP RO Temperatures

Figure 9.2: Please note in both rows the different y-ranges between the plots resulting from
data sets with coarse (left) and detailed (right) resolution.
Top: First factor (according to Bartlett) of the Eurasian-African latitude×height slice, which
was centered to the 3-year mean. While a smooth annual cycle (3 years) is given in the left side
graph, which is the outcome of the data set with the coarse resolution, the investigation of the
detailed data set resulted in a jagged appearance for the same factor. Anyhow, the annual cycle
is still discernible.
Bottom: First factor (according to Bartlett) of the South Polar region, which was centered to
monthly means. A similar jagged appearance of the factor resulted from the detailed resolution.
The second peak in the right side graph even follows no more the corresponding one of the coarse
resolution in the left side graph.
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9 PCA and FA – Application to Atmospheric Data

Iterative Principal Factor Analysis
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General and Method Specific Values

maximal # of factors (until
all ψii are positive)

4 8 6 7 11 9 17 13

total variance of max. # of
factors given in %

85.14 76.09 81.26 72.71 99.61 93.95 97.97 97.20

# of selected factors 3 6 3 5 2 6 4 5

total variance of selected #
of factors given in %

82.74 68.51 70.83 63.65 95.93 89.20 91.69 92.51

steps until required
accuracy∗ is given

3 3 3 3 3 3 3 3

s (degrees of freedom: s >
0)

738 624 987 898 778 624 699 661

∗ For each element max |ΨΨΨstep i −ΨΨΨstep (i−1)| < 0.05 and max |AAAstep i −AAAstep (i−1)| < 0.05

Table 9.2: Problems of iterative principal factor analysis technique occurring during the calcu-
lation process with the four selected atmospheric data sets of CHAMP RO temperatures.

huge amount of the total variance.

Nevertheless, this technique showed differences between the two kinds of data cen-
tering. For monthly mean corrected data sets, two or three times as many factors had
to be extracted to explain approximately the same amount of total variance as it was
given by 3-year mean corrected data sets. Still taking into account this fact, the devi-
ation score matrices, which were adjusted by the 3-year mean, then explained a total
variance of more than 70.8 % in any case while the deviation score matrices, which were
adjusted by the monthly means, only came up to more than 63.6 %. These monthly
means corrected matrices did no longer contain the annual cycle of temperature vari-
ation (seasons), which dominated the first factors of 3-year mean corrected matrices.
Thus, unique variances were stronger pronounced for monthly mean centered data than
for 3-year mean centered data. An exception to this rule is given by the tropical data
set, where the factor analysis technique succeeds for both deviation score matrices in
explaining about the same amount of total variance. Anyhow, this makes sense, as the
annual cycle of temperature variation is not very pronounced in the tropics.

Beside the restriction concerning the maximal number of factors that can be extracted

146



9.2 Factor Analysis Specific Problems With CHAMP RO Temperatures

with the iterative principal factor analysis technique so that all ψii are positive, con-
straints are also given by the number of degrees of freedom, dependent on the number of
variables p and the number of selected factors k. This context is given by equation (7.6)
in Section 7.1. The degree of freedom s is required to be positive, so that there are more
equations than parameters. The theoretical limit of the requirement s > 0 is approached
when k < 34 (if k ≥ 34, then s < 0). Since in the investigated data sets the maximal
k = 17, this requirement is always fulfilled.

The last value quoted in Table 9.2 is the number of steps during the iterative process
that were necessary to obtain the claimed accuracy. After every single iteration step, the
difference between each element of the “old” and recalculated loading matrix AAA and the
specific variance matrix ΨΨΨ was formed, to determine the then achieved accuracy. The
iteration was repeated until the largest difference at all was less than 0.05, which was
generally achieved after only three iteration steps.

9.2.2 True Factor Analysis and CHAMP RO Data

As iterative principal factor analysis demands a certain maximal number of extracted
factors so that all ψii are greater equal to zero, true factor analysis needs a minimal
number of extracted factors to fulfill mathematical requirements.

Here, the estimate of ΨΨΨ, which is systematically biased (Reyment and Jöreskog 1993)
has to be multiplied by the scalar θ. This value is the average of the (p − k) smallest
eigenvalues of the decomposed auxiliary matrix RRR∗ (cf., equation (7.25)) and, according
to Reyment and Jöreskog (1993), it has to be less than one, which goes hand in hand with
the must to select a certain number of k factors. Surprisingly, in some of the selected
cases the number of necessarily extracted factors to fulfill this requirement is quite high
(see first row in Table 9.3). In the average, twice as many factors had to be extracted for
monthly mean centered data sets, topping in k = 24 factors to be selected for the south
polar and the tropical region that is more than the half of the p = 42 objects of the
matrix investigated. Furthermore, the method did not succeed in allocation common
and unique variances. Caused by this fact, the total variances explained approached
100 % for the south polar and tropical region (as well for 3-year mean centered data
matrices) and after all 90 % for the Eurasian-African latitude×heigth slice, respectively
(meaning that nearly no unique variances remainded). Furthermore, the 24 required
factors for monthly mean centered south polar and tropical region data lead to quite a
small (around 0.20) weighting factor θ̂, while in all other cases, θ̂ ranges around 0.90.

To estimate the factor loadings, true factor analysis makes use of an auxiliary matrix
RRR∗ (cf., equation (7.24) in Section 7.2.2). To obtain RRR∗, the square root of the inverted
correlation matrix has to be extracted, which turned up to be the root cause of all the
troubles with this technique, with the outcome of the impossibility to apply true factor
analysis to the global maps data set.

The reason for this problem can be found in the properties of the correlation matrix
RRR of the investigated data set. True factor analysis is based on generalized least square
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9 PCA and FA – Application to Atmospheric Data

True Factor Analysis

Global Global South Polar Tropical

Lat×Height Maps Region Region

Deviation Score Matrix 3
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General and Method Specific Values

minimal # of factors that
θ̂ < 1 (# of selected fac-
tors)

6 12 11 24 13 24

total variance of selected
factors given in %

89.12 88.22 99.66 99.99 98.07 100

weighting factor θ̂ (θ̂ < 1) 0.921 0.903 0.959 0.152 0.924 0.191

Method Specific Problems

Calculation successful ⊗ ⊗ ⊖ ⊖ ⊗ ⊗ ⊗ ⊗
eigenvalues of RRR < quoted
value set to this value

0.05 0.05 0.5 0.5 6E−04 E−06 0.04 E−10

# of eigenvalues ofRRR set to
this value

23 21 36 33 17 18 12 15

maximal difference be-
tween RRRoriginal and RRRrebuilt

0.029 0.026 0.322 0.285 3E−04 5E−07 0.001 4E−08

# of negative eigenvalues
of diag(RRR−1) before set-
ting selected eigenvalues to
quoted values

16 17 5 28 11 24 30 26

# of negative eigenval-
ues of diag(RRR−1) after set-
ting selected eigenvalues to
quoted value

0 0 5 2 0 0 0 0

⊗ . . . problem occurred during the calculation procedure

⊖ . . . impossibility to carry out calculation

Table 9.3: Problems of true factor analysis technique occurring during the calculation process
with the four selected atmospheric data sets of CHAMP RO temperatures.
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9.2 Factor Analysis Specific Problems With CHAMP RO Temperatures

estimations, which require the analyzed correlation matrix to be positive definite (Rigdon
1997). Among other things, this is ensured as long as all eigenvalues of the matrix are
positive and the determinant is greater than zero.

This requirement is not met by the atmospheric data sets from which the determinant
of the correlation matrix is equal to zero. Thus, the matrix is positive semidefinite.

Rigdon (1997) reports on experiments of Ed Cook to cure those bad matrices. On
that occasion, negative eigenvalues of a decomposed ill-natured correlation matrix were
set to a small positive value (0.05). By means of these new eigenvalues (summarized in
the diagonal matrix ΛΛΛnew) and the eigenvectors (summarized in the matrix UUU) of the
original correlation matrix, a “new” well-behaving correlation matrix is built up using
the relation

RRRrebuilt = UUU ΛΛΛnew UUU ′. (9.1)

In the case of the investigated atmospheric data sets, the eigenvalues ofRRR were positive,
but the values were with the exception of the first few ones mainly very small. Following
Cooks experiment, these small eigenvalues were set to a quite arbitrarily fixed larger
threshold value.

At first, for each data set a threshold value of 0.05 was taken and all eigenvalues less
than 0.05 were set to this value. In the following, the inverse of the matrix RRRnew was
calculated and examined with regard to negative values in the main diagonal. If these
values passed the test (that is to say that they all were positive), a smaller threshold
value was taken and the procedure repeated, until negative values in the main diagonal
of the inverse ofRRRnew appeared. The different threshold values can be found in Table 9.3
as well as the number of eigenvalues being affected by this value, which range between
12 and 36 (out of 42).

To check, whether the differences between RRRoriginal and RRRnew do not surmount a tol-
erable dimension, the largest deviation of any element between the two matrices was
quoted (mostly, the differences were far less than 0.03, see “method specific problems”
in Table 9.3).

Except for the global maps data set, this trick turned out to be very successful.

Whereas between 11 and 30 items of diag
(
RRR−1

original

)
showed negative values, all of them

were positive after applying Cook’s trick (cf., last two rows of Table 9.3).

Unfortunately, the data sets of the global maps turned up to be resistant to this trick
and remained ill-natured even though the threshold value was increased. That’s why it
was not possible to apply true factor analysis to these data sets.

9.2.3 Maximum Likelihood Factor Analysis and CHAMP RO Data

In contrast to the other three techniques, maximum likelihood factor analysis requires
the investigated data to be normally (Mardia et al. 1979), in the opinion of Weber (1974)
multi-normally, distributed.

According to von Storch and Zwiers (2003), temperature is approximately normally
distributed, particularly if averaged over a certain period, which holds true of the inves-
tigated CHAMP RO data.
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9 PCA and FA – Application to Atmospheric Data

Figure 9.3: Frequency distribution of two selected fields. With the exception of the 3-year
centered south polar data set, the investigated data are more or less normally distributed. Top:
Eurasian-African data set 3-year (left) and monthly mean (right) centered. Bottom: South polar
data set 3-year (left) and monthly mean (right) centered. The 3-year mean centered south polar
data set resulted in quite a uniform distribution, while the monthly mean centered data remained
normally distributed.

The distributions of the four investigated data sets show a more or less normal distri-
bution, which is better pronounced by monthly mean centered data, even though they
tend to fall to the left side (slightly positive skewness). Furthermore, the kurtosis of
monthly mean centered data is greater than the one of 3-year mean centered data (cf.,
Figure 9.3).

The minor decrease of the latter data sets may be given due to larger annual tempera-
ture variation, where higher- or lower-than-average temperatures strongly influence the
distribution (by decreasing the kurtosis). At first glance, the rather uniform distribu-
tion of the 3-year centered south polar data set causes amazement. But as the seasonal
temperature variations in polar areas are quite pronounced due to the change of polar
summer and winter, larger density of absolutely higher deviations seem to make sense.

Even though the theoretically required normal distributions of the investigated data
seemed to be given, problems (see Table 9.4) occurred during the calculation procedure.

As the results of iterative principal factor analysis were used as starting values for this
factor analysis technique, the same number of factors was taken for the beginning (see
first row of Table 9.4). This yielded senseless values of more than 100 % (ranging from
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Maximum Likelihood Factor Analysis

Global Global South Polar Tropical

Lat×Height Maps Region Region

Deviation Score Matrix 3
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General and Method Specific Values

maximal # of factors as
used for iterative principal
FA

3 6 3 5 2 6 4 5

total variance of that # of
factors given in %

208.9 100.7 122.5 3044 109.3 105.6 155.0 214.0

# of selected factors
(so that total variance
< 100%)

2 4 2 4 1 3 2 2

total variance of selected #
of factors given in %

74.38 90.67 93.09 71.56 77.41 80.5 87.5 74.28

# of steps, until required
accuracy (max |ΨΨΨstep i −
ΨΨΨstep (i−1)| < 0.05 and
max |AAAstep i−AAAstep (i−1)| <
0.05)

6 62 15 41 2 27 12 6

Method Specific Problems

tot. variance > 100 % in
case that # of eigenvalues
equal to iterat. PFA

⊗ ⊗ ⊗ ⊗

1st factor explains > 100%
of tot. variance (when # of
eigenvalues = iterat. PFA)

⊗ ⊗ ⊗ ⊗

1st factor does not explain
largest part of tot. vari-
ance

⊗

communality h2 > 1 for
single variables

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ . . . problem occurred during the calculation procedure

Table 9.4: Problems of maximum likelihood factor analysis technique occurring during the
calculation process with the four selected atmospheric data sets of CHAMP RO temperatures.
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9 PCA and FA – Application to Atmospheric Data

101 % to 3 044 %) for the total variances explained in all cases. To obtain meaningful
results, the number of extracted factors was decreased in the following until the total
variance explained remained under 100 %, which was mostly achieved by bisecting the
number used for iterative principal factor analysis. In one case, namely the 3-year mean
centered south polar data set, only one factor could be extracted, so that the total
variance remained below 100 % (with this factor, 77 % were explained).

In general, only few factors (between one and four) were needed to explain 72 % to
93 % of the total variance (see row three and four in Table 9.4).

Such as iterative principal factor analysis, maximum likelihood factor analysis makes
use of an iterative procedure (EM-algorithm, cf., Section 7.2.3) to achieve the final
results. The required accuracy was defined similarly to iterative principal factor analysis.
While just few iteration steps were necessary in iterative principal factor analysis (namely
three), the implemented EM-algorithm for maximum likelihood needed much more of
them (between two for one selected factor up to 62 for four selected factors). The number
of iteration steps to achieve the required accuracy increased considerably with a larger
number of selected factors (see Table 9.5).

# of Factors Extracted # of Iteration Steps of EM-Algorithm

1 2

2 6; 6; 12; 15

3 27

4 41; 62

Table 9.5: Number of necessary iterative steps in maximum likelihood factor analysis to achieve
the required accuracy.

Beside the problems discussed above, maximum likelihood showed one more peculiar-
ity: In one case, namely the monthly mean centered Eurasian-African latitude×height
slice, the first of the four extracted factors did not explain the largest part of the variance
as it is expected in general (this was as well valid for the rotated factor). Furthermore,
the fourth extracted factor again explained more variance than the third one. In fact,
the first factor explained 19 %, the second factor 40 %, the third factor 12 %, and the
fourth factor again 20 %. And finally, the communalities for single variables surmounted
one (standing again for more than 100 %) for most of the data sets (see last row of Table
9.4).

Summing up, maximum likelihood factor analysis (basing on the described EM-algo-
rithm) turned out to be not a suitable technique for the selected investigated atmospheric
data fields.

9.2.4 Centroid Factor Analysis and CHAMP RO Data

Because of the arbitrariness of centroid factor analysis, which was discussed in Section
7.2.4, no great hopes were placed in this technique. Nevertheless, some interesting results
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9.2 Factor Analysis Specific Problems With CHAMP RO Temperatures

should be mentioned.

Let us start again with the number of extracted factors, which are shown in the first
row of Table 9.6. Like in iterative principal factor analysis, the maximal number of
factors that can be extracted, depends on the ψii, which have to be positive. Due to this
fact, a maximum of three factors may be selected for the monthly mean centered global
maps, while for the remaining data sets only one or two factors could be extracted at
a time. But in contrast to iterative principal and maximum likelihood factor analysis,
where even a small number of extracted factors explained quite a large amount of the
total variance, centroid factor analysis did not succeed in this.

Above all, for the two global data sets, only less than 30 % (in one case less than 8 %)
of the total variance could be explained. From these small values it follows that most of
the variance given in the data can be found in ΨΨΨ, which contains the unique variances
(those variances, which are solely influenced by one variable that is to say by one grid
point in the case of the atmospheric data sets).

Figure 9.4: Differences in the unique matrix ΨΨΨ of the monthly mean centered Eurasian-African
data set: While applying iterative principal factor analysis, most of the variance is explained by
the specific factors so that nearly no variance is left to be explained by the unique factors of ΨΨΨ
(left side graph), centroid factor analysis packs most of the variance in the matrix ΨΨΨ (right side
graph).

Figure 9.4 shows the unique variance matrices ΨΨΨ derived from the monthly mean cen-
tered Eurasian-African data set for both, iterative principal factor analysis and centroid
factor analysis. While the iterative principal factor analysis derived matrix is dominated
by green colors, standing for small values of ΨΨΨ, in the centroid factor analysis results red
hues, standing for large values of ΨΨΨ. Larger values of ΨΨΨ were found by centroid factor
analysis in general for both global data sets (cf., last row of Table 9.6).

The two regional data sets (south polar and tropical area) do not show this feature.
Their unique variance matrices are again limited pronounced and the total variance ex-
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9 PCA and FA – Application to Atmospheric Data

plained by the factors ranges between 60 % and 78 %, which is comparable to the results
of the other three applied factor analysis methods.

Like for iterative principal FA and maximum likelihood FA, an iterative calculation
process was implemented to improve the results (cf., Section 7.2.4). The calculation was
repeated until the communalities approached quite a stable value (that is to say that
the largest difference of any value of the communalities was less than 0.1 from one step
to another. This value was fixed by a trial-and-error technique). This goal was reached
after eight steps at the latest (mostly three steps sufficed).

For one data set, the monthly mean centered Eurasian-African slice, centroid factor
analysis, like maximum likelihood factor analysis, did not succeed in extracting the
highest variance with the first factor. The three extracted factors explained 5 %, 17 %,
and 8 %, respectively.

Furthermore, no factor rotation was possible for three data sets (3-year mean centered
Eurasian-African slice, global maps, and south polar region), as only one factor at all
was extractable to fulfill the mathematical requirement of positive ψii (see Table 9.6).
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Centroid Factor Analysis

Global Global South Polar Tropical

Lat×Height Maps Region Region

Deviation Score Matrix 3
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General and Method Specific Values

max. # of factors that all
ψii are positive (selecetd #
of factors)

1 3 1 3 1 2 2 2

total variance of selected
factors given in %

7.99 29.43 14.0 15.03 78.27 59.87 77.70 67.86

steps until required accu-
racy

4 8 3 4 3 3 3 3

maximal ∆h2 between last
two steps

0.006 0.031 0.030 0.082 0.015 0.069 0.096 0.072

Method Specific Problems

1st factor does not explain
largest part of tot. vari-
ance

⊗

only 1 factor selectable (no
rotation possible)

⊗ ⊗ ⊗

all values ψii > 0.6 (most
values even around 0.9

⊗ ⊗ ⊗ ⊗

⊗ . . . problem occurred during the calculation procedure

Table 9.6: Problems of centroid factor analysis technique occurring during the calculation
process with the four selected atmospheric data sets of CHAMP RO temperatures.
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9 PCA and FA – Application to Atmospheric Data

9.3 Differences Between Coarse and Detailed Resolutions

(Authors: B.C. Lackner and B. Pirscher)

The stability of the FA and PCA was investigated by means of the results yielded
from different resolutions of the four analyzed temperature fields. Therefore, the fac-
tors/principal components, the loadings/coefficients, and the data reconstructions were
compared separately for the sample correlation matrix RRR and the sample covariance
matrix SSS (only PCA).

Table 9.7 shows the results of the calculations carried out for the atmospheric fields
investigated in this work. As can be seen, sometimes the stability of the FA/PCA breaks
down; a closer examination shows that the problems always occur for the more detailed
resolved temperature fields. There, the number of variables (grid points) is considerably
larger than the number of objects and the methods cannot resolve the true temporal
character of the temperature anomalies at the grid points. A detailed analysis of the
problems, which appeared in the calculation processes, are given in the following.

Eurasian-African Slice: To recall the different height grids in the Eurasian-African
sector, the matrix dimensions of the temperature fields should be given once more: The
temperatures located in the longitudinal sector of Eurasia-Africa (20◦W to 70◦E) are
given in a latitudinal resolution of 30◦ (6 latitudinal bins) and a vertical resolution of
2 km and 5 km from ground to a height of 34 km/35 km yielding 102 grid points in case
of the finer vertical resolution and 42 grid points in case of the coarser vertical resolution.
Due to the observation period of 36 months, the data are given in a (36 × 102)-matrix
and in a (36 × 42)-matrix, respectively.

Table 9.7 shows that in the case of the finer resolved temperature fields, FA and PCA
cannot be always performed without difficulties, whereas the coarser ones never show a
problem.

According to that, the stability of iterative principal FA gets lost in case of the detailed
resolution of 3-year as well as of monthly mean centered data. Surprisingly, the factor
loadings do not show striking deviations between the two different resolutions. However,
the loadings contain variances (correlations) and therefore, only may vary between −1
and +1 due to mathematical constraints, whereas the factor scores carry the temperature
information, which is given by the data set.

Figure 9.5 shows the differences between the results of the two resolutions for the
3-year mean centered data for August 2004 (all other months yield similar pictures, as
well as PCA does). As mentioned above, the factor loadings of the coarse and detailed
resolution, shown in the third row of the Figure, are very similar and also explain about
the same amount of variance for the first factor. The far-reaching difference is caused by
the factor scores, which are depicted in the second row of the Figure. The coarse resolved
data (see Figure 9.5 second row left side) result in a very smooth variation of the factor
scores, where the annual cycle of the temperature is clearly visible, ranging between
±15 units. Even though the annual temperature cycle is still discernible in the factor
scores of the detailed resolved data (see Figure 9.5 second row right side), the jagged
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Sample Correlation Matrix RRR

Iterative Principal Factor Analysis

Reconstruction + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

Factors + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

Loadings + + + + + + + + + + + + + + + +

Principal Component Analysis

Reconstruction + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

PCs + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

Coefficients + + + + + + + + + + + + + + + +

Sample Covariance Matrix SSS

Principal Component Analysis

Reconstruction + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

PCs + + ⊖ ⊖ + + + + + + ⊖ ⊖ + + + +

Coefficients + + + ⊖ + + + + + + + ⊖ + + + +

+ . . . no problems occurred during the calculation procedure

⊖ . . . problems occurred
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9 PCA and FA – Application to Atmospheric Data

Figure 9.5: Iterative principal FA: Differences between coarse (left column) and fine (right
column) resolution. The original temperature data [K] are depicted in the first row, the factor
scores of the first factor in the second row, the loadings in the third row, and the reconstructed
temperature data in the last row. Please mind the different y-axis range (±15 units in case of the
coarse and ±1500 units in case of the fine resolution) for the factor score graphs in the second
row. A detailed description of the pictures is given in the text.
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9.3 Differences Between Coarse and Detailed Resolutions

appearance and the y-range of ±1 500 units, which is by two decimal places larger than
for the coarse resolution, yield senseless temperature values for the reconstructed data,
which are shown in the last row (right hand side). There, the vector multiplication of
factor scores and loadings (AfAfAf) results in temperatures between −1 320 K (black color)
and +526 902 K (red color) instead of the required +200 K to +270K, which result again
from the factor scores and loadings of the coarse resolution. Comparing only the first
row containing the original data and the last row with the reconstructed data, the loss of
stability regarding the finer resolved data set is obvious. Concerning the coarse resolution
it should be mentioned that even though only the first factor, which explains about 60 %
of the total variance, was used to reconstruct the original data, a very good result was
achieved.

The characteristics of factor scores, loadings, and rebuild data derived from monthly
mean centered data are similar to those described above and therefore are not further
discussed.

Similar to iterative principal FA, the PCA data reconstructions (generated from 30
PCs/coefficients) of the 3-year mean centered temperatures, calculated with the corre-
lation matrix are very poor for the detailed resolution, because of the principal compo-
nents. The first PC, for example, should be a sinusoidal curve representing the seasons,
but it is depicted as jagged line, such as in FA. Furthermore, the amplitudes of these prin-
cipal components are very large; the values of the first PC are larger than ±1×105 units,
compared to about ±50 units in case of the coarse resolution. The same result is obtained
with monthly mean centered data. Again, the amplitudes of the principal components
are too large (±8×104) units in case of the 2 km vertical resolution involving the impos-
sibility of data reconstruction. The coefficients calculated with the correlation matrix RRR
discover similar patterns independent of the matrix dimensions (but of course dependent
on the temperature anomalies).

If the PCA results are obtained by means of the covariance matrix, the reconstructed
data (again generated with 30 PCs/coefficients) of the 3-year mean centered tempera-
tures are similar for both vertical resolutions, but if the reconstruction is restricted to the
first PC/coefficients the finer vertical resolution does not show a good agreement with
the original data set in some months (March 2002, September 2002, November 2002,
May 2003, October 2003, November 2003, January 2004, June 2004, September 2004,
November 2004, February 2005). Having a look at the first principal components it can
be noticed that they take values of near to zero in these months, which should not be
the case. Beside, the temporal resolution given from the principal components yields a
useless magnitude of the amplitudes, which are again too large (between −5× 105 units
and 1 × 106 units).

Centering the detailed data to the annual cycle yields principal components and co-
efficients, which show no resemblances to the results obtained from the coarser grid.
The principal components are again jagged with large amplitudes (−5 × 105 units
to +8 × 105 units), and the respective reconstruction is bad at least until the third
PC/coefficients.
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9 PCA and FA – Application to Atmospheric Data

Global Maps: The temperatures at an altitude of 15 km are given in a latitudinal-
longitudinal resolution of (15◦ × 45◦) as well as (30◦ × 45◦). The different latitudinal
resolutions yield 12 and 6 latitudinal bins, respectively; the longitudinal resolution is
constantly kept at 8 longitudinal bins, yielding altogether 96 grid points for the finer and
48 grid points for the coarser latitudinal resolution. Thus, the temperature anomalies
are given in a (36×96)-matrix and a (36×48)-matrix arising from the 36 monthly means
being analyzed.

Independently of which mean value is subtracted from the real temperatures, the FA
and the PCA can be performed successfully for both resolutions.

Even though the data rebuilt with iterative principal factor analysis’ derived factor
scores and loadings show a good agreement with the original data, some slight differences
are given according to the two resolutions, mainly for 3-year mean centered data. The
total variance explained by the second factors differ by 5 %, which results that also
the factor scores show small deviations. In case of the first factors, the total variances
explained are as well not the same for the coarse (53 %) and detailed (47 %) resolution,
but here, their factor scores nearly match perfectly.

The first factors’ loadings and scores of the monthly mean centered data of the coarse
resolution correspond to those of the detailed resolution and also the variances explained
by the first factor are nearly the same (23 % and 21 %). Differences of a factor four appear
for the factor scores of the second extracted factor, but they vanish again for the third
extracted factor.

Looking at the PCA reconstructed data fields it can be realized that they also nearly
look like the same when they are calculated by means of the coarser and the finer
resolution. The conclusion that the individual elements (the PCs and the coefficients)
are quite similar can be drawn. The theory can be corroborated by comparing the
respective principal components and their coefficients and, in fact, they are very similar
in all cases. So, principal component analysis is robust to the enlargement of the matrix
dimension (from a (36 × 48))-matrix to a (36 × 96)-matrix).

The solely small differences between the different resolved temperature fields can be
found in the amplitudes of the principal components, and in the fact that the smaller
resolved field yields better resolved coefficients. The amplitudes of the principal compo-
nents calculated with the correlation matrix differ for example between ±20 units (first
PC of the fine resolved field centered to the annual cycle) and ±15 units (first PC of the
coarse resolved field centered to the annual cycle). Larger amplitudes always resulted
from the finer resolved temperature field.

South Polar Region: Let us call to our mind that the south polar temperature data are
given as zonal mean temperatures with a 5◦ latitudinal resolution (from 57.5◦S to 87.5◦S)
yielding 6 zonal bands, and a vertical resolution of 2 km (17 height levels) and 5 km (7
height levels). The finer resolved temperature field is given by a (36 × 102)-matrix, the
coarser grid results in a (36 × 42)-matrix.

Table 9.7 shows that the detailed grid is too small (implying a too large data matrix)
and therefore causes problems of the methods.
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9.3 Differences Between Coarse and Detailed Resolutions

Similar to the Eurasian-African Slice, the problems of iterative principal factor analysis
with the detailed data sets originate from faulty factor scores, which are responsible for
the impossibility of a correct reconstruction of the data. An exception are the factor
scores of the first factor of 3-year mean centered data, which are nearly identical for
the coarse and detailed resolution and reflect the annual temperature cycle in the data
(the amplitudes of the scores range between ±20 units). Only a very small deviation (of
roughly 3 units) in October 2004 drops a hint that there may be a problem.

Figure 9.6: Iterative principal factor analysis problems with factor scores (of factor two) in
regard to detailed resolution in the south polar region.

The left graph in Figure 9.6 shows that there really is a problem with October 2004.
While up until that point of time, the scores of factor two are as well very similar to
those of the coarse resolved data set, with an amplitude between about ±50 units, a
singular peak, reaching more than +400 units, appears for this single unstable month
and influences the reconstruction of the data in a negative way. A similar picture is given
by the factor scores of the third factor with the only difference that they are mirrored
relative to the zero line.

While the factor loadings of the coarse resolution still resemble those of the detailed
one, the factor scores of the monthly mean centered detailed data set seem to be heavily
disturbed (cf., right graph in Figure 9.6). For each October of the observation period, a
peak appears, whereas the factor scores are barely pronounced for the time in between.
The sign of the October 2004 peak is always opposite to the peaks of October 2002 and
2003 and reaches an amplitude of more than +200 units for the third extracted factor.
Even though monthly mean centered coarse resolved data are as well mainly influenced
by larger temperature anomalies in Septembers and Octobers, the factor score features
of the detailed resolution prevent a successful reconstruction of the data and therefore
cause the instability of the factor analysis for this atmospheric data set.

Applying PCA, the 3-year mean centered data in the south polar region yield good
coefficients from the 2 km and from the 5 km vertical resolution. Both resolutions
are able to detect the most important pattern arising in this region. Analyzing the
respective principal components, it can as well be seen that the PCs of the fine resolved
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correlation matrix are defective and cannot be compared to the PCs calculated by means
of the coarser resolved temperature field. In the first case, the first three PCs are
composed of a nearly constant value with a peak arising in October 2004 (approximated
magnitude PC 1: 5000 units; PC 2: 9 × 104 units; PC 3: −9 × 104) units; it cannot be
explained by a rational reason but has to be attributed to an instability of the PCA.
The principal components calculated from the less detailed data matrix are by all means
plausible (approximated amplitudes: ±100 units). Since the principal components do
not resolve the true temporal behavior of the data field in case of the fine vertical grid,
the reconstruction of the real temperature data fails, like it was the case for FA.

The same problem occurs in regard to the monthly mean subtracted temperature
data. In that case, the principal components exhibit a peak in October each year (most
pronounced in 2004), whereas it is nearly constant in all the other months. The mag-
nitudes of the peaks take values in the same range as when calculated from the 3-year
mean centered temperatures. Equal to factor analysis, the reconstruction of the data
field breaks down due to the principal components. The instability of the PCA at the
fine resolved data field cannot be observed when looking at the respective coefficients.

An interesting feature can be found analyzing the 3-year centered coefficients and the
respective principal components, which are based on the covariance matrix. The first
PCs/coefficients of the finer resolved field seem to result from a mathematical instability
of the PCA. The PCs look like the PCs calculated from the correlation matrix. They
are constant until October 2004 when a huge peak (magnitude ∼ 1 × 106 units) arises
and are constant again after October 2004. The respective coefficients show a pattern
never seen before. Strong structures can be found from about 8 km to 18 km (especially
pronounced from 67◦S to 85◦S) and above 20 km height (in all latitude regions) with
different signs. Consequently, the reconstruction of the first pattern is useless in case of
the 2 km vertical resolved data field. Comparing the second and third PCs/coefficients
of the fine resolved grid to the first and second PCs/coefficients of the coarse resolved
field, it can be realized that they are practically equal, except for their different signs.
The opposite sign can be explained by the reverse direction of the eigenvectors, which
can be chosen arbitrarily.

The investigation of the differences between the two resolutions of the monthly mean
centered temperatures yields the same result as the examination of the 3-year mean
corrected temperature field. The principal components and coefficients of the two dif-
ferent resolutions yield the same result when neglecting the first principal component
and its corresponding coefficients of the fine resolved field. That means that the second
fine resolved PCs/coefficients belong again to the first coarse resolved PCs/coefficients
and the third fine resolved PCs/coefficients remember to the second rough resolved
PCs/coefficients.

Tropical Region: The stability of the statistical methods FA and PCA in the tropical
region was investigated comparing the results from a (36× 77)-matrix and from a (36×
42)-matrix. The matrix dimensions came from the regional temperature field, which was
set at the low latitudes between 17.5◦S and 17.5◦N (5◦ zonal means yielding 7 latitudinal
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regions) from a height between 12 km and 22 km (different vertical resolutions, 1 km:
11 height levels, 77 grid points and 2 km: 6 height levels, 42 grid points).

A glance at Table 9.7 shows that no problems constricted the calculation procedures,
neither for FA nor for PCA.

Hence, iterative principal FA succeeded for both resolutions in extracting appropriate
factor scores and loadings to rebuild the original data, even though slight differences
occurred between the coarse and detailed resolved factor scores and loadings. The factor
scores’ amplitudes of the 3-year mean and the monthly mean centered data sets always
stay within ±10 units, no outliers appear. A general difference can be observed between
the coarse and detailed resolution according to the total variance explained by each
factor. While the loadings of the first extracted factor of the coarser resolved data set
succeed in explaining only 59 % (3-year mean centered) and 42 % (monthly mean cen-
tered), those of the detailed data sets manage to account for 63 % and 57 %, respectively.
Conversely, the loadings of the second and third extracted factors of the coarse data set
explain a bit more (about 3 %) of the remaining variance than those of the detailed
data set. These small differences in factor loadings and scores yield nearly identical and
correct reconstruced data sets.

The comparison of the principal components and the coefficients from the two vertical
resolutions in case of the correlation matrix yields that the results look like the same,
regardless of which mean value was subtracted. As a result, the reconstructed time series
are proper in all cases (smaller/coarser vertical resolution, 3-year mean/monthly mean
subtraction). So, the factor analysis and the principal component analysis are robust to
the enlargement of the data matrix in this region.

Furthermore, it attracts attention that the form of the principal components and the
shape of the coefficients are similar if they are calculated with the 3-year mean or with
the monthly mean subtracted data field. The only difference is that the PCs are a little
bit more jagged in the first case.

The PCA calculated with the covariance matrix is also stable when enlarging the
dimension of the matrix from 42 to 77 grid points. The principal components, their co-
efficients, and the reconstructed time series are practically indistinguishable when using
the finer and the coarser vertical resolution, independent of which mean was subtracted
before doing the PCA.

In the following, the PCA and FA results of the four CHAMP RO temperature fields
are looked at in detail. As one goal of this work was to compare the peculiarities of
the two methods according to atmospheric data sets like the ones investigated, for two
selected fields, namely the Eurasian-African slice (see Section 9.4) and the south polar
region (see Section 9.6) an in-depth analyze was performed, to find out whether there
are differences and if so, what they look like. If not stated differently, PCA and iterative
principal FA were compared. To come to the point, PCA and iterative principal FA
yielded quite similar outcomes and therefore mainly the PCA results were used to verify
the interpretations with plots. Provided that deviations between PCA and iterative
principal FA were given, this is separately stated.
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9.4 Temperature Data in the Eurasian-African Sector

(Authors: B.C. Lackner and B. Pirscher)

9.4.1 PCA/FA of 3-Year Mean Subtracted Temperature Anomalies in the
Eurasian-African Sector

The investigation of the data set follows the left branch of Figure 9.1 that implies that
the elimination of the 3-year mean is done for the temperature fields before doing the
PCA/FA. The statistical methods were applied to the sample correlation matrix and, in
case of PCA, to the sample covariance matrix.

Number of Factors Extracted: Table 9.8 shows the number of factors given from
different selection rules applied to the sample correlation matrix RRR and the sample
covariance matrix SSS as well as the results of iterative principal factor analysis, which are
given due to mathematical constraints (cf., Section 9.2.1).

Method Cum. Var.>90% Kaiser’s rule Scree Test LEV-Test FA

RRR, 3-Year Mean 6 5 (6) 4 4 3 (4)

SSS, 3-Year Mean 2 3 (3) 3 5 –

Table 9.8: Number k of factors following from different selection rules applied to PCA as well
as the results of iterative principal factor analysis.

The first column represents the number of factors given from the cumulative percent-
age of total variance, which was selected to be greater than 90 %. The second column
shows the results following from the Kaiser’s rule (#{k ∈ N|λk > 1} in case of the
correlation matrix and #{k ∈ N|λk > λ̄} for the covariance matrix) and the modified
Kaiser’s rule (#{k ∈ N|λk > 0.7} and #{k ∈ N|λk > 0.7λ̄}, respectively) given in the
parenthesis. The third column represents the number of factors estimated from the scree
plot and the fourth column the results evaluated by the LEV-diagram. In the last col-
umn, the number of factors that were extracted with iterative principal FA are given.
The value given in the parenthesis is the theoretically maximal amount of factors that
can be extracted to achieve a mathematically correct solution.

The number of factors estimated from the scree-test and the LEV-test are quite sub-
jective. Figure 9.7 depicts the scree-plot (left) and the LEV-plot (right) obtained from
the correlation matrix.

The “broken stick” in the scree-plot arises at eigenvalue number 4. The determination
of the cut-off value by means of the LEV-plot is pretty difficult because most of the
eigenvalues can be connected by a straight line, but it seems to be acceptable to take
k = 4. The eigenvalues and their respective logarithmic eigenvalues depicted in Figure
9.7 were calculated in IDL with the subroutine “SVDC” and not with the subroutine
“EIGENQL”. Both procedures enable the calculation of the eigenvalues of a matrix
but the results differ a little bit concerning the last few eigenvalues, whereas they are
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Figure 9.7: Scree-Plot (left) and LEV-Diagram (right) of the 3-year mean subtracted sample
correlation matrix.

identical for the first ones. If they were calculated with the help of “EIGENQL”, they
became slightly negative, which is not true for positive semi definite matrices, and both,
correlation matrices and covariance matrices are assigned to this kind of matrices. So,
the last eigenvalues obtained from “EIGENQL” are incorrect.

Eigenvalues: The first three eigenvalues of the correlation matrix RRR and the covari-
ance matrix SSS are shown in Table 9.9. The FA eigenvalues of RRR are not given by matrix
decomposition but by summing up the squared factor loadings for each factor. Never-
theless, they just differ insignificantly from those of PCA, which can be put down to the
fact that the values of the unique variances ψii are very small for this data set and that
therefore, the common variances in the loadings correspond with the PCA renormalized
coefficients.

Matrix Method λ1 λ2 λ3

RRR, 3-Year Mean PCA 25.83 5.83 3.59

FA 25.71 5.65 3.39

SSS, 3-Year Mean PCA 1786.46 230.30 73.44

Table 9.9: Eigenvalues of the sample correlation matrix and eigenvalues derived from squared
factor loadings for FA, respectively as well as eigenvalues of the sample covariance matrix.

Because of the renormalization with the square root of the eigenvalues, the renor-
malized coefficients take a larger range of values compared to the eigenvectors itself.
The different magnitudes of the correlation and the covariance matrix based eigenvalues
yield different pronounced patterns, which are visible in the renormalized coefficients
(ãaaj =

√
λjaaaj) and in the renormalized principal components (f̃ff j = fff j/

√
λj). First ones

are more prominent in case of the covariance matrix, second ones are more distinctive
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Figure 9.8: First principal component (top) and corresponding coefficient (bottom), calcu-
lated after the elimination of the 3-year mean by means of the correlation matrix (left) and the
covariance matrix (right).

in case of the correlation matrix.

A comparison between the not normalized coefficients (eigenvectors) and the renor-
malized coefficients can be drawn when looking at Figures 9.8 and 9.9. The first one
depicts the not normalized and the second one the renormalized results. The range of
y-axis in regard to the principal components and the range covered by the color bar are
the same, which results in very small magnitudes of the renormalized principal compo-
nents (particularly in case of the covariance matrix) and in a very uniform picture of the
eigenvectors.

PCA Differences When Applying the Sample Correlation and Covariance Matrix

An objective comparison between the results given from the correlation matrix and from
the covariance matrix is only valid if the results are not normalized. The outcomes of
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Figure 9.9: First renormalized principal component (top), the corresponding coefficient (mid-
dle), and the varimax rotated coefficient (bottom), calculated after the elimination of the 3-year
mean by means of the correlation matrix (left) and the covariance matrix (right).
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the respective calculation processes are shown in Figure 9.8 (left: correlation matrix,
right: covariance matrix; top: PCs, bottom: eigenvectors). Comparing the principal
components and the coefficients, it can be noticed that generally both show the same
shape; the principal components exhibit a sinusoidal cycle with maxima and minima
approximately arising at the same time and the coefficients feature a bipolar structure,
where the southern and the northern hemisphere are of opposite signs.

To perform a closer examination, differences between the respective principal compo-
nents and between the respective coefficients were calculated, the results are depicted in
Figure 9.10 (principal components, left, coefficients, right). The comparison shows that
the amplitude of the correlation matrix based PC is a little bit smaller compared to the
covariance matrix based PC, the difference (correlation matrix minus covariance ma-
trix) amounts up to ±15 units. The difference-plot concerning the eigenvectors depicts
that the pattern found from the correlation matrix is stronger at high southern lati-
tudes above a height of 16 km and at the low southern and northern latitudes between a
height of 10 km and 25 km. The coefficients calculated by means of the covariance matrix
are stronger at high and mid southern latitudes, particularly at lower heights. Gener-
ally, the deviations are relatively small, the maximum absolute difference contributes
to max(|aaacorr

1 − aaacovar
1 |) = 0.23. The locations of these most pronounced anomalies are

situated at the high southern latitudes between a height of 25 km and 30 km (positive)
and at high and mid southern latitudes between a height of 5 km and 15 km (negative).
Some positive deviations, which cannot be noticed because of the large range of the
colorbar are situated at the high northern latitudes where they always remain smaller
than 0.1.

It can be concluded that both calculation processes detect the same pattern, which
can only be distinguished in regard to the amount of their values.

Comparison Between PCA and FA Applying the Sample Correlation Matrix

To examine, how well the PCA results actually correspond with those of FA, difference
plots for the first two components/factors and the coefficients/loadings where created
for this atmospheric data set. The PCA results were compared with iterative principal
FA and true FA, as these two techniques yielded mathematical correct solutions.

Figure 9.11 shows the differences between the renormalized principal components/-
iterative principal FA factors scores and the renormalized principal coefficients/iterative
principal FA loadings in regard to the first and second extracted factor. While the PCA
coefficients of the first factor (upper left graph in Figure 9.11) range between −12 and
+15 units, the principal FA factor scores vary between ±10 units, but both reproduce
the seasonal temperature variation very well. The largest deviations (of around 5 units)
between the two methods are found at the peak values of the amplitudes. A similar
picture is given by the second factor, where the absolute values of the PCA coefficients
again surmount those of the principal FA factor scores. In addition, a slight tempo-
ral offset between PCA components and FA factor scores (which lag behind the PCA
components) is given. The differences between the PCA coefficients and principal FA
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Figure 9.10: Differences between the first PC and the first EOF if they are calculated with the
aid of the correlation matrix and the covariance matrix.

loadings are depicted in the second row of Figure 9.11. As the deviations between the
two methods are extremely small, the color bar range was changed to ±0.04 units. As
good as no differences are given for the first factors (green color), small ones in lower
hight levels between the equator and 50◦N, but they even do not surmount 0.04 units.
Furthermore, as the first factor contributes to more than 60 % of the total variance ex-
plained, whereas the second factor only achieves around 13 %, these differences seem to
be neglectible. In general, it must be kept in mind that the loadings and factor scores
of FA are only influenced by the common variances, whereas the unique variances are
stored in the matrix ΨΨΨ, which is not included in this considerations. So, the smaller
factor scores, which are the weights for the loadings, can be caused by the remaining
unique variances.

As true factor analysis provided as well a mathematically correct solution for the
Eurasian-African data set, the differences to this technique should be shortly addressed.
According to the components/factor scores quantity, the deviations between PCA and
true FA increase considerably, so that the differences nearly reach the same quantity
as the PCA principal components (the PCA renormalized principal components range
between ±10 units for the first two factors, whereas the true FA factor scores vary be-
tween ±1.5 units). In contrast to the differences of principal components/factor scores,
the renormalized coefficients/factor loadings of these two methods are again very similar
with differences below ±0.02 units (with the exception of a small area below 8 km height
extending from 5◦S to 35◦N).

Since the results of iterative principal factor analysis resemble to the PCA results
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Figure 9.11: Eurasian-African sector: Differences between PCA and iterative principal FA for
the first two extracted factors.

(renormalized principal components and coefficients), only principal components and
their corresponding coefficients are used for the following interpretation to simplify mat-
ters (that applies also to the three remaining data sets).

Interpretation

First Principal Component and First Coefficients: Figure 9.9 depicts the first renor-
malized principal components and coefficients calculated by the correlation matrix (left)
and the covariance matrix (right). The figures are quite similar; the southern hemisphere
and the northern hemisphere show a strong variability of opposite signs.

The rotation of both coefficients changes the picture. In case of the correlation matrix
the structure arising between 5◦N and 25◦N at an altitude between 13 km and 17 km is
even more pronounced, whereas the strong structure found at the mid and high latitudes
in the northern and southern hemisphere nearly disappears. Rotating the coefficients,
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which are based on the covariance matrix yields a structure emphasizing the latitudinal
variation, the pattern at the low latitudes vanishes.

The not rotated first coefficients account for 61.51 % (correlation matrix) and 81.30 %
(covariance matrix) of the total variation, the varimax rotated first coefficients account
for 34.70 % and 61.65 %, respectively.

The seasonal impact is clearly visible in the times series of the principal components,
which show a sinusoidal cycle, as well as in the shape of the coefficients. Reconstructing
the data with the first PC/coefficients and performing a time series at high and mid lat-
itudes affirms the domination of the seasonal impact in the data. During one year, the
temperature anomaly is positive between May and October and negative from Novem-
ber to April in northern polar regions, at the high southern latitudes it is of opposite
sign. The magnitude of the not normalized principal components is about ±50 units in
both cases. According to von Storch and Zwiers (2003), the not normalized principal
components carry the units of the data set, but in this case the components fluctuate
between ±50 K, which certainly is too much.

Interpreting the structure, which arises at the low latitudes between a height of 13 km
and 17 km, a discussion of seasonal impacts on equatorial regions (from 10◦S to 10◦N)
performed by Seidel et al. (2001) should be mentioned. They found a semiannual tem-
perature anomaly in the troposphere with maxima arising in the equinoxes, which did
not spread out in the tropopause region, where an annual cycle with maximum in August
was found. The tropopause temperature was coldest at highest altitude during northern
hemisphere winter. The northern hemisphere tropopause temperature remained colder
during northern winter than the southern hemisphere tropopause temperature during
southern winter. The tropopause height changed within the seasons, it was always higher
in the winter hemisphere.

Following these results of Seidel et al. (2001), a closer examination of the pattern was
done by means of an analysis of the time series of the african region between the equator
and 30◦N. The time series of measured temperature anomalies and the time series of
the first reconstructed coefficients (calculated with the correlation matrix) are shown in
Figure 9.12, top. It can be noticed that the area at an altitude of about 15 km shows
hardly any variation, whereas the reconstructed first pattern shows a reversal of the
signs compared to the heights below and above.

The bad vertical resolution in the region causes a blurred picture, but it is possible
that the change of the tropopause height within the seasons and the cold temperature,
especially in the northern tropical tropopause, are responsible for the pattern at the low
northern latitudes primarily found in the first coefficients.

The low southern latitudes show another height dependent behavior; the respective
time series are depicted in Figure 9.12, bottom. Again, the reconstructed patterns were
calculated with the principal components and coefficients of the correlation matrix. It
can be seen that above about 12 km height the temperatures follow the seasonal cycle
arising in the northern hemisphere, below the temperatures exhibit a reversed sign and
the anomalies agree with the cycle emerging in the southern hemisphere.
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Second Principal Component and Second Coefficients: The second (renormalized)
principal component and the respective second coefficients (shown in Figure 9.13) seem
also to be seasonal influenced. Similar to the first coefficients, a latitudinal structure
can be noticed in particular in the rotated coefficients, which points at the seasonal
cycle. The principal components again show a sinusoidal cycle, the amplitudes of the
not normalized PCs range between ±25 units (correlation matrix) and from −30 units
to +20 units (covariance matrix). The magnitude of renormalized PCs is shown in the
range between ±15 units to allow a better investigation.

The principal components and the coefficients, which arise from the covariance matrix
show opposite sign compared to the structures in the first PC/coefficients and the second
PC/coefficients of the correlation matrix. The explanation is that the eigenvectors and
therefore the coefficients are independent of sign (due to the arbitrariness of the direction
of the eigenvectors). Because of the PCs are also dependent on the direction of the
eigenvectors, the reconstruction of the data field (which incorporates both PCs and
EOFs) again yields the same sign.

Another already known structure can be found in the rotated coefficients arising from
the covariance matrix, namely the pattern, which occurs at the low (especially northern)
latitudes.

Generating time series of the reconstructed data (only with the second PC/coefficients)
it becomes clear that this pattern is responsible for the temporal adjustment of the
temperature anomalies. This result implicates that the patterns detected from the first
and the second coefficients are not orthogonal to each other, which should be true in
case of the principal component analysis. So, it disagrees to the theoretical background
of PCA.

Regarding the accounted variances, the second coefficients accounts for 13.88 % of the
total variance in case of the correlation matrix and 10.48 % in case of the covariance
matrix. The rotated coefficients contribute 36.01 % and 26.50%, respectively.

Third Principal Component and Third Coefficients: Figure 9.14 depicts the third
renormalized principal components and the respective coefficients; the rotated renorma-
lized coefficients are not shown because they do not facilitate the interpretation. Look-
ing at the principal components preserves the impression that they are still based on
the seasonal cycle but that there is an additional frequency present. Analyzing the
corresponding coefficients, the classical seasonal structure (southern and northern high
latitudes being of opposite signs) cannot be noticed.

Instead of that, an interesting feature arises at the low and mid latitudes (30◦N to
30◦S) above 20 km height. A similar structure is found in the data set if the seasonal
cycle is eliminated. This pattern will be interpreted later on.

The variance of the third coefficients calculated by means of the correlation matrix
makes 8.55 %, whereas the coefficients calculated by the covariance matrix contribute
3.34 %. The respective rotated coefficients account for 10.71 % and 3.79 % of the total
variance.
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Figure 9.12: Measured temperature anomalies and reconstruction of the data set (with the first
PC/coefficient of the correlation matrix) at 15◦N (equator to 30◦N), top, and 15◦S (equator to
30◦S), bottom.
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Figure 9.13: Second renormalized principal component (top), the corresponding coefficient
(middle), and the varimax rotated coefficient (bottom), calculated after the elimination of the
3-year mean by means of the correlation matrix (left) and the covariance matrix (right).

174



9.4 Temperature Data in the Eurasian-African Sector

Figure 9.14: Third renormalized principal component (top) and corresponding coefficient (bot-
tom), calculated after the elimination of the 3-year mean by means of the correlation matrix
(left) and the covariance matrix (right).

Accounted Variance: A summary of the contribution on the amount of total variance
of not rotated and varimax rotated coefficients/loadings is shown in Table 9.10 for both,
PCA and iterative principal FA. The minor differences between PCA and iterative prin-
cipal FA are reflected by the values. As can be recognized, the accounted variances of
the correlation matrix and the covariance matrix are considerably larger before doing a
varimax rotation.
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Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, 3-Year Mean

ãaa1 61.51 % 61.22 % 34.70 % 34.55 %

ãaa2 13.88 % 13.46 % 36.01 % 37.14 %

ãaa3 8.55 % 8.07 % 10.71 % 11.05 %

SSS, 3-Year Mean

ãaa1 81.30 % 61.65 %

ãaa2 10.48 % 26.50 %

ãaa3 3.34 % 3.79 %

Table 9.10: Accounted variances of the first three not rotated and varimax rotated coeffi-
cients/loadings.

9.4.2 PCA/FA of Monthly Mean Subtracted Temperature Anomalies in the
Eurasian-African Sector

As seen in Section 9.4.1, the seasonal cycle is very dominant in the first principal
components/factor scores if the mean temperature of each grid point is eliminated from
the original values. To detect some structures with lower intensity, the dominant pattern
was removed and the temperatures were centered to their monthly means (right branch
of Figure 9.1).

Number of Factors Extracted: Table 9.11 shows the number of factors, which are
“most important”. The numbers are derived from different selection rules applied to
the sample correlation matrix RRR and the sample covariance matrix SSS. The value of the
last column is again the selected one for iterative principal FA and in parenthesis the
maximal possible number of k to achieve a mathematical correct solution.

Method Cum. Var.>90% Kaiser’s rule Scree Test LEV-Test FA

RRR, Monthly Mean 11 11 (12) 7 ? 6 (8)

SSS, Monthly Mean 7 7 (8) 6 6

Table 9.11: Number of extracted factors k yielded from the cumulative percentage of variance
being greater than 90 % (first column), the Kaiser’s rule, and the modified Kaiser’s rule in
parenthesis (second column), the scree test (third column), the LEV diagram (fourth column),
and for iterative principal FA (fifth column, the maximal number for k due to mathematic
contraints is again given in parenthesis).

The application of the selection rules is the same as mentioned in Section 9.4.1. The
determination of the number of factors, which are extracted with the help of the LEV
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diagram was not possible for the correlation matrix, because not even a small break
occurs within the first 24 logarithmic eigenvalues; they are connected by a straight line.

Comparing the maximal number of factors that can be used by iterative principal
factor analysis, it can be noticed that, like for the 3-year mean corrected data set, it
keeps at the lower bound of the values according to the selection rules.

Eigenvalues of the Matrices: The first three eigenvalues of the sample correlation
matrix (and those derived from the factor loadings in the case of iterative principal FA)
and the sample covariance matrix are shown in Table 9.12.

Matrix Method λ1 λ2 λ3

RRR, Monthly Mean PCA 8.77 6.99 5.28

FA 8.49 6.77 4.98

SSS, Monthly Mean PCA 35.33 30.05 29.09

Table 9.12: Eigenvalues of the sample correlation matrix and sample covariance matrix.

As can be seen, the eigenvalues of the monthly mean subtracted data set are consid-
erably smaller compared to the eigenvalues calculated from the 3-year mean subtracted
data. Because of that, the magnitude of renormalized coefficients will not be as different
as in case of the 3-year mean centered coefficients.

PCA Differences When Applying the Sample Correlation and Covariance Matrix

As can be seen, in Figure 9.18 the first renormalized coefficients of the correlation matrix
and the covariance matrix of the monthly mean corrected data detect different patterns
in the atmosphere above Eurasia and Africa. Even though the eigenvectors actually
enable a comparison between both matrices, they are not shown in this context. Instead
of that, difference plots (Figure 9.15) of the first principal components (left) as well as
of the first coefficients (right) are shown to point at the arising anomalies.

Because of the different appearance found in the renormalized coefficients, it is not
surprising that both the principal components and the eigenvectors show strong devia-
tions.

Generally, the amplitude of the principal component, which is based on the covariance
matrix is larger compared to the correlation matrix based PC. The shapes of the principal
components are also not consistent. Strong deviations can be found in spring 2003, 2004,
and 2005 when the peaks of the curves show in opposite directions, but in the summer
and autumn months of 2002, 2003, and 2004 the PCs show similar behavior. Apparently,
the PCs are of different origin.

The difference plot (correlation matrix minus covariance matrix) of the coefficients
confirms that assumption. Strong positive differences dominate the picture given in
Figure 9.15, right, negative differences only occur at mid and low latitudes above a height
of 20 km and sometimes, less pronounced (not visible in the Figure), between an altitude
of 5 km and 15 km. The maximum deviations, which amount up to +0.63, can be found
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Figure 9.15: Differences between the first PC and the first EOF if they are calculated with the
aid of the correlation matrix and the covariance matrix.

at the high northern latitudes above 25 km height, those, which arise in the southern
hemisphere seldom excess +0.10. The most pronounced negative anomaly at mid and
low latitudes amounts −0.30. Compared to the maximum absolute deviations found in
the 3-year mean corrected data set, these values are pretty high and the assumption that
the patterns underly different origins is confirmed. The different patterns found from
both matrices will be discussed later on in detail.

Comparison Between PCA and FA Applying the Sample Correlation Matrix

For the monthly mean centered Eurasian-African data set, the differences between PCA
and iterative principal FA as well as true FA were investigated.

Looking at the components/factor scores of PCA and iterative principal FA, which
are depicted in the upper two graphs of Figure 9.16, the arbitrariness of the direction of
the eigenvectors, which is fixed during the calculation process, outcrops.

While for the first extracted factor, PCA components and iterative principal FA factor
scores have the same sign, they are of opposite signs for the second extracted factor (cf.,
upper right graph in Figure 9.16). In contrast to the 3-year mean centered data set, they
do not vary much concerning their amount so that the difference does not exceed ±1 units
(the components and factor scores mainly vary between ±3 units, only two peaks reach
a bit more than ±5 units). The opposite signs of the components/factor scores in case
of the second extracted factor can be ignored, because the coefficients/loadings are also
of opposite signs and therefore, the reconstructed patterns, which are achieved by ma-
trix multiplication of components/coefficients (PCA) and factor scores/loadings (FA),
respectively, yield the same result. To represent the real differences between the two
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Figure 9.16: Differences between PCA and iterative principal FA for the first two selected
factors.

methods, the PCA results were subtracted from the FA results for the first extracted
factor and added in case of the second extracted factor, where they showed opposite
signs. The coefficients/loadings of the two methods are again very similar with locally
restricted deviations of about ±0.03 units.

The differences in regard to true factor analysis are more pronounced. Certainly, the
components/factor scores correspond quite well (even though larger deviations are given,
where the amplitudes achieve a maximum, which is in this case generally stronger for
PCA than for true FA), but therefore the differences between coefficients and loadings
strengthen, so that for wide areas a variation of more than ±0.05 units is achieved.

The differences between the two FA methods are possibly given by the unique variances
of the matrix ΨΨΨ, which vary essentially from each other, mainly at higher latitudes.
There, true FA seems to have problems in allocating the unique and common variances
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to certain grid points (cf., Figure 9.17), which may be reflected by comparing true FA
results with PCA.

Figure 9.17: Unique variance matrices ΨΨΨ of monthly mean centered Eurasian-African tem-
peratures calculated with iterative principal FA (left) and true FA (right). While the unique
variances derived with iterative principal factor analysis mainly range between 20 % and 40 %,
true factor analysis seems to fail in seperating unique and common variances correctly at higher
latitudes.

Interpretation

First Principal Component and First Coefficients: The magnitude of the not nor-
malized principal components varies between −8 units and +12 units in case of the
correlation matrix and between −11 units and +14 units in case of the covariance ma-
trix. Figure 9.18 (top) shows the renormalized PCs (left: correlation matrix, right:
covariance matrix); it is remarkable that the structures of both PCs are not as similar
as the PCs calculated from the 3-year mean subtracted data set.

The first renormalized coefficients calculated with the aid of the correlation matrix and
the covariance matrix have the structure in common, which arises at the mid southern
latitudes. The pattern emerging at the high northern latitudes can only be found in
the covariance matrix based coefficients, whereas the features arising at low and mid
latitudes (up to 35◦N/S) as well as that at the high southern latitudes can only be
noticed in the coefficients, which are based on the correlation matrix.

As mentioned above, the renormalized coefficients shown in Figures 9.14 (third 3-year
mean eliminated coefficients) and 9.18 (first monthly mean eliminated coefficients) re-
semble each other in case of the correlation matrix. A conspicuous structure arises above
20 km height between the latitudinal range of 35◦S and 35◦N. Comparing respective re-
constructed time series it becomes clear that the third coefficient still contains a strong
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seasonal impact but this influence is removed in the first monthly mean coefficients. So,
the reconstructed patterns are not similar and the coefficients must have another origin.

To investigate the noticed patterns in the first renormalized coefficients of the sample
correlation matrix and the sample covariance matrix, time series of the corresponding
regions were made.

The original monthly mean centered temperature anomaly at 75◦S (top), the respec-
tive reconstructed patterns found by means of the correlation matrix (middle) and by
means of the covariance matrix (bottom) are shown in Figure 9.19. Comparing these
time series yields the correlation matrix pattern being more pronounced and more con-
venient to detect and describe the effective temperature anomaly arising at the high
southern latitudes. The feature describes the southern polar vortex, which can be found
at high latitudes. It causes particularly low temperatures and was relatively weak in
2002 (it even split in two in September 2002), but powerful in 2003, and average in 2004.
Even though the real structure extends throughout all height levels, the detected pattern
(of the correlation matrix) rests at lower altitudes. An examination of the temperature
anomalies in that region are also discussed in Section 9.6.2.

The structure emerging at the low and mid northern and southern latitudes is also
better resolved in case of the correlation matrix, the respective time series (measured
temperature anomalies and reconstructed data) at 15◦S are depicted in Figure 9.20.
The pattern calculated on basis of the correlation matrix locates the structures, which
emerges in that region, whereas the one recalculated with the first coefficients derived
by means of the covariance matrix neglects that structure. The time series of the recon-
structed first principal component/coefficient shows a formation arising in June every
year; it remains until September in 2002 and 2003, in 2004 it is less pronounced. Since
the structure comes from averaging the temperatures between the equator and 30◦S, it
is possible that it is due to the QBO (quasi-biennial oscillation). The QBO, which arises
in equatorial regions and can influence the average temperatures between 0◦ and 30◦S,
will be discussed in more detail in Section 9.7.1. The same reconstructed time series
develops in the northern hemisphere between 0◦ and 30◦N.

The third remarkable structure occurs at the high northern latitudes, but it is only
detected from the coefficients calculated with the covariance matrix. This pattern is com-
pletely disregarded by the first coefficients, which are based on the correlation matrix.
Respective time series of that region and reconstructed patterns are shown in Figure
9.21. The temperature anomalies both are positive and negative, arise first at high alti-
tudes, propagating downwards; they occur between November and April, the northern
hemisphere winter. According to literature (Manney et al. 2005; Angell et al. 2003a,
2004a, 2005), the pattern can be attributed to sudden stratospheric warming events (cf.,
Chapter 4). Thus, a relatively cold December 2002 was followed by a strong warming
in mid January; in the early winter 2003/2004, temperatures were above average, they
rose in December and remained above average until end of February, but for March 2004
the temperature anomalies became negative; record low temperatures were observed in
winter 2004/2005 until February, when a sudden stratospheric warming was on its way
at high altitudes. Mostly, the SSW events propagate down to a height of around 10 km.
Anyway, the reconstruction of the covariance matrix based pattern does not succeed in
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resolving the real height structure and it cuts off at heights of approximately 20 km.

The first PCA coefficients, calculated by elimination of seasonal influences by means
of the correlation matrix, contribute 20.87 % and the ones, which are based on the co-
variance matrix contribute 61.51 % to the total variance; the respective varimax rotated
PCA coefficients account for 9.97 % and 34.70 %, respectively.

Second Principal Component and Second Coefficients: The second coefficients (Fig-
ure 9.22) calculated by means of the correlation and the covariance matrix completes
the picture given from the analysis of the first coefficients. The second coefficients de-
rived from the correlation matrix focus on the high northern latitudes and the respective
coefficients, which are based on the covariance matrix, on the high southern latitudes
as well as on the low southern and northern latitudes, which are not described in the
respective first coefficients.

The combination of the first and the second coefficients yields an acceptable recon-
struction of the actually temperature field. It can be concluded that the two matrices
focus on different zonal regions and that the spatial and temporal location of variation
cannot be resolved from one single factor.

Accounted Variance: The contribution to the amount of total variance of not rotated
and varimax rotated coefficients/loadings calculated after the elimination of monthly
means is shown in Table 9.13. Comparing the explained variances of Table 9.10 and
Table 9.13 it can be stated that the accounted variances of the correlation matrix and
the covariance matrix are considerably larger, if the 3-year mean of each variable is
eliminated before calculating the principal components, than it is the case if the seasonal
impact is removed.

While there are nearly no differences between PCA and iterative principal FA derived
variances for the “conventional” coefficients/loadings, larger deviations are given by
the varimax rotated coefficients/loadings. There, iterative principal FA distributes the
variances of the first two factors quite equally (about 15 %), wheras PCA favors the
second factor (also 15 %) above the first one (around 10 %). All in all, regarding the
first three extracted factors, a larger total variance is explained by the varimax rotated
loadings (40 %) than by the varimax rotated coefficients (31 %).
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Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, Monthly Mean

ãaa1 20.87 % 20.21 % 9.97 % 14.73 %

ãaa2 16.66 % 16.11 % 15.15 % 15.72 %

ãaa3 12.56 % 11.86 % 6.32 % 9.84 %

SSS, Monthly Mean

ãaa1 25.69 % 24.39 %

ãaa2 21.85 % 16.29 %

ãaa3 21.16 % 19.74 %

Table 9.13: Accounted variances of the first three monthly mean centered not rotated and
varimax rotated coefficients/loadings.
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Figure 9.18: First renormalized principal component (top), the corresponding coefficient (mid-
dle), and the varimax rotated coefficient (bottom), calculated after the elimination of the monthly
mean by means of the correlation matrix (left) and the covariance matrix (right).
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Figure 9.19: Comparison of the monthly mean eliminated time series (top) and the reconstruc-
tion of the first PC/coefficient calculated by means of the correlation matrix (middle), and the
covariance matrix (bottom) at 75◦S (60◦S to 90◦S).
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Figure 9.20: Comparison of the monthly mean eliminated time series (top) and the reconstruc-
tion of the first PC/coefficient calculated by means of the correlation matrix (middle), and the
covariance matrix (bottom) at 15◦S (0◦S to 30◦S).
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Figure 9.21: Comparison of the monthly mean eliminated time series (top) and the reconstruc-
tion of the first PC/coefficient calculated by means of the correlation matrix (middle), and the
covariance matrix (bottom) at 75◦N (60◦N to 90◦N).
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Figure 9.22: Second renormalized principal component (top) and the corresponding coefficient
(bottom), calculated after the elimination of the monthly mean by means of the correlation
matrix (left) and the covariance matrix (right).
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9.5 Temperature Data at 15 km Height

(Authors: B.C. Lackner and B. Pirscher)

The temperatures at an altitude of 15 km are given in a latitudinal-longitudinal reso-
lution of (30◦ × 45◦).

9.5.1 PCA/FA of 3-Year Mean Subtracted Temperature Anomalies at
15 km Height

Number of Factors Extracted: Table 9.14 shows the number of factors given from dif-
ferent selection rules applied to the sample correlation matrix and the sample covariance
matrix. The last column contains the selected number of factors for iterative principal
FA and in parenthesis the maximal possible number of k to achieve a mathematical
correct solution.

Method Cum. Var.>90 % Kaiser’s rule Scree Test LEV-Test FA

RRR, 3-Year Mean 9 7 (10) 4 3 3 (6)

SSS, 3-Year Mean 2 2 (2) 3 3

Table 9.14: Number k of factors following from different selection rules for PCA and mathe-
matical constraints for iterative principal FA.

The number of extracted factors mostly varies between two and four, except for the
correlation matrix, if it is investigated by means of the cumulative variance and the
Kaiser’s rule, where nine and seven factors should be retained for further calculations,
respectively. The number of selected factors for factor analysis as well as the maximal
possible number of factors correspond quite well with the requirements according to
Kaiser’s rule, scree and LEV-test in this case.

Eigenvalues: The first three eigenvalues of the 3-year mean corrected temperature data
calculated with the correlation matrix RRR and the covariance matrix SSS as well as the
eigenvalues derived from the factor loadings are shown in Table 9.15.

Matrix Method λ1 λ2 λ3

RRR, 3-Year Mean PCA 22.77 9.18 2.87

FA 22.62 8.84 2.54

SSS, 3-Year Mean PCA 1547.92 91.73 23.37

Table 9.15: Eigenvalues of the sample correlation matrix and the sample covariance matrix as
well as eigenvalues derived from the factor loadings in case of iterative principal FA.

The eigenvalues of both, PCA and iterative principal FA, again show a very good
agreement. The fact that the eigenvalues calculated from the correlation matrix are
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much smaller compared to the eigenvalues of the covariance matrix attracts once more
attention. The effect of the renormalization (with the square root of the eigenvalues) of
the principal components and the coefficients is the same as discussed in Section 9.4.1.
The renormalized principal components calculated from the correlation matrix are larger
compared to those calculated with the covariance matrix, whereas the renormalized
coefficients are more pronounced in case of the covariance matrix.

First Principal Component and First Coefficients: The first renormalized principal
components and first renormalized coefficients calculated from the correlation matrix
and the covariance matrix are depicted in Figure 9.23. Results, which are based on the
correlation matrix are shown on the left side, those of the covariance matrix on the right
hand side. Because the varimax rotation changes the coefficients only a little bit, so that
the patterns nearly stay the same, the varimax rotated coefficients are not shown.

The amplitude of the not normalized principal components is about ±50 units in case
of the correlation matrix and about ±60 units in case of the covariance matrix. So, the
amplitude of the principal component based on the covariance matrix is again a little bit
larger compared to the one, which are based on the correlation matrix. The sinusoidal
character of the curves is contained both times, it can also be noticed (with a smaller
magnitude due to the renormalization) in Figure 9.23, top.

The patterns, which arise in the coefficients are similar in case of the correlation matrix
and the covariance matrix. The high northern and the high southern hemisphere show
a strong variability of opposite signs, which can be interpreted as the seasonal influence.
The low latitudes show smaller temporal temperature variations. But two more features
can be found in the maps: The variability at the low and mid northern latitudes is more
pronounced in the western hemisphere over the Pacific and shows the same deviation
as that found in the southern hemisphere at high latitudes. The second conspicuous
pattern is centered at the low southern latitudes (between the equator and about 25◦S)
above Africa; it extends to South America in the west and to Australia in the east.
Looking to the finer (15◦× 45◦) resolution, the same anomaly results even in a small
band around the globe with maximum width over South Africa.

Recalling the first coefficients of the Eurasian-African data set, some remarkable struc-
tures at the low latitudes (cf., Figure 9.9) at 15 km height were noticed. It seems that
the patterns noticed there have the same origin as the features mentioned above.

Again, some time series were plotted to investigate these deviations. The time series of
the 3-year mean centered temperature anomalies (top) and the reconstructed time series
of the correlation matrix (middle), and the covariance matrix (bottom) can be seen in
Figure 9.24. The temperature deviations, which occur at the low southern latitudes
(being oppositional to the remaining southern hemisphere pattern) can be clearly seen
in the top time series. The same structure is strongly overrated in case of the correlation
matrix but relatively good resolved in case of the covariance matrix.

The feature arising in the low (and mid) northern hemisphere cannot be resolved in
the time series of the temperature anomalies at 45◦E, but it can already be found at the
Greenwich meridian. Generating a time series along 90◦W (where it is strongest) warm
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and cold air masses can be clearly seen migrating at 15 km height from south to north
with the annual cycle.

Second Principal Component and Second Coefficients: The sinusoidal shape of the
principal components is visible in both the correlation matrix and the covariance matrix
based PCs. The second PC is temporal adjusted to the first one (the extrema of the
first PC are in July/August (maxima) and in December (minimum), whereas they are
in October/November (maxima) and in May/June/July (minima) in the second PC).
The pattern covers the whole northern hemisphere (correlation matrix) and the mid and
high northern and southern hemisphere (covariance matrix). A small area of an opposite
deviation can be found south-eastern Australia (both matrices).

The reconstructed time series (not shown) yield temperature anomalies, which simul-
taneously start to get warmer in the northern hemisphere and are still warm in the
southern hemisphere; contrariwise they start to get colder in the northern hemisphere
and are still cold in the southern hemisphere. So, the feature causes a small period of
overlapping of warm and cold temperature anomalies in both hemispheres. Together
with the first pattern a temporal movement of the temperature anomalies is caused. An
exception is the longitudinal sector situated at the date line, where the pattern in the
northern hemisphere and that in the southern hemisphere are of opposite signs. This
feature can also be found in the real temperatures at that longitudes.

The covariance matrix resolves that pattern in both hemispheres, whereas the corre-
lation matrix concentrates on the northern hemisphere and neglects the pattern in the
southern hemisphere (exception: pattern at the date line).

Accounted Variance: The contribution to the amount of total variance of not rotated
and varimax rotated coefficients/loadings is shown in Table 9.16.

Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, 3-Year Mean

ãaa1 47.43 % 47.12 % 41.92 % 36.98 %

ãaa2 19.12 % 18.42 % 4.26 % 20.99 %

ãaa3 5.98 % 5.30 % 3.21 % 12.86 %

SSS, 3-Year Mean

ãaa1 90.75 % 78.50 %

ãaa2 5.38 % 0.21 %

ãaa3 1.37 % 1.64 %

Table 9.16: Accounted variances of the first three not rotated and varimax rotated coefficients/-
loadings.
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Figure 9.23: First renormalized principal component (top) and corresponding coefficient (bot-
tom), calculated after the elimination of the 3-year mean by means of the correlation matrix
(left) and the covariance matrix (right).

9.5.2 PCA/FA of Monthly Mean Subtracted Temperature Anomalies at
15 km Height

Number of Factors Extracted: Table 9.17 shows the number of factors, which should
be retained when using them for additional calculations.

Compared to the number of extracted factors calculated after the elimination of the
3-year mean, k now is larger.

Eigenvalues of the Matrices: The first three eigenvalues of both matrices (the data
are centered to the monthly mean) are shown in Table 9.18. The FA eigenvalues are
again derived from the factor loadings.
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Figure 9.24: Measured temperature anomalies (top) and reconstruction of the data set by
means of the correlation matrix (middle) and the covariance matrix (bottom) at 45◦E (22.5◦E
to 67.5◦E).
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Figure 9.25: Second renormalized principal component (top) and corresponding coefficient
(bottom), calculated after the elimination of the 3-year mean by means of the correlation matrix
(left) and the covariance matrix (right).

First Principal Component and First Coefficients: The renormalized principal com-
ponents of the correlation matrix and the covariance matrix are depicted in Figure 9.26
together with their respective renormalized coefficients. In general, the PCs as well as
the coefficients are similar, if they are calculated by means of the correlation matrix and
the covariance matrix; the amplitudes of the PCs range between ±20 units in case of
the covariance matrix and are a little bit smaller in case of the correlation matrix. The
coefficients show a strong anomaly arising in high latitude regions, north and south, with
opposite signs. Another remarkable feature can be found between about 25◦N and 55◦N
in a longitudinal area spanning from 60◦E to the data line and it shows the same sign
as the structure at high southern latitudes. Furthermore, the correlation matrix based
coefficients show some small structures at low and mid latitudes, but they are all only
little pronounced.

The interpretation of the pattern found in the first coefficients is again facilitated by
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Method Cum. Var.> 90 % Kaiser’s rule Scree Test LEV-Test FA

RRR, Monthly Mean 12 11 (13) 6 3 5 (7)

SSS, Monthly Mean 5 6 (7) 5 3

Table 9.17: Number k of factors following from different selection rules and according to the
requirements of iterative principal FA (last column).

Matrix Method λ1 λ2 λ3

RRR, Monthly Mean PCA 11.14 8.89 4.75

FA 10.94 8.71 4.34

SSS, Monthly Mean PCA 53.61 42.11 6.91

Table 9.18: Eigenvalues of the correlation matrix and covariance matrix calculated after elimi-
nation of the monthly mean.

generating respective time series. Comparing these times series (measured temperatures
and reconstructed data) at different longitudes it can be noticed that there are only few
differences. Only the pattern over eastern Asia, which is relatively weak compared to
the pattern at high latitudes, influences the latitudinal range between 25◦N and 55◦N.
The temperature anomalies along 90◦W and the recalculated data (correlation matrix)
are depicted in Figure 9.27.

The times series show a strong variability in the southern hemisphere (south of 30◦S)
from June 2002 to January 2003 (positive), from June 2003 to December 2003 (negative)
and from December 2004 to January 2005 (negative). These structures can be attributed
to the southern polar vortex. In 2002, the antarctic polar vortex was relatively warm,
due to an intense stratospheric warming it even split in two in September 2002; in 2003
it was very strong, and in 2004 it was less pronounced than in 2003 but much stronger
compared to 2002 (Angell et al. 2002, 2003b, 2004b).

Prominent patterns arising in the northern hemisphere can be found from October
2002 to January 2003 (negative), from February to May 2003 (positive), from December
2003 to March 2004 (strong positive), and from January 2005 to the end of the time
series (end of February 2005). These patterns can be attributed to arctic stratospheric
features. Manney et al. (2005) report on the one hand on an unusually cold early arctic
winter 2002/2003, which was interrupted from a major warming in late January and
further warmings mid-February and early March, on the other hand on a particular
warm winter 2003/2004 in the arctic stratosphere. According to Angell et al. (2005)
extremely cold temperatures (lower than −78 ◦C) in the lower stratosphere dominated
over portions in the arctic region in the winter 2004/2005 from December to February
(cf., Chapter 4).

These structures are present in the first reconstructed time series of the first coefficients
of the correlation matrix as well as of the covariance matrix.
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Second Principal Component and Second Coefficients: The second principal compo-
nent of the correlation matrix and the covariance matrix can be characterized as a curve
without any regularities. Minima occur in autumn 2002 and in late winter (February)
2004 (more pronounced in case of the correlation matrix), maxima can be found in au-
tumn 2003 and in later winter 2005. The amplitudes of the not normalized PCs amount
to about ±15 units. The coefficients form a symmetric structure with deviations on both
poles and with some smaller anomalies in between with opposite signs.

The contribution of the second principal component and the second coefficients to the
reconstruction of the intrinsic data is negligible, because the most important patterns
are already included in the first ones. So, it is not possible to attribute the structures
of the second factor to another atmospheric pattern.

Accounted Variance: The contribution to the amount of total variance of not rotated
and varimax rotated coefficients/loadings is summarized in Table 9.19. It can be noticed
that the quoted variance is spread over the first three coefficients more regular compared
to the 3-year mean eliminated coefficients. Nevertheless, the variation accounted for by
the first factors of the covariance matrix is noticeable larger than the variation of the
first factors of the correlation matrix.

Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, Monthly Mean

ãaa1 23.20 % 22.79 % 20.27 % 21.48 %

ãaa2 18.51 % 18.14 % 18.11 % 18.51 %

ãaa3 9.89 % 9.05 % 5.60 % 8.73 %

SSS, Monthly Mean

ãaa1 43.55 % 38.81 %

ãaa2 34.21 % 35.37 %

ãaa3 5.61 % 3.54 %

Table 9.19: Accounted variances of the first three not rotated and varimax rotated coefficients/-
loadings.
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Figure 9.26: First renormalized principal component (top) and corresponding coefficient (bot-
tom), calculated after the elimination of the monthly mean by means of the correlation matrix
(left) and the covariance matrix (right).
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Figure 9.27: Measured temperature anomalies (top) and reconstruction of the data set (by
means of the correlation matrix) at 90◦W (67.5◦W to 112.5◦W).
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Figure 9.28: Second renormalized principal component (top) and corresponding coefficient
(bottom), calculated after the elimination of the monthly mean by means of the correlation
matrix (left) and the covariance matrix (right).
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9.6 Temperature Data in the South Polar Area

(Authors: B.C. Lackner and B. Pirscher)

The temperature data in the south polar region are given as a zonal mean temperature
field with a 5◦ latitudinal resolution (from 57.5◦S to 87.5◦S) yielding 6 zonal bands, and
a vertical resolution of 5 km (7 height levels).

9.6.1 PCA/FA of 3-Year Mean Subtracted Temperature Anomalies in the
South Polar Area

Number of Factors Extracted: Table 9.20 shows the number of factors given from
different selection rules applied to the sample correlation matrix and to the sample
covariance matrix as well as the number of factors extracted with iterative principal FA
with the maximal number of extractable factors (due to mathematical constraints) in
parenthesis.

Method Cum. Var.>90% Kaiser’s rule Scree Test LEV-Test FA

RRR, 3-Year Mean 2 2 (3) 3 5 2 (11)

SSS, 3-Year Mean 2 2 (2) 3 4

Table 9.20: Number k of factors being estimated from different selection rules and according
to mathematical constraints in case of iterative principal FA.

The application of the selection rules is the same as that discussed in Section 9.4.1.

The number of factors given from the different criteria is relatively similar around two
or three so that further considerations will be restricted to the first and to the second
principal components and their coefficients. The same applies to the selected factors for
iterative principal FA, even though in this case k = 11 factors could have been extracted.
But as the first two factors already explained more than 95 % of the total variance, which
was the highest amount achieved by iterative principal FA in regard to the four different
atmospheric data sets, these two were considered to be sufficient.

Eigenvalues: The first three eigenvalues of the 3-year mean centered temperature data
calculated with the sample correlation matrix and the sample covariance matrix, as well
as the eigenvalues derived from the factor loadings of iterative principal factor analysis
are shown in Table 9.21.

As only two factors were extracted with iterative principal FA (see above), no value
for the third one can be presented.

Similarly to the temperature data given in the Eurasian-African sector, the eigenvalues
of the 3-year mean centered data of the covariance matrix are comparatively high, which
results in huge renormalized coefficients.
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Matrix Method λ1 λ2 λ3

RRR, 3-Year Mean PCA 33.07 7.29 0.83

FA 33.03 7.26

SSS, 3-Year Mean PCA 6946.66 1171.26 101.45

Table 9.21: Eigenvalues of the sample correlation matrix and sample covariance matrix.

Figure 9.29: Differences between the first PC and the first EOF if they are calculated with the
aid of the correlation matrix and the covariance matrix.

Comparison Between Sample Correlation Matrix and Sample Covariance Matrix

As mentioned in the discussion of the Eurasian-African data set, the renormalization of
the data inhibits a correct comparison between the results given from the correlation
matrix and from the covariance matrix. Nevertheless, it can be noticed that the de-
tected patterns are similar to each other and no large differences occur. Both principal
components show a sinusoidal cycle and the appearance of both coefficients turns out to
be uniformly colored. A difference plot between the principal components and the coef-
ficients calculated by means of the correlation matrix and the covariance matrix depicts
that there are small deviations in the detected patterns (shown in Figure 9.29).

Concerning the principal components the difference amounts up to ±20 units. Gener-
ally, the PC, which is based on the covariance matrix is the stronger one. The deviations
(correlation matrix minus covariance matrix), which result in the coefficients are not no-
ticeable. The differences are very small, they always remain smaller than ±0.13, whereas
small positive deviations can be found below 8 km height.

Generally, the results given from the correlation matrix and from the covariance matrix
are in a good agreement. Therefore, if the interpretation of that data field is the priority
objective of principal component analysis, it does not matter, which matrix is used.
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Comparison Between PCA and FA Applying the Sample Correlation Matrix

The south polar region was chosen as the second data set to be investigated in detail
according to differences between PCA and FA in general (the Eurasian-African slice, dis-
cussed in Section 9.4 represented a global data set, whereas the south polar area stands
for a regional one). For the 3-year mean centered south polar temperature fields, both
iterative principal FA and true FA yielded correct solutions (cf., Section 9.2). As maxi-
mum likelihood FA and centroid FA only allowed one factor to be extracted to achieve a
meaningful result (total variance less than 100 %), these two methods were not included
in the comparison.

The results of PCA correspond nearly perfectly to those of iterative principal FA (cf.,
Figure 9.30). While the coefficients and factor loadings are nearly identical (lower two
graphs), small variations are given regarding the coefficients/factor scores. At the am-
plitudes maxima, the iterative principal FA values exceed the PCA results by 3 units
(5 units in regard to the second factor) on average. A glance at the unique variance
matrix ΨΨΨ of iterative principal FA shows that for this data set, only a very small part of
the total variances were attributed to the unique ones. For the largest part in the south
polar region, only 10 % to 20 % of the explained variances were put into ΨΨΨ, larger values
are solely found at low altitudes (5 km to 8 km). In other words, iterative principal FA
did not succeed in this case in splitting up the existing variance in a common and unique
part. Theoretically this stands for the fact that, provided that the values of ΨΨΨ are only
very small, the mathematical model of FA approaches the PCA model and it becomes
the same, when ΨΨΨ is equal to zero. If this was the case the results of both methods
would be the same.

True factor analysis performs the separation of common and unique variance even
much worse. Nevertheless, larger differences to PCA occur than it was the case regarding
iterative principal FA. Certainly, the PCA components correspond to the true FA factor
scores, but the coefficients and factor loadings vary by around 2 %. Anyhow, these small
differences may be caused by the mathematical transformations, which were necessary
to be capable of computing the auxiliary matrix R∗R∗R∗ (cf., Section 9.2) and therefore to
achieve true FA results.

Interpretation

First Principal Component and First Coefficients: The sinusoidal curve of the first
principal component depicted in Figure 9.31 top, clearly reflects the seasonal cycle. The
maximum temperature anomaly arises in December and January each year, lowest values
can be found in July and August.

Compared to the results arising at the high southern latitudes yielded from the in-
vestigation of the temperature field in the Eurasian-African sector, the first principal
component and the corresponding coefficients show opposite signs, but recomposing
them results in the same summer and winter dependent temperature cycle.
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The structure arising in the not rotated coefficients is homogeneous across all latitudes
and all heights. The pattern changes a little bit after the varimax rotation, then the
coefficients show a faint height-dependent formation.

Second Principal Component and Second Coefficients: The second principal com-
ponent depicted in Figure 9.32 top, also shows the seasonal cycle with the phase being
shifted with regard to the temporal variation of the first PC. The maxima emerge in
October and November, minima occur in June and July.

The respective coefficients show a height dependent pattern, altitudes above 21 km
display an inverted structure to heights below 21 km. Reconstructing the data from
the first and the second PCs and coefficients, reproduces the real situation very well.
The reconstructed fraction of the second factor is primarily responsible for the earlier
temporal warming and cooling of the higher altitudes compared to near surface regions.

Because the third principal component on the one hand only accounts for 1.99 % of
the total variability and on the other hand also shows a seasonal cycle, it will not be
discussed.

Accounted Variance: The contribution to the amount of total variance of not rotated
and varimax rotated coefficients/loadings is shown in Table 9.22. It can be noticed that
already the first and the second extracted factor account together for more than 95 % of
the total variation. Also for that reason, only two factors were extracted with iterative
principal FA, so that no value can be given for the third one.

Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, 3-Year Mean

ãaa1 78.73 % 78.64 % 50.53 % 51.30 %

ãaa2 17.37 % 17.29 % 44.80 % 44.63 %

ãaa3 1.99 % 1.72 %

SSS, 3-Year Mean

ãaa1 83.82 % 60.52 %

ãaa2 14.13 % 36.09 %

ãaa3 1.22 % 2.25 %

Table 9.22: Accounted variances of the first three not rotated and varimax rotated coefficients/-
loadings.
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Figure 9.30: Differences between PCA and iterative principal FA in the south polar region.
The upper two graphs show the PCA renormalized coefficients (black line), the iterative principal
FA factor scores (blue line) and the differences between the two (red line) for the first (left) and
second (right) extracted factors. The lower two graphs represent the differences between the
weighting coefficients of the two methods (matrix AAA), again for the first (left) and second (right)
factor.
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Figure 9.31: First renormalized principal component (top) and the corresponding coefficient,
calculated after the elimination of 3-year mean by means of the correlation matrix (left) and the
covariance matrix (right).
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Figure 9.32: Second renormalized principal component (top) and the corresponding coefficient,
calculated after the elimination of 3-year mean by means of the correlation matrix (left) and the
covariance matrix (right).
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Figure 9.33: Temperature anomalies (corrected for 3-year mean), top, and reconstructed time
series of the first, the second, and the combination of the first and the second principal compo-
nent/coefficient at 85◦S (82.5◦S to 87.5◦S).
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9.6.2 PCA/FA of Monthly Mean Subtracted Temperature Anomalies in the
South Polar Area

As seen so far, the seasonal cycle is particularly strong pronounced in high latitude
regions. To look for atmospheric patterns being hidden behind the seasonal cycle, the
monthly mean was subtracted from the data field in each grid point.

Number of Factors Extracted: Table 9.23 shows the number of factors, which should
be retained when using them for additional calculations.

Method Cum. Var.>90% Kaiser’s rule Scree Test LEV-Test FA

RRR, Monthly Mean 6 6 (8) 7 3 6 (9)

SSS, Monthly Mean 5 5 (6) 6 3

Table 9.23: Number of extracted factors k, estimated from the cumulative variance limited to
90 %, the Kaiser’s rule, and the modified Kaiser’s rule, the scree-test, the LEV-test as well as
the number of factors used for iterative principal FA.

Compared to the number of extracted factors calculated after the elimination of 3-year
mean, the number k now is larger, independent of the kind of test and of the underlying
matrix. Nevertheless, the interpretation will be limited to the first two PCs/coefficients.

Eigenvalues: The first three eigenvalues of both matrices are shown in Table 9.24.

Matrix Method λ1 λ2 λ3

RRR, Monthly Mean PCA 15.58 11.22 4.81

FA 15.50 11.12 4.64

SSS, Monthly Mean PCA 76.94 53.65 14.28

Table 9.24: Eigenvalues of the sample correlation matrix and sample covariance matrix calcu-
lated after elimination of the monthly means.

Comparison Between Sample Correlation Matrix and Sample Covariance Matrix

Similar to the results obtained from the 3-year mean corrected data set in the south polar
region, the renormalized coefficients of the monthly mean centered data (Figure 9.38)
show patterns, which resemble each other. Both coefficients form a height dependent
structure, which is of opposite sign below and above approximately 25 km height. The
intensity of the feature decreases when moving from the south pole to 60◦S.

Exactly this decrease of intensity represents the difference between the results of both
matrices. As can be seen in Figure 9.34, right, the difference concerning the coefficients
is negative at highest latitudes and positive at lower latitudes between a height of 10 km

208



9.6 Temperature Data in the South Polar Area

Figure 9.34: Differences between the first PC and the first EOF if they are calculated with the
aid of the correlation matrix and the covariance matrix.

and 15 km. That means that the pattern detected from the covariance matrix is stronger
at the south pole, whereas it is smaller at 60◦S.

Looking at the shapes of the principal components as well as at the difference between
them (shown in Figure 9.34, left) it can be recognized that the structures found in
the coefficients (correlation matrix and covariance matrix) represent the same pattern.
The cycle of the PCs look very similar and the difference always remains smaller than
±5 units.

Comparison Between PCA and FA Applying the Sample Correlation Matrix

The monthly mean centered south polar temperature field was an exception in regard to
the four selected atmospheric data sets, as three FA techniques succeeded in attaining
a mathematically correct solution, namely iterative principal FA, true FA, and centroid
FA. The differences of these techniques to PCA should be briefly addressed.

Similar to the 3-year mean corrected south polar data set, nearly no differences are
given now between PCA and iterative principal FA. In fact, the both methods agree
still better: The maximal deviations between the principal components and the factor
scores are even in the extreme values of the curves within the scope of less than ±1 unit
(September, October 2002 and 2003), and mainly they stay very close to zero. The same
goes for the coefficients/factor loadings differences, which are more or less not existent
(for the coefficients/loadings, the graphs look similar to those in Figure 9.30, below).

Coming to true FA, the contrast to PCA is more clearly visible. Certainly, the
components/factor scores are again quite the same, but concerning the coefficients/-
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Figure 9.35: Differences between PCA coefficients and true FA factor loadings. Due to the fact
that the differences between PCA and true FA as well as centroid FA are stronger pronounced
than compared to iterative principal FA, the color bar range was extended to ±0.5 to achieve
expressive plots.

loadings, relatively large deviations occur. Figure 9.35 shows these differences. Because
of their larger amount and to enable the direct comparison to the results of the differ-
ences between PCA and centroid FA, the color bar range was extended to ±0.5 units
(instead of ±0.05 units, which was taken for the comparison between the similar re-
sults of PCA and iterative principal FA) to achieve expressive plots. While for the first
extracted factor (left graph) more pronounced deviations of around +0.2 units (stand-
ing for 20 % differences of the common variances) appear at higher altitudes (25 km to
34 km), differences of the same amount, but of opposite signs, are found at lower heights
(10 km to 20 km) in regard to the second extracted factor (right graph).

Even larger deviations are given between PCA and centroid FA and furthermore, they
are not restricted to the coefficients/loadings. Concerning the principal components and
the factor scores, the arbitrariness of the sense for the eigenvectors appears again, so
that PCA components/coefficients and centroid FA factor scores/loadings show opposite
signs. Anyhow, as explained earlier, this fact does not influence the results as such. The
differences between PCA components and centroid FA factor scores are mainly given by
a temporal lag of the curves, which mainly occurs for centroid FA. The factor scores
of this method seem to react more slowly to temporal changes than the components of
PCA, so that the most pronounced deviations (achieving nearly the same amplitude as
the components/factor scores themselves) occur simultaneously to the largest amplitudes
(during September, October of each year). Nevertheless, beyond the extrema the curve
match quite well. The actual differences between PCA and centroid FA turn up in the
coefficients/loadings. As the signs of the two methods’ results were inverse, the PCA
coefficients were added to the FA factor loadings. To avoid getting misled, this has to
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Figure 9.36: Differences between PCA coefficients and centroid FA factor loadings.

be kept in mind when interpreting Figure 9.36. Even if for both extracted factors the
deviations between the two methods are mainly positive, centroid FA achieved similar
structures (of opposite signs) for its factor loadings in regard to PCA. The differences
at the whole tend to become positive, on the one hand because positive structures were
more pronounced in PCA than the respective negative structures in centroid FA, and
on the other hand because negative structures in PCA were less pronounced than the
respective positive ones in centroid FA (so the sum of the coefficients and loadings was
rather positive).

The most striking difference in regard to the first extracted factor (see left graph of
Figure 9.36) is given by a triangle-shaped structure between a height of 15 km and
27 km. This strange structure also exists in the first factor loadings of centroid FA
and it points to a problem of the method concerning the spatial allocation of common
variances. Furthermore, the pronounced positive PCA structure below 20 km is less
developed in centroid FA’ loadings, where it is rather concentrated between 18 km and
20 km.

Compared to the first extracted factor, the coefficients/loadings differences between
PCA and centroid FA are less intensive for the second extracted factor, but they still
surmount the differences between PCA and the other two FA techniques essentially.

The question is, whether these larger deviations between PCA and true FA as well as
centroid FA could be caused by the fact that these two techniques are more successful in
separating the total variance of a data set into common and unique one, than iterative
principal FA.

A glance at Figure 9.37 shows that the unique matrices ΨΨΨ do not contain the hoped-
for explanations. Only centroid FA (right graph) seems to manage the separation of the
unique variances, whereas iterative principal FA (left graph) and above all true FA (in
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Figure 9.37: Unique variance matrices ΨΨΨ of iterative principal FA (left), true FA (middle), and
centroid FA (right). The green color stands for small, the red for large unique variances.

the middle) attribute just a small amount of the total variance to ΨΨΨ.

This is probably caused by the technique specific different number of extracted factors:
Only two sectors could be extracted for centroid FA (conditional on the requirement that
all ψii have to be positive), so that the technique had more problems to extract the com-
mon variances, as only the correlations of two factors could be considered. The common
variance explained by these two factors achieved barely 60 %, so that an appreciable part
of the total variance rested for the unique variances (20 % to 50 % for the largest part in
the considered region).

In contrast, 24 factors had to be extracted applying true FA, where the mathematical
constraint requires the weighting factor θ̂ to be less than one (cf., Section 9.2.2). This
large number of extracted factors resulted in 99.99 % of the variance explained by the 24
common factor loadings, so that as good as no variance was left for the unique variances
in ΨΨΨ, which can be seen clearly in the middle graph of Figure 9.37.

The unique variances resulting from iterative principal FA are as well rather small
(mostly less than 20 %), which is the result of the high value of explained common vari-
ance (nearly 90 %), which was achieved by six extracted factors.

Even though the differences between the FA techniques seem to be caused by the
varying number of extracted factors, which results in different unique variance matrices
ΨΨΨ, the deviations to PCA results cannot be explained by this fact in their entirety. The
heterology of PCA and FA techniques probably has to be tracked down in the different
mathematical calculation procedures, but this was out of the scope of this work.

Interpretation

First Principal Component and First Coefficients: The first principal component
shows three characteristics arising in September and October each year. In 2002 the
feature is of opposite sign compared to 2003 and 2004. Investigating the first coeffi-
cients, it can be noticed that the structure shows a height dependent behavior with the
formation at the lower heights being more pronounced compared to higher altitudes.
The formations are again of opposite signs, the parting line is at an altitude of about
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28 km. The latitudinal dependency is insignificant.
The reconstruction of the first PC and the respective coefficients yields a pattern from a

height of 5 km to 27 km appearing first in May 2002 and 2003 and lasting until December
2002 and January 2004, respectively. In 2002, a strong positive temperature anomaly is
developed, in 2003 it is a negative temperature pattern. In 2004, the distinct structure
only arises from September until December. The pattern between a height of 5 km and
27 km coincidents with a small counterpart that can be found above 30 km altitude. The
same structure also has been found in the monthly mean corrected temperature fields in
the Eurasian-African sector as well as the 15 km height map, where it was attributed to
the southern polar vortex (cf., Sections 9.4.2 and 9.5.2). The correctness of the detected
structures can be verified by several papers (Angell et al. 2002, 2003b, 2004b; Gobiet
et al. 2005a).

Second Principal Component and Second Coefficients: The second principal compo-
nent shows a spike in August and September 2002 and another in October and November
the same year of opposite sign. The same feature can be noticed in 2003, being opposed
to the structures of 2002, whereas in 2004 only a small “unipolar” peak can be discov-
ered. The second coefficients resolve a structure occurring above 20 km height, below
an inverse pattern is less pronounced.

The reconstructed time series shows the features emerging in the months detected
from the principal components, an alternating pattern arising in August/September and
October/November 2002 and 2003. The year 2004 gets out line, the discussed pattern
cannot be observed there.

Accounted Variance: The contribution to the amount of total variance of not rotated
and varimax rotated coefficients/loadings is summarized in Table 9.25. It can be noticed
that the stated variance is spread over the first three coefficients more regularly compared
to the 3-year mean eliminated coefficients/loadings. That is caused by the absence of
the most dominating pattern, namely the seasons. The extremely similar results of PCA
and iterative principal FA are here also very well reflected.
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Figure 9.38: First renormalized principal component (top) and the corresponding coefficient,
calculated after the elimination of the seasonal mean by means of the correlation matrix (left)
and the covariance matrix (right).
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Figure 9.39: Temperature anomalies (corrected for monthly mean), top, and reconstructed
time series of the first and second principal component (middle and beneath) at 85◦S (82.5◦S to
87.5◦S).
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Figure 9.40: Second renormalized principal component (top) and the corresponding coefficient,
calculated after the elimination of the seasonal mean by means of the correlation matrix (left)
and the covariance matrix (right).
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Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, Monthly Mean

ãaa1 37.09 % 36.90 % 28.23 % 28.21 %

ãaa2 26.69 % 26.48 % 20.89 % 20.79 %

ãaa3 7.27 % 11.05 % 10.85 % 12.03 %

SSS, Monthly Mean

ãaa1 43.23 % 34.71 %

ãaa2 30.14 % 25.30 %

ãaa3 8.02 % 11.06 %

Table 9.25: Accounted variances of the first three not rotated and varimax rotated coefficients/-
loadings.
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9.7 Temperature Data Near the Tropical Tropopause

(Authors: B.C. Lackner and B. Pirscher)

The second analyzed regional field is located at the low latitudes between 17.5◦S
and 17.5◦N (5◦ zonal means yielding 7 latitudinal regions) to investigate the tropical
atmosphere between 12 km and 22 km.

Generally, the seasonal fluctuations are less pronounced at the low latitudes compared
to high latitudinal regions. Hence, the results of PCA and FA of the 3-year mean centered
tropical temperature field are similar to the output of the monthly mean subtracted
temperatures.

9.7.1 PCA/FA of Temperature Anomalies Near the Tropical Tropopause

Number of Factors Extracted: Table 9.26 shows the number k of extracted factors
estimated with different selection rules applied to the correlation matrix and the covari-
ance matrix as well as the number of factors extracted with iterative principal FA with
the maximal number of extractable factors (due to mathematical constraints) in paren-
thesis. The results are shown for both data, being 3-year mean centered and monthly
mean centered.

Method Cum. Var.>90% Kaiser’s rule Scree Test LEV-Test FA

RRR, 3-Year Mean 4 4 (6) 5 9 4 (17)

SSS, 3-Year Mean 3 4 (4) 5 5

RRR, Monthly Mean 4 5 (6) 4 7 5 (13)

SSS, Monthly Mean 3 3 (4) 4 5

Table 9.26: Number of extracted factors k determined with different selection rules and accord-
ing to mathematical constraints in case of iterative principal FA.

As in the previous sections, the selection rules yield a number of factors being greater
than the number of factors being interpreted. The tropical data set takes a special
position for iterative principal FA in regard to the maximal number of extractable factors,
which is higher than for all other analyzed atmospheric data sets (given in parenthesis
in Table 9.26). Nevertheless, a much smaller number of extracted factors (namely four
and five) satisfied to explain around 92 % of the total variance in the data set.

Eigenvalues: The first three eigenvalues of the sample correlation matrix and the sam-
ple covariance matrix calculated after the removal of 3-year mean and monthly mean are
shown in Table 9.27. The iterative principal FA quoted values are again derived from
the factor loadings of the first three extracted factors.

In both cases, the PCA results correspond very well with the iterative principal FA
results, independently if rotated or not.
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Matrix Method λ1 λ2 λ3

RRR, 3-Year Mean PCA 24.68 8.85 3.38

FA 24.61 8.79 3.28

SSS, 3-Year Mean PCA 115.08 43.42 11.13

RRR, Monthly Mean PCA 22.02 9.24 5.19

FA 21.96 9.20 5.07

SSS, Monthly Mean PCA 64.13 31.52 6.26

Table 9.27: Eigenvalues of the sample correlation matrixRRR and the sample covariance matrix SSS
once without the mean of each variable (3-year mean), the other after elimination of the monthly
mean.

Furthermore, it can be noticed that the 3-year mean eliminated eigenvalues are always
a bit larger than the eigenvalues calculated after the subtraction of monthly means. The
reason is the remaining variance being larger in the first case. Besides, the eigenvalues
of the correlation matrix are smaller than the eigenvalues of the covariance matrix,
an aspect that was mentioned already several times as this is also valid for the other
atmospheric data sets.

First Principal Component and First Coefficients: First of all, the common properties
of the 3-year mean and the monthly mean centered renormalized principal components
and coefficients are discussed.

As mentioned above, the low latitudes do not show the same temporal behavior as
the high northern and southern latitudes, because the seasons are less pronounced. The
comparison of the temperature anomalies confirms the low seasonal impact in the tropic
region, especially at the equator. Beyond the equatorial region, the picture changes
slowly and the seasons gain influence on the temperature data.

The first principal component and the first coefficients of the temperature anomalies
calculated after the removal of 3-year mean and after the elimination of monthly mean
are depicted in Figures 9.41 and 9.42.

The varimax rotated coefficients are not shown because they are similar to the not
rotated coefficients and do not facilitate the interpretation. Comparing the monthly
mean centered principal components and the 3-year mean centered PCs calculated from
both matrices, it seems that the first ones are a smoothed version of the second ones.
Generally, they show the same drift, but the 3-year mean centered temperatures express
a stronger fluctuating structure. The corresponding coefficients are also very similar and
no essential differences can be noticed. This impression is confirmed by comparing the
reconstructed time series.

Looking at the results of the correlation and covariance matrix based PCs/coefficients
yields that the principal components are equal apart from the magnitude. The cor-
relation matrix based coefficients show a slight bipolar structure, whereas an unipolar
pattern can be found in the covariance matrix based coefficients over the equator at a
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height of approximately 18 km (in case of the monthly mean elimination).

The monthly mean centered time series of temperature anomalies at the equator (Fig-
ure 9.43, top) shows alternating anomalies (negative from March 2002 to June 2003
and from December 2003 to March 2005; positive–overlapping–in between) propagat-
ing downwards, which suggests that the detected pattern stems from the quasi-biennial
oscillation (QBO).

This atmospheric pattern dominates the variability of the equatorial stratosphere be-
tween a height of approximately 15 km to 50 km. It is symmetrical in regard to the
equator and extends from maximal 15◦S to 15◦N. Easterly and westerly winds (20 m/s
to 30 m/s) alternate in an averaged period of 28 months, influencing the temperature
variability. Easterly winds are connected with low temperatures; westerly winds with
comparatively high temperatures. An extra-tropical counterpart is situated in the po-
lar regions. During equatorial easterly winds, the polar vortex is warmer and more
disturbed, than during westerly winds (Salby 1996; Hupfer and Kuttler 1998; Baldwin
et al. 2001).

The QBO influence on the polar vortex is also visible in the time series of CHAMP
RO data. The disturbances of the polar vortex in southern hemisphere winter 2002
(cf., Figures 9.19 and 9.39) and in northern hemisphere winter 2002/2003 (cf., Figure
9.21), which were interpreted as sudden stratospheric warmings, coincide with the strong
negative temperature anomalies in tropical regions.

Schmidt et al. (2005) already detected the QBO pattern in the CHAMP data set.
They also analyzed monthly mean corrected temperatures and created plots similar to
Figure 9.43.

Moving from the equator toward the subtropics, the influence of the QBO decreases
and the seasons gain influence.

The conspicuous pattern located between a height of 13 km and 17 km (found above
Eurasia-Africa and described in detail in Section 9.4.1) cannot be noticed in the zonal
mean temperature anomalies between a height of 12 km and 22 km.

Concerning the amount of accounted variance of the first principal component, Table
9.28 shows that it is comparatively small compared to the first PCs in case of the south
polar region or the global fields. Dependent on the examined data matrix (correlation
or covariance matrix, 3-year mean or monthly mean subtracted), the accounted amount
of variance ranges between 52 % and 62 %.

Second Principal Component and Second Coefficients: The renormalized principal
component, calculated after the removal of the 3-year mean, again corresponds to the
monthly mean centered PC. The same goes for the coefficients.

Another aspect is that the second coefficients calculated by means of the correlation
matrix have the same structure as the second covariance matrix based coefficients.

Figure 9.44 depicts the second principal components and its respective coefficients
calculated by means of the correlation matrix (left) and the covariance matrix (right)
after elimination of the monthly mean. A height dependent pattern can be recognized
both times with opposite signs. Despite the short time series, the principal components
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show a sinusoidal character with a frequency of more or less two years, which is consistent
with the QBO theory.

As can be seen in Figure 9.43, the second PC/coefficients is responsible for the reso-
lution of the height dependent temporal behavior of the QBO. Anyhow, it always must
be considered that even though the factors generally are assumed to be orthogonal (and
therefore, the coefficients should be based on different physical patterns), this is not the
case in the investigated atmospheric data fields.

Accounted Variance: A summary of the contribution to the amount of total variance
of not rotated and varimax rotated coefficients/loadings is shown in Table 9.28. It can
be recognized that the accounted variances of the correlation matrix and the covariance
matrix are considerably larger if the mean of each variable is eliminated before calculating
the principal components/loadings compared to the case of the removal of the seasonal
impact.

Method Not Rotated Varimax Rotated

Coefficients/Loadings Coefficients/Loadings

PCA FA PCA FA

RRR, 3-Year Mean

ãaa1 58.77 % 58.59 % 38.68 % 38.73 %

ãaa2 21.08 % 20.93 % 28.05 % 27.41 %

ãaa3 8.05 % 7.81 % 15.65 % 15.99 %

SSS, 3-Year Mean

ãaa1 61.47 % 48.04 %

ãaa2 23.19 % 28.92 %

ãaa3 5.94 % 9.05 %

RRR, Monthly Mean

ãaa1 52.43 % 52.28 % 37.41 % 37.50 %

ãaa2 22.01 % 21.91 % 30.09 % 29.58 %

ãaa3 12.35 % 12.07 % 16.67 % 17.21 %

SSS, Monthly Mean

ãaa1 58.34 % 47.62 %

ãaa2 28.68 % 36.04 %

ãaa3 5.69 % 6.81 %

Table 9.28: Accounted variances of the first three not rotated and varimax rotated coefficients/-
loadings.
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Figure 9.41: First renormalized principal components (top) and the corresponding coefficients
(bottom), calculated after the elimination of 3-year mean by means of the correlation matrix
(left) and the covariance matrix (right).
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Figure 9.42: First renormalized principal components (top) and the corresponding coefficients,
calculated after the elimination of the monthly means by means of the correlation matrix (left)
and the covariance matrix (right).
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Figure 9.43: Temperature anomalies (corrected for the annual cycle), top, and reconstructed
time series of the first and second principal component (middle and beneath), as well as a
combination of the first and second factors at the equator (2.5◦S to 2.5◦N).
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Figure 9.44: Second renormalized principal components (top) and the corresponding coeffi-
cients, calculated after the elimination of the monthly means by means of the correlation matrix
(left) and the covariance matrix (right).

225



9 PCA and FA – Application to Atmospheric Data

226



10 Conclusions

(Authors: B.C. Lackner and B. Pirscher)

Thousands of years ago, humankind thought that it owed the seasons to Demeter,
the goddess of the earth. Her daughter Persephone was retained in the underworld by
Hades, the brother of Zeus. So, Demeter induced a terrible continuous snowstorm to ex-
tort from Zeus to speak up for Persephone by his brother Hades. Because they could not
reach an agreement, which is still often the case in todays’ politics, they came up with
a compromise: Persephone had to stay with Hades in the underworld for four months
each year, while the rest of the time of the year she spent on the earth’s surface. So, the
seasons were born, by the permanent change of Demeter’s mood caused by her joy to
see Persephone again and by her sadness to loose the daughter once more for four months.

Nowadays, we do no longer believe in stories like this, but still we search for connections
and explanations for atmospheric processes. Both methods used in this work, principal
component analysis and factor analysis, proved to be a good tool for such purposes, even
though they show several specific advantages as well as disadvantages, which are based
on the underlying models. The PCA model is given by xxx = AAAfff(+eee), the FA one by
xxx = AAAfff + uuu. The PCA error term eee is put in parenthesis because its amount depends
on the number of extracted components. The more components are used to explain the
data’s variance, the smaller is the error term; if all principal components are selected,
eee is equal to zero. In contrast, the uniqueness term uuu in FA always plays an important
role.

The differences between the models are caused by the fact that PCA does not distin-
guish between common (affected by more than one variable) and unique (only affected by
one variable) variances and both can be found in the principal components. In contrast,
the goal of FA is to separate common and unique variances. This allocation of variances
to two different matrices implies, as in FA only the factor loadings are used to calculate
the amount of total variance in the data (the unique factors uuu are not included) that the
total explained variance with FA is generally less than with PCA.

Furthermore, PCA is not dependent on the number of extracted factors; each factor
always contributes the same amount to the explained variances and all factors together
explain 100 % of the data’s variance. FA results by contrast change with a varying
number of factors “k”. The total variances increase and the unique variances decrease
with a rising number of extracted factors. Hence, also the allocation of common and
unique variances to the two matrices depends on k, but the total of common and unique
variances always amounts to 100 %.

Concerning atmospheric data sets, this means that FA includes the possibility to spot
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those grid points and areas, which are strongly determined by unique variances and
therefore are not covered in large-scale patterns. Even though PCA does not include
this possibility, preference may be given to this method due to shorter calculation pro-
cess and the independence on the number of selected factors, which was discussed above.

Having these differences always in mind, both methods are able on the one hand to
find new atmospheric patterns and on the other hand to validate known processes in
investigated data fields. Therefore, a good basic knowledge of the used data is indis-
pensable. This basic knowledge was acquired in the first part of this work.

Nevertheless, applying PCA and FA to real data sets, the following characteristics
have to be kept in mind, in order not to stumble into technical pitfalls:

• Matrix Dimension: Both methods require a certain dimension of the data ma-
trix. In the usual case, there are more objects than variables and therefore it is
not possible to solve the model exactly. Otherwise, problems may occur during
the calculation process. The atmospheric data fields investigated within this work
did not comply with this requirement, nevertheless, successful calculations were
possible for a part of these data sets. Due to the short available time series of
solely 36 months (temperature means), this issue called for special attention. In-
vestigating data sets, the methods’ stability is easily exceeded using a too detailed
spatial resolution. Because of that, the selected resolution was well considered. To
find out the limits of a suitable resolution, each atmospheric field was investigated
in two different resolutions, a coarse and a detailed one. The sensibility of the
models showed that for the fine-resolved data fields, the stability of both methods
was exceeded in two cases, namely in the Eurasian-African (latitude×height) slice
and in the south polar region. For these two data fields, the ratio between the
number objects and variables was particularly bad.

• Atmospheric Data Fields are Different: To verify the program codes of PCA
and FA, a well known example of literature was engaged, were both methods were
applied successfully. Nevertheless, problems occurred partly with the investigated
atmospheric data fields. The loss of the methods’ stability often did not show in
the coefficients/loadings, even though the principal components/factor scores were
disturbed. Therefore, it is a must to check the correctness of all results. If any
problem can be found within a calculation process, it can be helpful to check the
matrix dimensions.

• Arbitrariness of the Factors: Since the results of PCA and FA are based on
the decomposition of matrices in eigenvectors, it has to be kept in mind that the
direction of the eigenvectors is arbitrarily defined. In order to avoid misinterpre-
tation, both the coefficients/loadings and the principal components/factor scores
have to be considered, because the patterns themselves are composed by matrix
multiplication of the respective results. Neglecting this fact, negative values of
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coefficients/loadings, for instance, could easily be interpreted as global cooling,
even if the rebuilt pattern would show a warming.

• Similar Coefficients/Loadings Rely on Different Patterns: The analysis
of the Eurasian-African slice showed that the coefficients/loadings of the first ex-
tracted factor of the monthly mean centered data were nearly identical to the
coefficients/loadings of the third extracted factor of 3-year mean corrected data.
The combination of the principal components/factor scores with the coefficients/-
loadings yielded different atmospheric patterns, so that again in each of the two
resulting matrices not enough information was included to derive correct interpre-
tations. The real origin of the patterns can only be detected by considering both
coefficients/loadings and principal components/factor scores.

• What About Orthogonality? According to the theory, the coefficients/loadings
and principal components/factor scores of every extracted factor have to be or-
thogonal to each other. This would imply that the first detected pattern cannot
be found again in the second factor. Nevertheless, the annual temperature cycle
remained at least in the first three principal components/factor scores of 3-year
mean centered data sets. So, it seems that in the investigated cases, the meth-
ods did not succeed completely to extract the whole signal with one factor. This
was presumably caused by the strength of the seasonal signal in temperature data
fields.

• Correlation Matrix Equal to Covariance Matrix? Even though the cor-
relation matrix is a kind of normalized covariance matrix, one would expect the
results to be similar for both matrices. This was not the case for the monthly mean
centered Eurasian-African slice, where completely different patterns were detected
from the PCA coefficients. Nevertheless, the reconstruction of the data by means
of the first two coefficients and principal components showed that these differences
nearly vanish in reconstruction.

Only part of the information comprised in the data sets could be detected in the four
atmospheric data fields. Surprisingly much information is still hidden in the data set,
but unfortunately searching all these patterns would blast the scope of this work. Fur-
thermore, the reasons for the failure of factor analysis techniques in certain selected data
sets was not considered in detail. Anyway, the goal was to get familiar with the methods
and to find out their weak and strong points.

From our point of view, we succeeded.
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A Linear Algebra

A.1 Definitions

A.1.1 Data Matrix

The data matrix XXX contains any information given from measurements. XXX(n×p) consists
of n rows and p columns, whereas each row represents the object and each column lists
one variable.

A.1.2 Deviation Scores and Standard Scores

Deviation scores are obtained by subtracting the mean of one variable x̄j from the raw
scores of the variable,

yij = xij − x̄j i = 1, . . . , n

with

x̄j =
1

n

n∑

i=1

xij , j = 1, . . . , p.

The mean of deviation scores is always zero, the standard deviation is still the same as
from the raw scores.

Standard scores (z-scores) are obtained by dividing deviation scores by the standard
deviation sj

zij =
xij − x̄j

sj
i = 1, . . . , n

with

sj =

√√√√ 1

n

n∑

i=1

(xij − x̄j)
2, j = 1, . . . , p. (A.1)

The mean of standard scores is always zero and the standard deviation (and variance)
is always one.

A.1.3 Major and Minor Product Moments

The major product moment CCC(n×n) is defined as the product of the data matrix XXX(n×p)

postmultiplied by its transpose (Reyment and Jöreskog 1993):

CCC =XX ′XX ′XX ′.
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A Linear Algebra

The minor product moment EEE(p×p) is defined as the premultiplication of the matrix
XXX(n×p) by its transpose (Reyment and Jöreskog 1993):

EEE =X ′XX ′XX ′X.

Both major product moment and minor product moment are square symmetrical ma-
trices.

A.1.4 Orthogonal, Orthonormal Matrices

A square matrix EEE(p×p) is said to be orthogonal if its columns, considered as vectors,
are mutually perpendicular and

E′EE′EE′E =DDD,

whereDDD is a diagonal matrix. EEE(p×p) is said to be orthonormal if its columns, considered
as vectors, are mutually perpendicular and have unit length.

EEE is orthonormal ⇔ E′EE′EE′E = EE′EE′EE′ = IIIp ⇔ EEE−1 = EEE′.

IIIp is the (p× p)-identity matrix.

A.1.5 Singular/Nonsingular

A square matrix EEE(p×p) is said to be nonsingular, if EEExxx = 0 implies that xxx = 0. A square
matrix EEE is said to be singular, if there exists an xxx 6= 0 such that EEExxx = 0.

Equivalently, a square matrixEEE is said to be nonsingular if its rank (cf., Section A.1.9)
is equal to its number of rows (or columns).

A.1.6 Determinant

Determinants are scalar mathematical objects that are derived from mathematical op-
erations on matrices. Determinants are defined only for square matrices.

If the determinant of a matrix is zero, the matrix is a singular matrix, nonsingular
matrices have nonzero determinants. See, e.g., Lang and Pucker (1998) for details.

A.1.7 Minor

Given a square matrix EEE(p×p), the minor Mij is defined as the determinant of the matrix

formed by deleting the ith row and jth column of EEE. There will therefore be one minor
corresponding to each element of EEE.
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A.1.8 Positive Definite

A square, real matrix EEE(p×p) is said to be positive definite, if

xxx′EEExxx > 0 ∀xxx 6= 0.

Equivalently, a square symmetric matrix EEE is said to be positive definite if all minors
associated with the elements of the principal diagonal are greater than zero. If EEE is
positive definite, all diagonal elements and all eigenvalues are greater than zero. The
determinant of a positive definite matrix is always positive, so it is always nonsingular.
EEE is invertible and its inverse is also positive definite.

If xxx′EEExxx ≥ 0, ∀xxx 6= 0, EEE is said to be positive semi definite. In that case some
eigenvalues and the determinant are equal to zero.

A.1.9 Rank

The row rank of a matrix is the maximum number of linearly independent rows consid-
ering the rows as vectors. The columns rank of a matrix is the rank of its set of columns,
considered as vectors. The row rank and the column rank are equal and are called the
rank of the matrix.

A.1.10 Eigenvalues/Eigenvectors

If EEE is a real, symmetric (p × p)-matrix and IIIp is the (p × p)-identity matrix, then the
scalars λ1, λ2, . . . , λp satisfying the polynomial equation

det(EEE − λIIIp) = 0

are the eigenvalues of EEE. λ1, λ2, . . . , λp are also referred to characteristic roots; det(EEE −
λIIIp) = 0 is known as the characteristic equation.

If xxx is a non-zero vector such EEExxx = λxxx, then xxx is said to be an eigenvector (charac-
teristic vector) of the matrix EEE associated with λ.

Properties of Eigenvalues and Eigenvectors

1. The sum of the eigenvalues of a matrix EEE is equal to the sum of the elements in
the principal diagonal of the matrix EEE.

2. The product of the eigenvalues equals to the determinant of the matrix. If one
or more eigenvalues are zero, the determinant of the matrix will be zero and it is
singular.

3. The number of nonzero eigenvalues equals to the rank of the matrix.

4. Eigenvectors are always normalized, they are of unit length.

5. All eigenvectors associated with different eigenvalues are orthogonal to each other.
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A.1.11 Sample Covariance Matrix

The sample covariance matrix SSS is defined as the minor product moment of the data
matrix expressed in deviate form (Y ′YY ′YY ′Y ) divided by n− 1, n is the number of objects

SSS =
Y ′YY ′YY ′Y

n− 1
.

The elements of the principal diagonal are the variances of the variables, the other
elements are the covariances of the variables.

SSS =




Var(x1), Cov(x1, x2) . . . Cov(x1, xp)

Cov(x2, x1) Var(x2) . . . Cov(x2, xp)
...

...
...

Cov(xp, x1) Cov(xp, x1) . . . Var(xp)




(A.2)

The covariance of two data sets can be defined as there tendency to vary together. The
covariance value will be larger than zero if two variables tend to increase together, below
zero if they tend to decrease together, and zero if they are independent. Due to the
symmetry property of covariances, it is necessarily a symmetric matrix. Covariance
matrices are positive definite or positive semi definite.

A.1.12 Sample Correlation Matrix

The sample correlation matrix RRR is defined as the minor product moment of the stan-
dardized data matrix (Z ′ZZ ′ZZ ′Z) divided by n− 1, n is the number of objects

RRR =
Z ′ZZ ′ZZ ′Z

n− 1
.

The correlation matrix is a symmetric matrix (the correlation of variable x with variable
y is always equal to the correlation of variable y with variable x) and its diagonal elements
are one because these are the correlations between each variable and itself.

RRR =




1, r(x1, x2) . . . r(x1, xp)

r(x2, x1) 1 . . . r(x2, xp)
...

...
...

r(xp, x1) r(xp, x1) . . . 1




(A.3)

Each element (correlation coefficient) in the correlation matrix ranges from −1.0 to +1.0,
the closer to +1 or −1, the more closely the two variables are related. If the correlation
is positive, it means that as one variable gets larger the other gets larger and if it is
negative it means that as one gets larger, the other gets smaller.

If the correlation coefficient is close to zero, the variables do not have any relationship.
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A.1.13 Covariance Matrix in Comparison With the Correlation Matrix

The difference between these two matrices is how the data are scaled before the matrix
multiplication is executed. In case of the covariance matrix the mean of each variable
is subtracted before multiplication and the correlation matrix results from standardized
variables (mean subtracted, then divided by standard deviation).
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B Differential Calculus

B.1 Lagrange Multiplication

Lagrange multipliers can be used to find the maximum of a multivariate function subject
to a constraint.

If f(x1, x2, . . . , xp) is the function being maximized and g(x1, x2, . . . , xp) = c being
the constraint, there is a λ (Lagrange multiplier) conforming to the equation

∂f

∂xi
− λ

∂g

∂xi
= 0, i = 0, . . . , p (B.1)

and in a stationary point a the partial derivatives are zero: ∂f
∂xxx (a) = 0, xxx = (x1, . . . , xp).

The function L(xxx, λ) is defined with

L(xxx, λ) = f(xxx) − λ[g(xxx) − c]. (B.2)

Because of the constraint, g(xxx) − c = 0, equation (B.1) can be written as

∂L

∂xxx
= 0. (B.3)
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Abstract: 
This report deals with CHAMP radio occultation climatologies generated at the Wegener 
Center, University of Graz. In the first part of the report, the climatologies were compared to 
analyses and reanalyses (from the European and U.S. meteorological services) as well as to 
two different climatological models called NRLMSISE-00 and CIRA86aQ_UoG.  
One focus was the investigation of the influence of the local time at which radio occultation 
measurements were taken, revealing that monthly climatologies do not show appreciable 
problems and that the influence of local time is generally negligible. 
The second part of the report deals with the analyses of CHAMP radio occultation data by 
the use of principal component analysis and factor analysis (the latter being implemented 
with four different calculation procedures). 
First, the methods were examined theoretically, afterwards the techniques were compared to 
each other, and finally they were applied to atmospheric fields in search of atmospheric 
patterns.  
Depending on the location of the data as well as on the applied mean correction the origins 
of temperature fluctuations were identified as the seasonal cycle, the QBO (Quasi Biennial 
Oscillation), SSWs (Sudden Stratospheric Warmings), and the polar vortex. 
 
Zum Inhalt: 
Diese Arbeit beschäftigt sich mit CHAMP Radiookkultations-Klimatologien, welche am 
Wegener Zentrum der Karl-Franzens-Universität Graz erstellt wurden. Im ersten Teil der 
Arbeit wurden die Daten mit Analysen bzw. Reanalysen (vom europäischen und U.S.-
amerikanischen Wetterdienst) sowie mit zwei verschiedenen Klimatologie-Modellen (genannt 
NRLMSISE-00 und CIRA86aQ_UoG) verglichen. 
Ein Schwerpunkt lag auf der Untersuchung des Einflusses der Lokalzeit, zu welcher die 
Radiookkultationsmessungen stattgefunden haben. Es stellte sich heraus, dass der Einfluss 
der Lokalzeit im Allgemeinen vernachlässigbar ist. 
Im zweiten Teil der Arbeit wurden die CHAMP Radiookkultationsdaten mit Hilfe der 
Hauptkomponentenanalyse und der Faktorenanalyse (letztere durch vier unterschiedliche 
Verfahren implementiert) untersucht.  
Nach einer theoretischen Betrachtung der Methoden wurden diese miteinander verglichen 
und dann für die Suche nach Mustern in atmosphärischen Feldern angewandt. 
Je nach der geographischen Lage der Datenfelder sowie der angebrachten 
Mittelwertkorrektur konnten als Ursachen für Temperaturschwankungen der Jahresgang, die 
QBO (Quasi Biennial Oscillation), SSWs (Sudden Stratospheric Warmings)  und der polare 
Vortex identifiziert werden. 
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