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Abstract. The hydrostatic mapping function, m(&), is a 
dimensionless factor which describes the elevation angle 
dependence of the hydrostatic path delay and relates the 
line of sight delay to the zenith delay. We have developed a 
simple “geometric” mapping function where the only free 

parameter (besides the elevation angle, E) is the 

climatological pressure scale height. The value of m(&) is 
given by the ratio of the straight-line ray path length within 
the first two scale heights above the surface’ and the 
“effective height” defined by these first two scale heights. 
We used simulated neutral delays at GPS frequencies 
derived from high resolution ECMWF (European Centre 
for Medium-Range Weather Forecasts) atmospheric 
analysis fields (T213L50, T213L60) at different latitudes to 
compare the new mapping function with others currently in 
use (we compare with the Niell and the Davis mapping 
function, respectively, most frequently encountered in 
literature). 

At elevations > 6” the geometric mapping function 
displays, without involving any meteorological data, 
comparable or better accuracy and precision than the other 
mapping functions. Q 200 1 Elsevier Science Ltd. All rights reserved 

1 Introduction 

For a plane parallel model of the Earth and the atmosphere 
(neglecting the curvature of the Earth and azimuthal 
variations within the atmosphere), the hydrostatic delay in 

an arbitrary slant direction, A& is given by the simple 
cosecant law 

1 
AL,h=- 

sin@) 
AL; = csc(ii)Ag , (1) 

where E is the elevation angle of the radio source and A&’ 

is the zenith hydrostatic delay. In general, A& can be 
written as 
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ALn = m(E,p) AL: . (2) 

The function m(&,p) depends on the elevation angle E 
and on the vector p, which is some parameterized 
representation of the refractivity in the atmosphere (Davis 
et al., 1985), usually called mapping function. By 
convention, the dependence on the vector p is commonly 
suppressed for the sake of simplicity of notation. Potential 
azimuthal dependence of the function is neglected in this 
formulation. 

2 The “geometric” mapping function 

We have developed a simple mapping function, where the 
only free parameter is the climatological pressure scale 

height. The value of m(&) is given by the ratio of the slant 
straight-line ray path length, S,, within an “effective 
height” of the atmosphere, Han, defined by the first two 
scale heights above the surface, and H,, itself 

s 
m(i) = 2. 

H atm 

Fig. 1. Schematic illustration of the “geometric” mapping function. R, is 
the radius of the Earth, E is the elevation angle of the GPS satellite, the 
“effective height” of the atmosphere, H ti,,,r is defined in the text. S,, is the . 
straight line my path wthm H,,,,,,, and Snrn is the corresponding ray path in a 
flat (plane-parallel) atmosphere. 

gki
e

gki
e

gki
e



154 U. Foelsche and G. Kirchengast: A New “Geometric” Mapping 

Equation (3) can alternatively be written as: 

m(E) = 
1 

Sflar ’ 
sin(a) - 

(4) 

s atm 

in order to directly express the deviation from the simple 
cosecant law. In a plane-parallel atmosphere (i.e., for 
sufficiently high elevation angles), the “geometric” 
mapping function degenerates to the cosecant law. S,, can 
be readily determined by evaluation of the triangle formed 

by R,, &+K,,,,,, and SO, (see Fig. l), where R, is the radius 
of the earth. In general, it is sufficient to use a mean 
climatological scale height value of 7.5 km, yielding 
Han = 15.0 km, as a globally applied constant. 

Introducing the dimensionless ratio 

r= Re 
4 + Ha, ’ 

the path length within the effective height, HaA, can be 
expressed as: 

b?l = oc? + Hlatnl )[cos(arcsin(? cos E)) - 7 sin E], (6) 

and Eq. (3), the “geometric” mapping function, can be 
written explicitly as 

m(E) = 

( 1 

A+1 [cos(arcsin(?cosE))-?sinE]. (7) 
H arm 

3 Davis and NieIl mapping function 

The new mapping function was compared with the Davis 
and the Niell mapping functions, which are often used and 
frequently encountered in literature. 

The Davis mapping function (Davis et al., 1985) is a 
modification of the continued fraction expansion introduced 
by Marini (1972) 

m(E) = 
1 

9 
sin E + 

a 

b 
(8) 

tanE+----- 
sin a + c 

where c is a constant (-0.0090) and a and b are functions of 
surface temperature To in [“Cl, surface total pressure p0 in 
[hPa], water vapor partial pressure at surface eo in [hRa], 
height of the troposphere hr in [km], and tropospheric 

temperature lapse rate p in [K/km], respectively, with 

a =0.001185[1+0.6071~10~4(pu -1000) 

- 0.1471.10-3eu + 0.3072.10P2(Tu - 20) 
(9) 

+0.1965~10-‘(~+6.5)-0.5645~10-2(hT -11.231)] 

and 

b =0.001144[1+0.1164~10~(p,,-1000) 

+ 0.2795.10-3eu + 0.3109.10-2(Tu - 20) 
(10) 

+ 0.3038.10-‘@+6.5)-0.1217.10-‘(hT -11.231)]. 

The Niell mapping function (Niell, 1996) adopts a 
similar form, but does not depend on meteorology data 

1++ 

m(E) = l+ik 
a (1.u 

sin E + I. 
sin&+; 

sinE+c 
At each latitude the coefficients a, b, and c are modeled 

as sinusoids in time, the phase is defined by doy = 28, 
corresponding to the winter extremum, e.g., 

4 Comparison - method 

High resolution (T213) analysis fields from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
for September 15, 1999, 12UT (L50) and January 15,2000, 
12UT (L60), respectively, were used to derive simulated 
slant hydrostatic delays. We performed high-precision 3D 
ray tracing of slant rays for elevation angles between 5” and 
15” (south-looking, 1” steps in the meridional plane) and 
geographic latitudes between 0”N and 8O”N (10’ spacing), 
at meridians O”E, 9O”W, and 180°W, respectively. The slant 
hydrostatic delay was calculated as 

hLh = lo_6 j- h& (S) ds + hLg = 
s 

* 

=$$--j&)ds+BLg. 
s 

(13) 

where Nhyd is the hydrostatic component of the refractivity 

N, A& is the “geometric delay” (the difference between the 
curved ray path S and the straight-line transmitter-receiver 
distance), ki = 77.60 K/hPa, R’ is the universal gas constant 
(83 14.51 Jkmol~iK’), p is the total air density, and md is the 
molar mass of dry air (28.9644 kg/kmol). A minor error is 
introduced as the bended ray path S is determined by the 
Ni,,,&ield and not by the complete N-field of the 
atmosphere. 
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In zenith direction (indicated by the superscript “0”) the 
geometric delay vanishes and the hydrostatic delay can be 
estimated given the total surface pressure p. 

(14) 

with g, = 9.7837 m/s’, and 

f (cp, H) = 1 - 0.00265 cos 2q - 0.000 2858 , (15) 

where cp is the geographic latitude and H is the station 
height in [km] (Saastamoinen, 1972; Elgered, 1993). 

Zenith hydrostatic delays for each synthetic ground 
station were modeled using Eq. (14) and mapped onto the 
different ray paths using the three mapping functions 
described above. The results were compared with the 
simulated slant hydrostatic delays obtained by the high- 
precision ray tracing. 

5 Comparison - results 

In a first step we compared modeled and simulated 
(“measured”) delays at high elevations to check the 
performance of the ray tracer and the match of Eq. (14) 
delays with realistically simulated delays through ECMWF 
analysis fields. Simulated slant hydrostatic delays at 89” 
elevation in opposite directions display a maximum 
difference of only 0.05 mm, confirming that ray tracer 
errors are negligible. 

The differences between simulated and modeled zenith 
hydrostatic delays show a very similar latitude-dependence 
for every meridian considered, with minimum values at mid 
latitudes (see Fig. (2) below). 

Modeled AL,” - Measured AL,’ [mm] 

4- 
- - lon = 0"E 

_._._._m ion = lfJl)9y 

-4..,. 
0 20 40 60 60 

Latitude [des] 

Fii. 2. Difference between modeled (Eq. (14)) and “measured” 
(realistically simulated) zenith hydrostatic delays for three meridionally 
oriented chains of synthetic receivers with 10” latitude spacing. 

Currently we are not able to explain this latitude- 
dependent difference. However, given that one would not 
expect >2 mm differences if hydrostatic equilibrium is valid 

in the ECMWF analysis fields used, this is an interesting 
result deserving further inquiry and explanation. 

Coefficients for the Niell mapping function were 
modeled as indicated above (see Niell, 1996, for details), 
coefficients for the Davis mapping function were computed 
with “true” meteorological values (a most favorable choice, 
as “true” ones never will be available in practice). 

The general behavior of the different mapping functions 
at 9O”W for September 15, 1999 can be examined in Fig. 
(3) above. A more quantitative representation was chosen 
for 0”E and 18O”W (Fig. (4) and Fig. (5), respectively). 

Fig. 3. Differences between modeled and “‘measured” slant hydrostatic 
delays for September 15, 1999, 12UT at 9O”W. Top panel: geometric 
(surface grid) and Davis mapping function (shaded), bottom panel: 
geometric (surface grid) and Niell mapping function (shaded). 

At elevations < 6” the geometric mapping functions 
shows a sudden decrease in performance but above this 
elevation, the results are comparable to or better than when 
using the other two mapping functions. 
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Fig. 4. Differences between modeled and “measured” slant hydrostatic Fig. 5. Differences between modeled and “measured” slant hydrostatic 
delays for September 15, 1999, 12UT at ODE using the geometric (top delays for September 15, 1999, 12UT, at 18O”W longitude using the 
panel), the Davis (middle panel), and the Niell mapping function (bottom geometric (top panel), the Davis (middle panel), and the Niell mapping 
panel), respectively. function (bottom panel), respectively. 
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In order to investigate seasonal variations we performed 
an equivalent analysis with ECMWF T213L60 fields for 
January 15,2000, 12 UT. An example for 18O”W is shown 
in Fig. (6). 
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Fig. 6. Differences between modeled and “measured” slant hydrostatic 
delays for January 15, 2000, IZUT, at 18O”W longitude using the 
geometric (top panel), the Davis (middle panel), and the Niell mapping 
function (bottom panel), respectively. 

For the effective height, Hatm, in the geometric mapping 
function we used exactly the same value (15.0 km) as in the 
September case. 

Besides a small domain at high latitudes and low 
elevations angles, the geometric mapping function again 
displays a good performance with slant hydrostatic delay 
differences of c 10 mm in the major part of the domain. 

To put the result into perspective, it should be noticed 
that the slant hydrostatic delay reaches typical values of 
-23 m at 5” elevation. 

6 Summary and conclusions 

We have presented a new simple mapping function based 
on geometrical considerations, which does not depend on 
meteorological data. The only free parameter is an 
“effective height” of the atmosphere defined by the first 
two pressure scale heights for which it is generally 
sufficient to use a global mean constant value. 

At least in a fairly realistic “simulated world” (ECh4WF 
weather analyses) the geometric mapping function displays 
above 6” elevation a comparable or better performance than 
other mapping functions currently in use. 

An enhancement in the use of the geometric mapping 
function by introducing seasonal and geographical 
variations of the free parameter will further improve the 
performance, but already a global mean value works very 
well as demonstrated. 

In a next step the new mapping function shall be tested 
with real data. 
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