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An inversion algorithm for nonlinear retrieval problems
extending Bayesian optimal estimation
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Abstract. This paper proposes effective extensions to the well-known Bayesian optimal
estimation, allowing one to cope not only with the ill-posedness but also with the intrinsic
nonlinearity of many geophysical inversion problems. We developed a physical-statistical retrieval
algorithm, which combines nonlinear optimal estimation with further optimization techniques.
Profiling of water vapor based on (synthetic) downlooking microwave sounder data as an example
for a typical geophysical nonlinear optimization problem is used to demonstrate the skills of the
algorithm. Starting with a nonlinear scalar penalty function derived from a Bayesian approach, the
sensible guess of a priori information, the selection of useful probability density functions, the
advantages of simulated annealing, and the utility of Monte Carlo methods are discussed. These
techniques together furnish capability for retrieving state vectors, which depend on the data in a
(highly) nonlinear manner. The sensible combination as implemented in the introduced hybrid
algorithm can provide solutions to problems that could not be tackled with standard (linearized)

inversion methods properly.

1. Introduction

Estimating parameters about the state of a system from
remotely measured data can be viewed as an inverse
problem. Geophysical inverse problems in many cases
cannot be solved directly because of their inherent ill-
posedness and nonlinearity. Physical retrievals seem
accurate when the physics of the problem can be
formulated clearly and the forward model is not too
nonlinear to find a global minimum of the penalty
function. Retrievals of this kind are intended to invert the
forward function describing the physics of the problem
by constructing a mapping from measurement space into
state space. On the contrary, statistical retrievals exploit
the capacity of statistical interrelations between state and
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measurement but suffer from the lack of physical
reasoning, constituting serious troubles in ill-posed
environments. Retrievals of this kind are not based on an
understanding of the physical principles linking state and
measurement, so knowledge of the nature of the
measurement process is not included in the retrieval
process.

We propose a combination of physical and statistical
tools to give a sensible hybrid algorithm, capable of
providing stable and accurate retrievals despite ill-
posedness and nonlinearity. After introducing the
Bayesian approach to inversion in our context, we
present a typical geophysical example of a nonlinear
inverse problem, namely water vapor profiling from
spaceborne downlooking sounder data. The algorithm
provides a solution to the problem of retrieving water
vapor profiles from vertical sounder measurements under
clear conditions when the temperature profile is known.

We then address the shortcomings of straightforward
solutions which exhibit the need for a more advanced
hybrid algorithm, which is introduced in detail in
sections 5 — 8. Finally, an exemplary result is discussed,
and conclusions are given.
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2. Bayesian Inversion

A remote measurement is one in which the quantity
measured is a function of the parameters actually
required. This function, in general termed the “forward
model” is assigned to predict the results of measurements
on the basis of the physical processes relevant to the
problem under investigation. Inverse theory refers to the
inversion of this function; thus inverse theory deals with
mathematical  techniques for retrieving  useful
information about the state of a physical system from
(remotely) measured data. In other words, inversion
addresses the reverse problem of the forward model:
Starting with data obtained by an experiment, it is
intended to estimate parameters of the physical state
based on the knowledge of the model. In this work we
implicitly assume to know the forward model correctly,
so we do not consider problems related to forward
modeling here.

The measurements are considered as a vector y =
(yl,yz,...,ym)T, the measurement vector, and the unknowns
(often referred to as the model parameters, which are to
be retrieved) are assembled into the state vector x =
(xl,xz,...,x,,)T, describing the state of the system. Random
error or “measurement noise” will be denoted by the
vector €.

The physics of the problem (or, at least, some model
of the physical processes) can be formally described as a
forward model f, determining for each state vector x a
corresponding measurement vector y. Therefore the
relationship between the measurement vector and the
state vector reads

y=f(x)+¢€. (1)

The Bayesian approach provides a framework to inspect
the inverse problem. Given a measurement together with
a description of its error statistics, a forward model
describing the relation between the measurement and the
unknown state, and any kind of a priori knowledge
available, it allows one to assign a probability density
function (pdf) to the possible states, consistent with the
measurement and the a priori information.

Bayes’ theorem reads, involving a pdf of the a priori
state, P(x), a pdf of the measurement, P(y), and a
conditional pdf of y given x, P(ylx), respectively,

P(xly) = P(y[x) P(x) / P(y) . 2)
The Bayesian approach yields a posterior conditional pdf
of x given y, P(xly), for which one wants to find a
maximum likelihood solution in order to obtain a

“retrieval formula.” In general, taking (-2 times) the
logarithm of Bayes’ theorem yields

-2In P(x|y) = -2In P(y|x) -2In P(x) +2In P(y) . 3)

Inserting a Gaussian-distributed measurement error
(denoting the corresponding covariance matrix as S;) but
keeping the pdf of the a priori state general and regarding
2P(y) as a constant ¢ gives

2In P(xly) = [y-f)1Se [y-fx)] 2In P(x) +c.  (4)

Equation (4) could formally be used to calculate the
mean a posteriori state by calculating the first moment of
the distribution. The integration over state space is a
difficult task and works only for some explicit forms of
P(x) analytically, but the maximum likelihood state as an
alternative estimator may be inferred. Taking the
derivative of (4) with respect to x and equating the result
to zero yields

dln P(x|y)/ox = o{-Y [y-£(x)]"S¢ ' [y-f(x)]}/ox
+0ln P(x)/0x=0. 5)

Denoting the derivative of the forward model f with
respect to the state x, of/dx; = Ky, and rewriting the
second term, (5) gives

dln P(xly)/dx = K'S¢ ! (y-£(x))+(1/P(x))(P(x)/dx) = 0 (6)

which is an implicit equation for the state in question,
X,..r- If we had some idea of the shape of the a priori state
distribution, for example, by evaluating large data sets of
observations, we could interpret the measurements more
accurately (compare the analytical examples of Jackson
[1985]). The implicit equation, equation (6), gives a
device by which to calculate the a posteriori pdf of the
state, given the measurement and the a priori distribution.
In fact, the main reason why (6) cannot be readily used
as a retrieval formula for a general a priori pdf is the lack
of a useful analytical description and of a convincing
assumption on the shape of P(x) in the case of nontrivial
and non-Gaussian pdfs.

When using Gaussian-shaped pdfs for measurement
and a priori error distributions, the theorem of Bayes can
be used to derive a scalar cost function xz, which enables
one to describe the inverse problem as an optimization
problem of finding the minimum of this scalar function
[cf. Rodgers, 1976],

Xz = (y-f(x))T Ss_l (Y'f(x)) + (x'xap)T Sup_l (X'xap) (7)

The assumption of Gaussian-shaped pdfs is a very
reasonable one for measurement errors (covariance
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matrix S;), as we nominally can reasonably consider
them as unbiased (nonsystematic) and random. For a
priori errors (covariance matrix S,,) it is valid only in
some particular problems, but many problems are rather
poorly approximated by a Gaussian a priori error
distribution; this may lead to estimated states that are
influenced by the a priori state in an inappropriate
manner [cf., e.g., Jackson, 1985].

Thus, when being confronted with the optimization
problem of (7), two difficulties have to be kept in mind:
On the one hand, too severe influences of the a priori
statistics on the retrieval should be avoided; on the other
hand, techniques to deal with the nonlinearites have to be
employed, since it is not possible, in general, to uniquely
develop a simple retrieval formula based on (7) in the
case of a nonlinear forward model f.

3. A Nonlinear Retrieval Problem:
Water Vapor Profiling

The term “nonlinearity” denotes that the forward
model mapping the state vector from state space into the
measurement space is a nonlinear function of the state.
The Bayesian approach by no means is restricted to the
linearity of the forward model, although some of the
widely used specific formulae of optimal estimation are
strictly valid only in the case of a linear forward model
[cf. Jackson, 1985].

Profiling constituents of the atmosphere using
spaceborne downlooking sounder data is a typical
geophysical example of a nonlinear optimization
problem [see, e.g., Wang et al., 1983; Ulaby et al,
1986]. We used the Special Sensor Microwave Humidity
Sounder (SSM/T-2) data together with total precipitable
water (TPW) data for the purpose of water vapor
profiling (brightness temperatures around the 183.31
GHz water vapor absorption line; see Littlejohn [1995]
for a description of the sensor). As described by Grody
[1993], the weighting functions of the sensor SSM/T-2
are considerably dependent on the actual state, implying
substantial difficulties for straightforward linearized
retrieval schemes.

For this water vapor profiling example the state is
decribed using eight relative humidity values (RH
values) at eight height levels, spaced 2 km in the vertical;
the humidities represent average values for the
corresponding 2-km layers. Using eight layers to
describe a water vapor profile is enough to roughly

determine the humidity structure while still being roughly
consistent with the sensor’s information content. The
measurement vector y comprises the brightness
temperatures of SSM/T-2 (five channels) and the total
precipitable water content. Consequently, the forward
operator K has to consist of the weighting functions
corresponding to the five channels and, in the last row,
an integration over the actual state values in order to
obtain the total precipitable water (TPW). For the
convenience of treating the elements of the measurement
vector as quantities with homogenous physical
dimensions (Kelvin) and because of its intrinsically
linear contribution to K, we skip the TPW (which
occupies the last row of the matrix K and the the sixth
element vector y) contribution in the nonlinearity
discussion closing this section.

When trying to establish a forward model operator in
matrix form, K, this matrix is considerably dependent on
the actual state x. Nevertheless, linearization about a
certain state is possible, and (1) can be written as

y=Kx)x+¢€. ®)

One way to investigate the nonlinearity of a problem is,
for example, to compare the singular vectors of the
forward model operator K(x) at different states x. Figure
1, which serves to indicate the nonlinearity of the
problem at hand, shows the singular vectors of the matrix
K at two different states x, one of which corresponds to
rather high, the other to rather low, relative humidity
(RH) values.

4. A Straightforward Solution:
Marquardt-Levenberg Iteration

Given the cost function (7), derived from a Bayesian
approach to inversion under the assumption of Gaussian
statistics for the errors involved, the minimum of this
function has to be found. This could (in principle) be
done by an iteration algorithm, whereby at each step of
iteration the complete forward model f(x) is replaced by
the linear term of its Taylor series expansion, a method
that is known as Newtonian iteration. However, if the
solution is sufficiently far from the state found for a
given iteration step, it is possible that the step taken
under the assumption of a linear approximation fails to
improve the solution and may even increase rather than
decrease the residual. Under these circumstances a so-
called steepest-descent approach is safe, though



48 RIEDER AND KIRCHENGAST: INVERSION ALGORITHM FOR NONLINEAR RETRIEVALS

a
1** Singular vector of K 2™ Singular vector of K
20 - : : 20 : . -
7.750 7.2826
15F % 5E
£ £
< 10} 2 10
& £
) ol
= =
5r 5
0 . . . 0 . . ‘
-2 -1 0 1 2 2 - 0 1 2
3™ Singular vector of K 4" Singular vector of K
20 . : : 20 . . :
3.0532 08145
15} ] 157
H £
5 10+ E 10
0] )
S o}
= =
5F 5
0 . s L 0 n L o

-2 -1 ] 1 2 -2 -1 0 1 2

1* Singular vector of K 2™ Singular vector of K
" : T 20 : T :
9.0602 7.9722
15 15F 1
F "
[ &
b1 10 b 101
& an
e o
S =
s} 5
0 L ' L 0 ' : '
-2 -1 0 1 2 -2 -1 0 1 2
3™ Singular vector of K 4™ Singular vector of K
20 T T T 20 T T T
35180 05171
15} - 15F
g g
& =}
b 10} b 101
8o &p
o o
= =
5 5[
0 L n s 0
-2 -1 0 1 2 -2 -1 [} 1 2

Figure 1. Singular vectors and corresponding singular values for the forward model operator K obtained
using a matrix K for a state with (a) high relative humidities (b) low relative humidities.

comparatively slow. This gradient method simply steps
off from the current trial value in the direction of the
negative gradient of y*.

The Marquardt-Levenberg algorithm [Marquardt,
1963] is a way of combining steepest-descent and
Newtonian iteration in a very favorable way. The
algorithm shares with the Newtonian iteration the ability
to close in on a converged value rapidly after the vicinity
of the converged value has been reached. The algorithm
shares with the gradient methods the ability to converge
from an initial guess which may be outside the region of
convergence of other methods because of the
nonlinearity. Thus the method combines the favorable
features of its predecessors while avoiding their most
serious limitations [Marquardt, 1963].

We employed the Marquardt-Levenberg iteration in
order to find the minimum of the cost function in a
mathematically rigorous way. The iteration procedure is
demonstrated using synthetic data cases, where we know
the true profile and want to estimate the retrieved profile
based on the corresponding (simulated) measurements.
The calculated measurements were perturbed by white
Gaussian noise compliant with the variance specified
within the measurement error covariance matrix S,.

Figure 2 shows the a priori profile, the true profile,
and the retrieved profile at each step of iteration (for
three iterations) together with the actual differences
between the true and the retrieved profile. Furthermore,
the value of the %> cost function is presented in each plot
of Figure 2. The true profiles are some typical examples
of U.S. Standard Atmosphere profiles [see Bilitza, 1992,
and references therein], and the a priori profiles are
humidity profiles from the TIGR/IASI (Thermodynamic
Initial Guess Retrieval / Infrared Atmospheric Sounding
Interferometer) data set [Chédin et al., 1985]. The a
priori profile was the best estimate after employing a
library method of scanning all stored profiles as to how
well they match with their corresponding (forward
modeled) measurement  vector, the  observed
measurement vector.

The optimization problem (7) can be viewed, in a
geometrical interpretation, as the search for the minimum
of a multidimensional hypersurface described by the cost
function y°. In the linear case this surface is of parabolic
shape, which clearly has one global minimum that can be
readily found applying standard methods. In the
nonlinear case this surface might be distorted, and thus it
is conceivable that there is more than one minimum, a
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situation we refer to as the existence of multiple (local)
minima. In such a case, where the nonlinearities are too
gross, severe problems may arise when trying to use a
straightforward optimal estimation solution like
Marquardt-Levenberg iteration.

In the case of (strong) dependence of the retrieved
state on the a priori estimate, as is true for ill-posed,

underdetermined inversion problems, the a priori
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estimate is still well reflected in the retrieval after
applying a physical algorithm. That is, many inversion
algorithms provide retrieved states that resemble closely
in shape the a priori states, which is an implication of the
second term in the cost function (7), which gives
considerable contributions to the cost function value the
farther the estimated state X, is from an a priori state
x,y. This clearly can be seen in Figure 2, where the a
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Figure 2. Example of the Marquardt-Levenberg iteration. For description, see text.
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priori state has been used to start the algorithm and the
retrieved states roughly show the same shape as the a
priori state.

Another drawback of a physical solution like the
Marquardt-Levenberg iteration is the need for calculating
the weighting function matrix K explicitly. In a flat
hypersurface y” the gradients (and thus the changes in K
from one iteration step to the next) are numerically very
small, so that a gradient (iteration) method would get
stalled at some point. The calculation of K, usually
implemented by a numerical perturbation of the forward
model, could induce severe inaccuracies in the course of
iteration, followed by errors in the solution.

Statistical algorithms, like simulated annealing and
Monte Carlo iterative a priori lightweighting described in
sections 7 and 8, need neither any theoretical input of
inversion theory nor a computation of the gradient of the
cost function [cf. Marchuk et al., 1980]. They are not an
inversion method in the sense of constructing a kind of
inverse mapping from measurement space into state
space at all but are essentially an iterative application of
the forward model with the goal of finding a minimum of
a scalar measure of the fit, while being blind to a
“physically preferrable direction” of minimization of the
cost function.

S. A Hybrid Algorithm

Even when employing a subtle minimization technique
like the Marquardt-Levenberg iteration outlined in
section 4, every inversion is faced with three difficulties
at the same time: First, in cases where the inherent
nonlinearities are too high, multiple minima may arise;
second, the ill-posedness of some problems may lead to
solutions too near to the a priori estimate; and third,
calculation of the weighting functions is numerically
unfavorable. As a promising and suitable solution to all
of these problems we introduce the concept of a hybrid
algorithm, which combines physical and statistical
retrieval tools in a sensible manner.

We established a hybrid algorithm with the following
subsequent properties: (1) Finding a proper a priori
estimate; this is best accomplished by a search in a
catalogue of representative states. (2) Assuring that one
goes in the correct direction when starting at some a
priori state; this is best accomplished by a “physical” part
in the algorithm. Utilization of the Marquardt-Levenberg
iteration well serves this need. (3) Further improving the

physical solution by a technique which furnishes
capability of escaping some local minima of the cost
function; this is best accomplished by temporarily
allowing increased cost values during an iteration.
Utilization of (multiple) simulated annealing well serves
this need. (4) Improving the solution by relaxing its
strong resemblance to the a priori profile; this is best
accomplished by modifying the cost function in terms of
changing the weight of the a priori estimate. Utilization
of a Monte Carlo method, which we term iterative a
priori light weighting, well serves this need.

The tools described above all together are organized
as follows into a hybrid algorithm. The algorithm starts
with the search for a suitable a priori state out of a
catalogue, containing independent information on the
system, i.e., comprising a set of well-founded
representative states. The best states, judged in terms of
their cost function value, are stored. Five different a
priori profiles were found to be enough to ensure that a
correctly retrieved state can be found, finally. The
following steps are done for each of the five different a
priori states individually.

After the a priori state has been found, the Marquardt-
Levenberg iteration algorithm begins. Once the
convergence criterion for this algorithm is met, a
simulated annealing technique (in a multiple version) is
applied, starting with the Marquardt-Levenberg solution.
When the simulated annealing algorithm ends, a
modified cost function, equation (9), discussed in section
8, is established, and an iterative a priori light weighting
Monte Carlo method begins. After examining the
neighboring states for an improved cost (judged by the
modified cost function value), a x> test for correct
convergence is done. Hereafter, the algorithm is run
starting with the next a priori state.

Finally, all (correctly converged) retrieved states of
the five alternative runs of the algorithm are compared,
and the best of all correct states, indicated by minimum
cost, is selected as the best estimate X,.,. While we have
discussed above the classical physical part of the
retrieval, the Marquardt-Levenberg iteration, the sections
6 — 9 describe the statistical part of the hybrid algorithm
in some detail.

6. Choice of an A Priori State

A careful choice of the a priori state is of major
importance for the power of the algorithm for two
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reasons. First, the a priori state serves as the initial state
of the Marquardt-Levenberg iteration; thus it is a single
selected state that determines the final state of the
iteration, insofar as local minima may occur that are
accepted by the iteration as solutions. Second, the a
priori state contributes a considerable fraction to the
value of the cost function itself; thus we have to expect
that every retrieval reflects more or less the overall
features of an a priori state, which can be investigated in
detail by a characterization of the retrieval method
following Rodgers [1990].

Regarding the examples of water vapor profiling
demonstrated in section 9, a subset of the TIGR data set,
the “TIGR/IASI data set” [Chédin et al., 1985], which
assembles profiles assigned to some geographical and
temporal conditions, was taken to provide the a priori
state X,,. Thus by use of a sample of representative
profiles for the specific case at hand we made use of
some measurement-independent a priori information that
is climatologically well founded.

We used a simple library search method to find an a
priori state which is statistically reasonable in terms of a
moderate cost value; that is, we searched the TIGR/IASI
catalogue of representative profiles for profiles which
give brightness temperatures that are close to the
measured brightness temperatures. The search through a
library of probable states is a useful tool to ensure that
some typical states are identified through typical features
in the measurement vector. In other words, a library
search is a possibility to exclude physically very
improbable states which could also closely correspond to
the measurement because of the ill-posedness of the
problem (within a certain range of uncertainty because of
the measurement error).

The disadvantage of this search method as a stand-
alone retrieval technique, as it is sometimes applied, is
the missing physical reasoning when relating the
measurement to a state. There is no need to explicitly
invert the forward model; thus the pure statistical nature
of such a library method could actually lead to
ambiguities in cases where the state is not clearly related
to the measurements (which is an inherent property of an
ill-posed, underdetermined retrieval problem). In the
case of a nonlinear problem this ambiguity is even more
substantial; local, spurious minima can occur, and
therefore completely different states may have the same
value of the cost function x>

Nevertheless, for our hybrid algorithm the lowest x*
values found by such a search correspond to reasonable
profiles suitable to be used as a priori states. It is sensible

to start with a small ensemble of a priori states. As noted
above we used the five ones that have the lowest cost
function value. This is a means to avoid spurious minima
and will appear successful in some cases (where such
false minimum is circumvented). For our profiling
problem we found in most cases the different starting
states yielding the same solution, a redundancy well
indicating the robustness of the "choice of an a priori
state" part of the hybrid algorithm.

7. Simulated Annealing

The method of simulated annealing is a tool to be
applied in cases of (highly) nonlinear optimization
problems, since it provides an explicit possibility to
escape from local minima. The simulated annealing
algorithm is based on a simulation of the process of
finding the ground state of a solid [Laarhoven, 1996];
annealing denotes a physical process by which, if carried
out sufficiently slowly, the ground state of a solid can be
found.

Given the current state, a small perturbation is
applied. The size of the perturbation is randomly chosen
to be compliant with the magnitude of the a priori
variances. If the perturbation results in a lower x* value,
the process is continued with the new state. Even if the x
value after the state transition is greater than the value
before the transition, the probability of acceptance of the
perturbed state is nonzero: This rule for accepting new
states establishes a possibility to escape from local
minima by temporarily also allowing, contrary to strict
minimization, for cost increases in the course of

iterations. )
We applied a multiple annealing technique by carrying

out the simulated annealing process more than one time
[cf., e.g., Liu et al., 1995]. Starting with a state, the
simulated annealing technique was applied, and the cost
function value of the retrieved state was stored. Next, a
“heat up” of the state was simulated by applying some
perturbation to the best estimate of all previous steps.
Subsequently, the annealing algorithm started again. The
best x> value of all these annealings was taken to be the
one assigning the best estimated state.

We tested the simulated annealing algorithm in order
to demonstrate its usefulness within a cost function
topology in state space which is rather flat. One example
of the performance of the simulated annealing algorithm
is given in Figure 3. Figure 3 demonstrates that the
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Figure 3. Escape from a spurious minimum. All plots show the a priori profile (rh,), the true profile (thyy),
and the difference between the a priori profile and the true profile. The solution after a certain step (steps 5

and 6) is the dash-dotted profile rh,;.

simulated annealing algorithm is capable of escaping
from a local minimum. The simulated annealing
algorithm takes a step leading to an increased cost value,
followed by a step of an improved fit, which significantly
surpasses the fit of the previous steps. Figure 3b shows
the case where a profile clearly is less well fitted to the
measurements after some iteration step (step 5), as the
cost function value indicates. Nevertheless, the transition
was accepted, and we end finally at a better state (after
step 6). This is exactly what is meant by “escape from a
local minimum.”

A transition like the one to the final state above could
take place as well when applying some other Monte
Carlo technique, like, e.g., the iterative improvement
technique described in section 8; clearly, there could
occur a random perturbation ready to change the profile
from the state at an earlier iteration step directly to the
state of iteration step 6. In practice, however, the
probability of such an occurrence is very low. It has been
our experience that the property of also accepting steps
of increasing cost function values very much increases
the probability of finding final states at lower costs (like
the one in Figure 3c) more efficiently.

8. Monte Carlo Iterative A Priori
Light Weighting

Trying to access the inversion problem using only the
Marquardt-Levenberg iteration was experienced to be
insufficient in most cases, as demonstrated in Figure 2.
On the one hand, the problem of running into a local
minimum has to be faced, which is avoided well by use
of a simulated annealing algorithm. On the other hand, a
solution which is not influenced too much by the a priori
estimates is desirable. A proper way to achieve this goal,
while at the same time solving the inverse problem, is the
attempt to minimize the cost function (defined by
equation (9)) by a random or quasi-random examination
of state space while at the same time performing a priori
light weighting, i.e., putting increasingly less weight on
the a priori information.

The Monto Carlo iteration works basically as follows:
Starting off at a given state, a sequence of trials is
generated. In each trial a state is selected from the
neighborhood of the current state. If this neighboring
state has lower cost, the current state is replaced by this
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neighbor, otherwise another neighbor is selected and
compared for its cost value. The algorithm terminates
when a state is obtained whose cost is not worse than that
of any of its neighbors. If this criterion is
computationally not effective, the algorithm terminates
when a preset number of iterations is exceeded. The run
time of such an iterative improvement is proportional to
the number of trials, and thus it is important to employ a
sensible definition of “neighborhood” and “state
transition.”

As the infinite members of state space are theoretically
all equal before calculating the cost, one needs to employ
some prior knowledge of the structure of the probability
density of state space. A neighborhood region in the form
of a (Gaussian-weighted) volume in n-dimensional state
space is practicable, where the previously achieved
retrieval state of the simulated annealing algorithm
serves as a starting state (center of region) and the
covariance matrix of the Marquard-Levenberg algorithm
is used to estimate the covariance of the Gaussian pdf.

In order to circumvent the problem of arriving at
states that resemble the a priori state rather closely
(compare Figure 2) despite involving different
measurements, a modified cost function is defined, in
terms of which the improvement of states is examined.
The modified cost function is a x* function that gives less
weight to the term that measures the difference between
the estimated state and the a priori state: We thus term
this method “a priori light weighting.” Mathematically,
this modified cost function reads

X2 = [y - f(xretr)]Tse'l [y - f(xretr)]

T -1
+ Cr (xretr - xap) Sap (xretr - xup) . (9)

The modified cost function value is a linear combination
of two quadratic measures of deviations; as we want to
fit the measurement in the first place, we set the here-
introduced regularization parameter ¢, < 1. This “a priori
light weighting factor” ¢, determines the relative
weighting between the measurement fit and the a priori
fit; decreasing it puts comparatively less weight on the a
priori state.

The factor ¢, in (9) is continuously decreased during
the Monte Carlo iteration process, which corresponds to
enhancing the variances of the a priori state covariance
matrix S,, by ¢, (at the same time, equation (9) is
renormalized to keep costs for different c, values
comparable). The iteration was started with a light
weighting factor close to unity, ¢, = 0.9, in order to
initially match (7) closely. Subsequently, the factor was

decreased to approach ¢, = 0.3 at the end of the iteration.
This minimal ¢, value, corresponding to an enhancement
of the variances in S,, by about a factor of 3, was fixed
empirically on the basis of retrieval tests for our profiling
problem (other problems may require a different minimal
¢, value). The search for the minimum was limited to a
maximum of 100 iterations for the sake of computational
efficiency. One hundred trials resulted in typically 8 to
10 improving steps, the actual number depending on the
fit or misfit of the initial profile. This was experienced to
be generally enough for a well-converged fit.

Figure 4 demonstrates the use of this Monte Carlo
iterative a priori state light weighting technique. The top
left plot shows the profile at the beginning of the
algorithm (x,); then, from top left to bottom right, the
plots show subsequently improved profiles (improved in
terms of the cost function) together with the
corresponding x> values of the cost function. The x?
values are multiplied by a factor of 100 for convenience.

9. The Hybrid Algorithm:
An Exemplary Result

The hybrid algorithm has been implemented in a way
that it is able to provide, in our example inversion
problem, humidity profiles from vertical soundings in a
numerically stable and computationally efficient manner.
It should work well also on different nonlinear inverse
problems because of its general setup allowing for any
nonlinear function. Employing physical as well as
statistical tools together to optimize a Bayesian cost
function in a hybrid manner overcomes standard methods
of inversion based on a single fixed retrieval tool only,
since the hybrid approach is capable of accessing
problems that were too nonlinear for standard optimal
estimation.

As an example, Figure 5 shows a typical retrieval
result as it occurred during the routine application of the
hybrid algorithm. The pair of plots illustrates a retrieval
of the water vapor relative humidity profile over sea,
where we used all five channels of the SSM/T-2 sensor
for the retrieval procedure.

We note that we tested the hybrid algorithm for water
vapor profiling based on SSM/T-2 sounder data also by a
statistical comparison of SSM/T-2 data with European
Centre for Medium-Range Weather Forecasts (ECMWF)
analyses [Rieder and Kirchengast, 1999]. This statistical
validation indicated fairly satisfying water vapor profile
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Figure 4. Example for the Monte Carlo iterative a priori light weighting technique. For description, see text.
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Figure 5. Example of a retrieval employing the hybrid algorithm. (a) The setup of the problem after the
library search (a priori profile selected), and (b) The finally achieved solution, the retrieved state (best

estimate). The corresponding cost value of the % cost function is denoted in each plot.

accuracy (~15% for retrievals over sea), confirming the
high utility of the algorithm.

10. Conclusions

An advanced physical-statistical retrieval algorithm
for nonlinear ill-posed inverse problems has been
introduced and implemented using the problem of water
vapor profiling based on passive downlooking sounder
data as an example. This hybrid algorithm involves a
Bayesian penalty function approach, including a sensible
guess of a priori information by library search and
iterative minimization by the Marquardt-Levenberg
method, which is complemented and enhanced by
statistical optimization techniques including simulated
annealing and Monte Carlo iterative a priori light
weighting. The latter methods are capable of coping with
nonlinearities and, at the same time, of significantly
reducing dependence on a priori information. The hybrid
algorithm also allows the retrieval of states in a robust
and efficient manner for cases where standard inversion
methods fail and appears to be capable of yielding
accurate results under such conditions.
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