GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 10, PAGES 1397-1400, MAY 15, 1999

Physical-statistical retrieval of water vapor profiles

using SSM/T-2 sounder data
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Abstract. The feasibility of retrieving water vapor profiles
from downlooking passive microwave sounder data is demon-
strated by usage of a retrieval algorithm which extends
Bayesian optimal estimation. Special Sensor Microwave T-2
(SSM/T-2) downlooking sounder data, consisting of
brightness temperature measurements sensitive to water
vapor, are used together with total water vapor content data
for computing tropospheric water vapor profiles. The
significant nonlinearity in the cost function, an implication of
the corresponding (nonlinear) radiative transfer equation,
necessitates several extensions of the well-known optimal
estimation inversion scheme. We supplemented the scheme
by simulated annealing and iterative a priori lightweighting
and obtained a powerful physical-statistical hybrid algorithm.
Retrievals based on SSM/T-2 data were compared to
atmospheric analyses of the European Centre for Medium-
Range Weather Forecasts (ECMWF). A statistical validation
of the retrieved profiles is presented. The comparisons
indicate an approximate accuracy of about 15 to 20 percent
for relative humidity.

1. Introduction

Straight-forward retrieval techniques fail to give reason-
able results in ill-posed nonlinear inverse problems like
retrieving water vapor profiles from downlooking sounder
data. Both difficulties, ill-posedness as well as nonlinearity,
can be overcome by a sensible combination of physical and
statistical retrieval methods.

After describing the sensor characteristics of the micro-
wave sounder SSM/T-2 we introduce such a combination,
finally resulting in a powerful hybrid inversion algorithm.
Retrieved water vapor profiles are validated by comparison
with ECMWF analyses. In contrary to standard inversion
methods, an improved accuracy and stability is achieved,
which is confirmed by the statistical results of the validation.

2. The Sensor SSM/T-2

The SSM/T-2 sensor is a five channel, total power micro-
wave radiometer with three channels placed symmetrically
about the 183.31 GHz water vapor resonance line and two
“window channels” (near 90 and 150 GHz, respectively).
Humidity sounding can be seen as the primary application of
the sensor, taking advantage of the low sensitivity of the
microwave region to clouds.

There are 28 observations (beam positions) per scan for
each of the five channels, with each observation having a
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spatial resolution of approximately 48 km at coincident
centers for all channels. After each scan period, four discrete
calibration measurements of a hot-load target, and cosmic
background radiation are monitored [Littlejohn, 1995).
Generally, the sensor is thought to work with a maximum
unbiased measurement error of 1.0 K brightness temperature.
We used this estimate for the variances forming the diagonal
elements of the measurement error covariance matrix, S,.

3. Water Vapor Profiling

As shown by various authors (e.g., Wang et al. [1983],
Ulaby et al. [1986]) the radiative transfer equation to be used
for describing the problem of constituents sounding (and thus,
water vapor profiling), provides a nonlinear mapping from
state space into measurement space. Using y as the vector of
measurements, € as the vector of measurement noise, X as the
state vector, and f as the forward model function, the physics
of radiative transfer reads

y=f(x)+€. 1)

The state vector has to comprise the profile, while the meas-
urement vector assembles the brightness temperatures of the
five different channels. Additionally, the total precipitable
water content (TPW) has been included into y as a sixth
measurement. The water vapor profiles x are described using
relative humidities at eight different height layers, spaced 2
km vertically (range: 2 to 16 km). Thus, the forward operation
f consists of the channel weighting functions and, for the
TPW measurement, of a spatial integration over the state.

When turning to establish a forward model operator in
matrix form, K, this matrix is considerably dependent on the
actual state X. Nevertheless, linearization about a certain state
is possible and Eq.(1) can be written as

y=Kx)x+e. )

Since we have to cope with a nonlinear mapping when aiming
at retrieving water vapor profiles from downlooking micro-~
wave sounder data, the weighting functions of the SSM/T-2
sensor at different states are not the same. When trying to find
a solution iteratively, the forward operator K changes its
features with each step of iteration, thus making it impossible
to apply a fixed inverse operator on the measurement vector y
to give a retrieval estimation of the state, X,.,,. Therefore, we
developed an advanced optimal estimation algorithm for
solving this nonlinear retrieval problem.

4. A Hybrid Optimal Estimation Algorithm

All five channels of SSM/T-2 have been used for the
purpose of water vapor profiling over sea, and only the first
three channels (around the 183.31 GHz water vapor absorp-
tion line) over land. The TPW has been included as
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complementary measurement; it can be measured well by
other sensors (e.g., Wang et al. [1992], Shibata [1994]). For
an initial validation of the profiling algorithm, the TPW has
been estimated from ECMWF analyses. A random
perturbation has been applied to the calculated TPW values
(the standard deviation of the perturbation set to 20 percent of
the values) in order to conservatively account for retrieval
errors of genuine satellite-derived TPW values.

The ill-posedness of the profiling problem implies that the
measurement vector y is not to be inverted directly into water
vapor profiles X.,,. We thus employ a Bayesian approach
using some a priori knowledge on the state, X,,. A x* cost
function of the form (cf. Rodgers [1976])

X = -f00) Sy - £0) + (X - %) Sy (X - Xap) . (3)
S, denoting the covariance matrix of the a priori profile, has
to be minimized, finally yielding X, Rather high nonline-
arities in the cost function, Eq.(3), and the intention to
retrieve information on the state from the measurements
rather than from the a priori, led us to.combine advanced tools
to cope with nonlinearity as well as to stress the information
brought in by the measurement. In the following sections, the
principal characteristics of the hybrid algorithm are described.

4.1 Choice of an A Priori Profile

A subset of the TIGR data set (see, e.g., Chédin et al.
[1985], and references therein), the TIGR/IASI (Thermo-
dynamic Initial Guess Retrieval / Infrared Atmospheric
Sounding Interferometer) data set, has been used to obtain a
proper a priori state for the retrieval problem. The data set
contains 43 representative atmospheric states (comprising
pressure, temperature, and humidity), which are assigned to
some latitudinal and temporal conditions, so the
climatological reasonableness is met while an independent
piece of information is brought in.

A “library search” has been employed: That profile is taken
from the catalogue of representative profiles which gives
forward calculated brightness temperatures that are closest to
the measured brightness temperatures. This search for a
minimum-cost a priori assures that the a priori is statistically
reasonable in terms of the cost function value, Eq.(3). It is a
relevant prerequisite to be near a “reasonable” state, a state,
which clearly is assumed to happen in the atmosphere and
which is not too far from meeting the measurement. In
practice we ran the full algorithm for five different a prioris to
finally ensure a best physical estimate, X

4.2 The Marquardt-Levenberg Iteration Algorithm

Starting with an a priori selected as outlined above, we
employed a Marquardt-Levenberg iteration (Marquardt
[1963]) to find the minimum of the Bayesian cost function,
Eq.(3), in a mathematically rigorous and efficient way. In case
of (strong) dependence of the retrieved state on the a priori
due to the ill-posedness of the downlooking sounding
problem, the a priori is, however, still well reflected in the
retrieved state after applying a simple physical retrieval, most
physical retrievals are thus confined to rather close regions
around the a priori.

Another drawback of a gradient method like the
Marquardt-Levenberg iteration is the necessity of calculating
the weighting functions explicitly. As this usually is imple-
mented as a numerical perturbation of the forward model,
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numerical residual errors may induce a severe deterioration of
the retrieval accuracy near the minimum, where the cost
function surface is very flat. Both statistical tools described
below are not vulnerable to this particular problem.

4.3 Simulated Annealing

In order to further improve the treatment of the inherent
nonlinearity of the problem, we used a simulated annealing
technique (cf., e.g., Laarhoven [1996]). The method of simu-
lated annealing is a random (Monte Carlo like) statistical
search algorithm for a minimum with capability to escape
from local minima. In our context, the cost function was not
highly distorted, but we had to face the problem of a fairly flat
cost function which possesses several local minima, all at
about the same cost function value. The multiple annealing
algorithm (e.g., Liu et al. [1995]) furnishes capability of
examining large regions of state space without being
restricted to accepting only clear cost value improvements.

Briefly outlined, the simulated annealing works as follows
(see Rieder [1998] for details). Starting with the state
provided by the Marquardt-Levenberg iteration, the annealing
algorithm is run iteratively. At each step, we applied a random
perturbation to the best state estimate of all previous steps.
The best * value after all annealing steps applied was taken
to be the one associated with the best estimated state.

4.4 Iterative A Priori Lightweighting

In order to effectively mitigate the problem of arriving at
states that resemble the a priori state too much, we used a
further improvement by employing a Monte Carlo search
algorithm (random search through state space) that subse-
quently reduces the influence of the a priori profile. This is
achieved by iteratively giving less stress (termed
lightweighting) to the a priori term in Eq.(3), through
increasing the a priori covariance matrix S,, to approach 3
times its values at the end of the iteration.

The new states are computed by a random perturbation of
the best state so far, the perturbation being applied within a
neighborhood region of n-dimensional (n being the number of
state elements that form the state vector) Gaussian-weighted
shape, centered around the actual state. The new state is
accepted if the cost function value of the modified cost
function is less than the one of its predecessor.

5. Validation With ECMWF Data

We used an ECMWF (European Centre for Medium-Range
Weather Forecasts) data set for the purpose of having a global
reference state (“ground truth”) of the atmospheric parameters
temperature (used as auxiliary input) and humidity. The
ECMWF “atmospheric analyses” (joint estimates based on
both measurements and weather forecast model results,
obtained by an assimilation system) contain the relevant
atmospheric parameters as quantities on a dense spatial and
temporal grid. The analyses used here are organized on a grid
of 31 height levels (at “model resolution”), a latitudinal and
longitudinal grid of 1 x 1 deg, and are established every 6
hours (cf., e.g., Technical Attachment of ECMWF [1994]).

The suitability of using ECMWEF data for the purpose of a
validation of SSM/T-2 retrievals has been checked by com-
puting the ECMWF-derived brightness temperatures in the
forward direction and comparing these brightness tempera-
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Figure 1. Retrievals over sea; dry atmospheric conditions (left), and moist atmospheric conditions (right), respectively. At
altitudes above 12 km the profile derives mostly from the a priori profile.

tures to the measured SSM/T-2 quantities. From this we
concluded that a routine global retrieval needed further input
above ice and above land due to the unknown parameters of
the surface radiation; thus, the window channels were
excluded in those regions. Under clear sky conditions, the
calculated brightness temperatures met the SSM/T-2 meas-
urements accurately (to ~ 1-2 K). A proper knowledge of
cloud and precipitation parameters were advantageous and
could be provided by other sensors, but for the purpose of
demonstrating some examples we estimated the necessary
surface and cloud/precipitation parameters by empirical
formulae [Muller et al., 1994]. Since SSM/T-2 data are not
included in the assimilation algorithm of ECMWF, the
analyses are independent of the measurements and useful for
validation.

5.1 Comparison of Individual Humidity Profiles

Two cases of individual retrievals are presented, demon-
strating the feasibility of retrievals and revealing some
properties of the hybrid algorithm used (Fig. 1). Case one is a
retrieval under rather dry atmospheric conditions, case two is
a retrieval under moist conditions. The particular locations are
denoted in the middle of the panels, “lat” denoting the latitude
and “lon” the longitude. All retrievals have been performed
with samples of an (arbitrarily) selected SSM/T-2 orbit arc
segment of Oct 20, 1995.

The panels display the SSM/T-2 retrieved profile, the
corresponding ECMWF profile, and the difference of both.
Furthermore, error bars indicate the standard deviations of the
retrieval at the height levels used. The standard deviations of
the retrieval have been calculated by taking the square root of
the diagonal elements of the retrieval error covariance matrix,
Srer = (K'Sg ' K +8,,7) ™.

5.2 Statistical Validation With ECMWF Data

When comparing retrievals with an ECMWF analysis, both
retrieved profile and ECMWF profile errors are relevant. The
error of the ECMWF humidity profiles can be assumed to be
about 15 % relative humidity. We estimated the statistical
error of the difference profiles, Xre,r — XEcmwr, by the standard
deviation of the sample of difference profiles used.
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Figure 2. Statistical mean (dashed profile), standard devia-
tion of mean (heavy short bars), and standard deviation (light
longer bars) for retrievals-minus-analysis over sea (i.e., for
SSM/T-2-retrieved minus ECMWF humidity profiles).
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When performing retrievals over sea routinely, we used all
five channels of SSM/T-2, whereby we weighted the two
window channels to be less informative than the three atmos-
pheric channels (the corresponding standard deviations in the
measurement covariance matrix S, were set to 1.5 K, the
standard deviations of the atmospheric channels being 1.0 K).

Figure 2 shows, as an exemplary validation result, a statis-
tical error estimate for retrievals over sea. For this estimate we
used a sample of 63 retrievals available along a sea track of
the selected Oct 20 orbit arc (range: 11 to —64 deg latitude).

According to Fig. 2, the retrievals are fairly accurate at
altitudes up to about 8 km. Besides the favorable contribution
functions at lower altitudes [cf. Rieder, 1998], the TPW input
stabilizes retrievals most at the moist lower height layers. This
is also the reason why the error bars at lower altitudes are
smaller, indicating more accuracy. The results show
significant biases at some higher altitudes, though, perhaps
due to weak estimates of cloud and precipitation parameters.
Furthermore, at higher altitudes the measurements are not
capable of supplying much information to the retrieval,
causing larger standard deviations at these levels.

6. Summary and Conclusions

Spaceborne downlooking passive microwave radiometers
are capable of providing not only column-integrated but also
reliable height-resolved information on the atmosphere. The
183.31 GHz water vapor absorption line has been shown to
furnish capability of providing information on the height
distribution of relative humidity. A comparison to ECMWF
humidity data revealed an accuracy of = 15% for retrievals
over sea.

To establish such retrievals, advanced techniques to cope
with the inherent nonlinearities of the profiling problem have
to be applied and a hybrid algorithm was developed to this
end. Initialized with an a priori state obtained by a library
search, a physical retrieval part with the efficient Marquardt-
Levenberg algorithm combined with a statistical retrieval part
with elaborated Monte Carlo methods, simulated annealing
and a priori lightweighting, provided stable solutions.

Nevertheless, the task of routinely performing water vapor
profile retrievals all over the globe based on spaceborne
downlooking passive microwave measurements has to be
tackled by a multi-sensor approach. This is needed in order to
estimate parameters, which influence the radiative transfer but
which cannot be probed around the 183.31 GHz line
appropriately (and only partially by additional lines near 90
and 150 GHz). Most notably this includes ice/land surface
effects and cloud/precipitation effects.
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