

OPAC-1 Workshop Graz, Sept 17, 2002

Sensitivity of GNSS Occultation Profiles to Horizontal Variability in the Troposphere

Ulrich Foelsche and Gottfried Kirchengast

Institute for Geophysics, Astrophysics, and Meteorology University of Graz (IGAM/UG), Austria

(ulrich.foelsche@uni-graz.at and gottfried.kirchengast@uni-graz.at)

Sensitivity of GNSS Occultation Profiles to Horizontal Variability in the Troposphere Outline

• Experimental Setup

- Overview on Setup and Simulations
- Azimuth Sectors and Event Distribution
- Model Atmosphere
- Sensitivity to Horizontal Variability Errors
 - Temperature Errors as Example
 - Parameter Inter-Comparison
 - Relevance of Tangent Point Trajectory
- Sensitivity to the Angle-of-Incidence
 - Temperature Errors as Example
 - Parameter Inter-Comparison
 - Selected Dry Temperature Profiles

• Summary, Conclusions and Outlook

Experimental Setup

Overview on Setup and Simulations

• Geometry

- Full nominal constellation of 24 GPS satellites
- GRAS receiver onboard METOP assumed (altitude ~ 830 km)
- Three azimuth sectors ($\pm 10^{\circ}, \pm 20^{\circ}$ to $\pm 30^{\circ}, \pm 40^{\circ}$ to $\pm 50^{\circ}$)
- Event Distribution
 - ~Uniform distribution over latitude in each azimuth sector
 - ~Equal density over oceans and over land in each sector
 - ~100 events in each azimuth sector 306 in total (during 24h)

Generation of simulated data

- Ray-tracing through high-resolution ECMWF analysis fields at 10 Hz
- Realistic errors superimposed (GRAS-type standard errors)
- Geometric optics retrieval with statistical optimization
- "Dry air" retrieval
- Reference profiles
 - "True" ECMWF vertical profiles at mean tangent point (~12–15 km height)
 - "True" profiles along the actual 3D tangent point trajectory

Experimental Setup Azimuth Sectors and Event Selection

Azimuth Sectors

- Sector 1: $0^{\circ} < |Azimuth| < 10^{\circ}$
- Sector 2: $20^{\circ} < |Azimuth| < 30^{\circ}$
- Sector 3: $40^{\circ} < |Azimuth| < 50^{\circ}$

Distribution of Occultation Events

Sample of ~100 events in each sector, 306 in total

Experimental Setup Model Atmosphere

ECMWF analysis field: Temperature slice

- T511L60 field, September 15, 2001, 12 UT
- 1024 lon x 512 lat points
- Height range shown: 0 50 km

ECMWF analysis field: Specific Humidity

- T511L60 field, September 15, 2001, 12 UT
- 1024 lon x 512 lat points
- Height range shown: 0 10 km

Sensitivity to Horizontal Variability (1) Temperature Errors as Example

Temperature Error Statistics

- Ensemble of all 306 occultation events
- Atmosphere with horizontal variability (vertical profile at mean tangent point as reference)
- Atmosphere with spherical symmetry applied
- Atmosphere with horizontal variability (profile along 3D tangent point trajectory as reference)

Sensitivity to Horizontal Variability (2) Parameter Inter-Comparison

Parameter Inter-Comparison

- Ensemble of all 306 occultation events
- Atmosphere with horizontal variability (vertical profile at mean tangent point as reference)
- Relative Refractivity errors
- Absolute Geopotential Height and Temperature errors

Sensitivity to Horizontal Variability (3) Relevance of Tangent Point Trajectory

Geopotential Height Error Statistics

- Ensemble of all 306 occultation events
- Atmosphere with horizontal variability (vertical profile at mean tangent point as reference)

Geopotential Height Error Statistics

- Ensemble of all 306 occultation events
- Difference vertical profile at mean tangent point-minus-along 3D tangent point trajectory

Sensitivity to the Angle-of-Incidence (1) Temperature Errors as Example

Temperature Error Statistics

- Sector 1: $0^{\circ} < |Az| < 10^{\circ}$ 105 events
- Sector 2: $20^{\circ} < |Az| < 30^{\circ}$ 114 events
- **Sector 3**: 40° < |Az| < 50° **87** events

201

15

n

0

40 80 120

No. Events

-3

-2

- 1

Height [km]

Events

Refractivity

Sensitivity to the Angle-of-Incidence (2) **Parameter Inter-Comparison (Sector 2)**

Parameter Inter-Comparison

- Ensemble of 114 occultation events
- -Sector 2 $(20^\circ < |\text{Azimuth}| < 30^\circ)$
- Atmosphere with **horizontal variability** (vertical profile at mean tangent point as reference)
- Relative Refractivity errors
- Absolute Geopotential Height and Temperature errors

Sensitivity to the Angle-of-Incidence (3) **Dry Temperature Profiles (horiz. var.)**

300

Sensitivity of GNSS Radio Occultation Data to Horizontal Variability in the Troposphere

Summary, Conclusions, and Outlook

• Sensitivity to horizontal variability

- Biases and standard deviations in a realistic atmosphere are considerably larger than under spherical symmetry, especially below ~7 km
- Temperature profiles above ~7 km are essentially bias-free in both cases
- A significant part of the total error below ~7 km can be attributed to adopting reference profiles vertically at mean tangent point

• Sensitivity to angle-of-incidence

- Below ~7 km most errors increase with increasing angle of incidence
- Temperature biases above ~7 km, however, do not increase with increasing angle of incidence, which is favorable for the climate utility of the data
- Outlook
- Investigation of advantage to exploit data along 3D tangent point trajectories
- Improved understanding and (hopefully) mitigation of residual tropospheric biases