

A Fast Channel Selection Method and Joint Humidity and Temperature Retrieval from IASI Measurements

Marc Schwärz and Gottfried Kirchengast (marc.schwaerz@uni-graz.at, gottfried.kirchengast@uni-graz.at) © IGAM/UG 2002 Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

The Infrared Atmospheric Sounding Interferometer AS

- IASI¹ is part of the core payload of the METOP series of polar orbiting meteorological satellites (1st launch scheduled 2005).
- Spectral Range: 645 2760 cm⁻¹ (15.5 3.6 µm), sampling at 0.25 cm⁻¹.
- Temperature Range: 180 315 K with radiometric noise (NEΔT @ 280 K) ~0.2 to 0.5 K; radiometric calibration < 1 K.
- Geometric Performance: swath width $\sim \pm 1100$ km, IFOV (nadir): $\sim 48 \times 48$ km², 30 Earth views per scan, total scan period: ~8 seconds (see also Figure 1).

8461 channels, water vapor absorption 1250 - 2000 cm⁻¹, CO₂ bands near 645 cm⁻¹ and 2325 cm⁻¹, furthermore, absorption by O₃, CH₄, N₂O, CO, and SO₂.

The Fast Radiative Transfer Model RTIAS

The fast transmittance model RTIASI² was used to simulate IASI measurements (brightness temperatures T_B) and to calculate temperature, T, and specific humidity, q, Jacobians, $\partial \mathbf{T}_{\rm B}/\partial \mathbf{T}$, and $\partial \mathbf{T}_{\rm B}/\partial \ln \mathbf{q}$, respectively. RTIASI simulates the measurements at 43 fixed pressure levels from 0.1 mbar to surface (1013.25 mbar) over the IASI spectral range. With convoluted line-by-line (LBL) transmittances and selected predictors, the model computes regression coefficients to derive level-to-space transmittances for any input profile. Based on these transmittances RTIASI finally estimates the brightness temperatures (or the radiances, alternatively) viewed by the IASI sensor.

(1)

(2)

(4)

c) A Priori Field minus True Field (a priori field from CIRA86aQ model³).

Channel Reduction and Retrieval Algorithm

Channel Reduction:

Exclusion of the channels > 2500 cm⁻¹ and of those of "foreign" bands (O_3 , CH₄,CO), which results in ~5180 channels.

Channel Reduction by Information Content (IC) Theory⁵:

The IC content *H* is calculated for each channel according to

 $H = \frac{1}{2} \log_2 |\mathbf{S}_{ab} \mathbf{S}^{-1}|,$

with \mathbf{S}_{ap} and \mathbf{S} according to Eq. (4).

Channel Reduction by the Maximum Sensitivity (MS) Approach⁶:

As a fast approximation to the IC as defined by Eq. (1) we take those channels for which the elements *H* of the matrix

 $H = S_{c}^{-1/2} K$

are largest.

Retrieval Algorithm:

For retrieving the humidity, q, and temperature, T, profiles, we use the iterative (iteration index i) nonlinear optimal estimation algorithm⁴

 $\mathbf{x}_{i+1} = \mathbf{x}_{ap} + \mathbf{S}_i \mathbf{K}_i^{\mathsf{T}} \mathbf{S}_{\varepsilon}^{-1} [(\mathbf{y} - \mathbf{y}_i) + \mathbf{K}_i (\mathbf{x}_i - \mathbf{x}_{ap})],$

where $\mathbf{x}_{i/i+1}$ and \mathbf{x}_{ap} are the iterated and the *a priori* state vector (ln**q** and **T** combined in one state **x**), \mathbf{S}_{e} is the measurement error covariance matrix, \mathbf{K}_{i} is the Jacobian matrix, y and y_i are the measurements corresponding to the true and iterated state vector (y perturbed by noise consistent with S_{ϵ}), and S_{i} is the retrieval error covariance matrix given by

$$\mathbf{S}_{i} = (\mathbf{S}_{ab}^{-1} + \mathbf{K}^{T} \mathbf{S}_{c}^{-1} \mathbf{K})^{T}$$

with \mathbf{S}_{ap} as the *a priori* error covariance matrix.

For **q**, the diagonal elements of S_{ab} increase from 20% (surface) to 50% (at 400 hPa) and are then constant at 50%, the non-diagonal elements follow exponential drop-off correlation with corr.length 3 km (T errors are modeled as by Weisz, 2001⁶). The diagonal elements of S_{ϵ} follow the "IASI level 1c noise table" (P. Schluessel/EUMETSAT, priv. communications, 2000) and error correlation between three neighbouring channels is accounted for.

Results, Conclusions, and Perspectives

We introduced an effective channel selection method, which we used to reduce the total number of IASI channels from more than 8000 to about 2% (~170). The method allows to select channels with highest information content on the treated atmospheric parameters and we observe that the best achievable retrieval accuracy is obtained already with <200 channels. The retrieval was implemented as a joint humidity and temperature retrieval based on optimal estimation methodology. We focus here on showing humidity retrieval performance under realistic conditions (for IASI temperature retrieval results see, e.g., Weisz, 2001⁶). Figure 2 shows the basic data for an exemplary humidity field (crosssection through "Hurricane Floyd"). Comparing Figures 3a-b and 4a-b indicates that using

fewer channel with high information content still yields high retrieval accuracy (compared to using many times more channels). Figure 5 shows that, though the CIRA86aQ model³ is insensitive to the special meteorological event (Hurricane Floyd), the results with this a priori are not worse in the lower troposphere (>500 hPa), even better near surface, than those with the 6-hr forecast (24-hr forecasts used in future may perform better). Generally the humidity retrieval is accurate to within 10% in the majority of the domain. A next step is focusing on retrieval of Sea Surface Temperature (SST) and Upper Troposphere Humidity (UTH) profiles for large-scale climatological application. Based on the present encouraging results, SST and UTH data of very high quality are expected.

Camy-Peyret, C., and J.R. Eyre (eds.), IASI Science Plan: A Report from the IASI Sounding Science Working Group, ISSWG Report, publ. by EUMETSAT, Darmstadt, Germany, 1998. ² Matricardi, M., and R. Saunders, A Fast Radiative Transfer Model for Simulation of Infrared Atmospheric Sounding Interferometer Radiances, J. Appl. Optics, 38, 5679-5691, 1999. ³ Kirchengast, G., J. Hafner, and W. Poetzi, The CIRA86aQ_UoG Model, Tech. Rep. ESA/ESTEC-8/1999, 18p., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Austria, 1999. ⁴ Rodgers, C. D., *Inverse Methods for Atmospheric Sounding: Theory and Practice,* p.65ff, World Scientific Publ., Singapore, 2000. ⁵ Rodgers, C. D., Information Content and Optimization of High Spectral Resolution Measurements, SPIE, 2830, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II (P. B. Hay and J. Wang, eds.), 136-147, 1996. ⁶ Weisz, E., Temperature Profiling by the IASI: Advanced Retrieval Algorithm and Performance Analysis, Wissenschaftl. Ber. No. 11, 174p., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Austria, 2001.