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Abstract 

Although RCMs have already proven their capability to simulate regional climate and its 

variability, they still feature systematic errors compared to observations. Besides their steady 

enhancement, empirical-statistical post-processing, based on the concept of model output 

statistics (MOS), provides a ready opportunity to mitigate RCM error characteristics and to 

further downscale climate model data to the point-scale.  

In the course of this PhD work, seven empirical-statistical downscaling and error correction 

methods (DECMs) are inter-compared for their applicability to and error correction potential 

for daily precipitation, temperature, and derived extreme indices from RCMs in Europe. 

Furthermore, error corrected climate scenarios for the respective parameters are generated for 

Europe and the impact of DECMs on the climate change signal (CCS) is investigated.  

Overall, the findings of this PhD work strongly emphasize the combination of RCMs and 

DECMs to provide suitable climate data for climate impact assessments and decision making. 

DECMs drastically reduced the error characteristics of RCMs regarding mean, variability, and 

extremes. Particularly, Quantile Mapping (QM) resulted in outstanding error correction 

potential and can be considered as highly recommendable due to its simplicity and flexibility.  

In application to future climate scenarios QM only moderately modified the CCSs of mean, 

minimum, maximum temperature, and precipitation amount. In contrast, QM strongly changed 

the CCSs of non-linearly derived indices of extremes such as threshold indices in some cases. 

However, these modifications were considered as reasonable because the respective 

uncorrected parameters featured magnitude-dependent error characteristics and trends in the 

future scenarios. 

Besides, this PhD work also defined useful climate data from the point of view of the 

climate impact community and decision makers in order to promote collaborations with the 

climate modeling community. 
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Kurzbeschreibung  

Obwohl regionale Klimamodelle (RCMs) regionale Klimabedingungen und deren Variabilität 

recht zufriedenstellend abbilden können, weisen sie nach wie vor systematische Fehler im 

Vergleich zu Beobachtungen auf. Neben ihrer stetigen Verbesserung bietet die empirisch-

statistische Nachbearbeitung, basierend auf dem Konzept von Model Output Statistics (MOS), 

eine sofort einsetzbare Möglichkeit, Modellfehler zu verringern und Klimasimulationen auf 

der Punktskala anzubieten. 

Im Zuge dieser Doktorarbeit wurden sieben empirisch-statistische Downscaling and Error 

Correction Methods (DECMs) auf ihr Fehlerkorrekturpotenzial für Tagesniederschläge, 

Tagestemperaturen sowie für abgeleitete Extremindizes von RCMs in Europa untersucht. 

Weiters wurden fehlerkorrigierte Klimaszenarien für Europa generiert und die Auswirkungen 

von DECMs auf das Klimaänderungssignal analysiert. 

Zusammenfassend stellte sich heraus, dass DECMs großes Potenzial zeigten, um die Güte 

von RCM Simulationen, bezogen auf ihre Fehler im Mittelwert, in der Variabilität sowie bei 

Extremen stark zu verbessern. Insbesondere Quantile Mapping (QM) überzeugte dank 

herausragendem Fehlerkorrekturpotenzial, Einfachheit und Flexibilität. 

Angewendet auf zukünftige Klimasimulationsergebnisse veränderte QM die 

Klimaänderungssignale von Tagestemperaturen sowie Tagesniederschlag nur geringfügig. 

Allerdings veränderte QM die Klimaänderungssignale abgeleiteter Extremindizes zum Teil 

beträchtlich. Diese Änderungen waren jedoch durch größenabhängige Fehler in den 

unkorrigierten Daten sowie zugrundeliegende Trends in den unkorrigierten Zukunftsszenarien 

erklärbar. 

Zusätzlich beschäftigte sich diese Doktorarbeit mit der Definition von sinnvollen 

Klimadaten für die Klimafolgenforschung und für Entscheidungsträger, um die 

Zusammenarbeit zwischen Klimadatenproduzenten und -nutzern zu verbessern und dadurch 

mehr integrative Klimafolgenstudien zu ermöglichen. 
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1 Motivation and introduction  

The provision of fine-scale spatial and temporal climate data for the climate impact research 

community and decision makers is one of the highly topical research and working fields in 

climate science. For this purpose, regional climate model (RCM) simulations are usually 

performed as they represent the state-of-the-art methodologies to provide physically consistent 

regional and daily climate data. RCM simulations have become broadly available for Europe 

via projects such as PRUDENCE (Christensen and Christensen, 2007) and ENSEMBLES 

(van der Linden and Mitchell, 2009) and will be further complemented in the CORDEX 

project (http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html). However, RCMs are still 

affected by partly significant error characteristics. Applied directly to, e.g., climate change 

impact modeling, such model errors would lead to subsequent errors in climate change impact 

assessments. Empirical-statistical downscaling and error correction methods (DECMs) provide 

a ready opportunity to mitigate such RCM errors.  

Build on the experiences from my Master Thesis "Downscaling of Temperature and 

Precipitation in the Alpine Region Hohe Tauern", this PhD thesis is intended to  

 

a) extend the knowledge of available DECMs for RCM post-processing  

b) investigate the applicability of DECMs for downscaling and error correcting daily 

temperature and daily precipitation amount from RCM simulations 

c) investigate the applicability of DECMs to derived extremes  

d) provide temporal and spatial fine-scale and error corrected climate scenarios until 2050 for 

the climate impact community. 

 

Besides establishing methodological knowledge in subitems a to c, subitem d also 

envisages the provision of useful data for further climate change impact assessments and thus 

deals with the interface between data producers and users.  

The PhD thesis is structured as follows. Chapter 2 briefly introduces the climate system and 

climate models. Chapter 3 describes modeling techniques that enable to simulate regional and 

local climate (downscaling techniques). Chapter 4 then proposes a combination of 
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downscaling techniques to provide as accurate as possible climate data for the climate change 

impact community and inter-compares various DECMs for daily precipitation and derived 

moderate extremes in the Alpine region. Chapter 5 focuses on the applicability of the best 

performing DECM to further meteorological parameters (mean, minimum, and maximum 

temperature) in Europe, investigates the issue of error correction of extremes in more detail 

and examines the impact of error correction on the climate change signal. Chapter 6 defines 

general data needs of the climate change impact community before Chapter 7 summarizes and 

discusses the key findings of this PhD thesis. 

Chapter 4 and Chapter 5 are based on either already published or accepted journal articles 

in the International Journal of Climatology and Climatic Change and are included in this PhD 

thesis with the acceptance of the publishers. Their correct citation is given in the respective 

chapters. The articles styles’ are aligned to the synopsis of this PhD thesis. 
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2 The climate system and its representation via models 

“Weather is the fluctuating state of the atmosphere at a certain location experienced between 

seconds and a few days and characterized by meteorological variables such as temperature, 

precipitation, or wind. Almost all weather phenomena are limited to the lowest ~12 km of the 

atmosphere, the so-called troposphere. Typical weather states, e.g., are mid-latitude low 

pressure systems with associated frontal zones and showers.  

Climate is the average weather in terms of statistics such as mean, variability, and 

extremes over a time-span of, e.g., 30 years” (Baede et al., 2001; Häckel, 2008).  

 

 

Figure 2.1 The climate system and its sub-systems (from IPCC, 2007). 

Weather and climate determine to a certain degree our daily lives as well as the success of 

various economic sectors (Steininger et al., 2005). In particular, extreme conditions (compare 

Section 3.2.8 for detailed definition) can cause enormous economic damages (compare Munich 

Re, 2011) or may even endanger our lives (compare the heat wave in summer 2003; 

Poumadere et al., 2005).  
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Thus, aiming at suitable mitigation and adaptation strategies, we are highly interested in 

possible future climate conditions. For this purpose, historic trends can either be extrapolated, 

assuming that the processes leading to those trends remain unchanged also in future, or we try 

to understand the mechanism that determine what we experience as climate. For the latter 

purpose, climate can also be defined as the result or the attribute of the climate system 

(Bauer et al., 2001) created by its respective forcings, components, processes, and interactions.  

 

 

Figure 2.2 Characteristic spatial and temporal scales in the climate system (from Wu, 1999). 

The climate system comprises five major sub-systems (components; compare Figure 2.1): 

the atmosphere, hydrosphere, cryoshere, biosphere, and geosphere. The atmosphere is the layer 

of gases surrounding the Earth. It constitutes of a certain compositions of gases including N2, 

O2, Ar, H20, and CO2 and represents the most unstable and rapidly changing part of the system. 

The hydrosphere contains all liquid surface and subterranean water; the cryosphere comprises 

the ice sheets of Greenland and Antarctic as well as all continental glaciers and snow fields, 

sea ice and permafrost; the geosphere describes the stones and soils and finally the biosphere 

contains all flora and fauna. 
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The system is externally forced, e.g., by the Earth's inclination, but most dominant by the 

solar radiation. Possible influences of human beings can also be regarded as an external 

forcing. 

Many of these sub-systems interact with each other via various physical, biological or 

chemical processes and dynamics (indicated by the black arrows in Figure 2.1) on various 

spatial and temporal scales (compare Figure 2.2). These interactions are partly non-linear 

including feedbacks (Baede et al., 2001; Stocker et al., 2001; Seneviratne et al., 2010). For 

example, if precipitation is reduced, the evapotranspiration of the soil and vegetation is 

reduced, which can lead to further reduced cloud formation and thus less precipitation. Such a 

feedback-interaction between geo-, bio- and atmosphere, e.g., took place thousands of years 

ago in the Sahara desert, then a landscape similar to the Serengeti today, and formed the 

landscape we know today (Brovkin, 2006).  

 

 

Figure 2.3 Schematic of an Atmosphere-Ocean coupled GCM                                                                                 
(from https://www.e-education.psu.edu/meteo469/node/140). 
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In climate sciences the representation of the climate system and its dynamics is 

accomplished by climate models. Climate models can either be one dimensional, conceptual 

models such as radiation balance models or three-dimensional highly complex models that aim 

to copy single sub-systems of the climate system or even the entire climate system (compare 

von Storch et al., 1999). Referring to the latter models, global climate models, also called 

general circulation models (GCMs), are the primary tools for simulating the global climate in a 

physically consistent way. 

GCMs numerically simulate the climate system, its known properties and dynamics based 

on physical laws such as the conservation of momentum, mass and energy, the ideal gas law or 

boundary layer physics (Giorgi and Mearns, 1991; Baede et al., 2001). The model equations 

are solved on a three dimensional grid (e.g., Warner, 2011) with state-of-the-art grid point 

distances of ~200 km and several vertical layers as depicted in Figure 2.3 for an Atmosphere-

Ocean coupled GCM.  

 

 

Figure 2.4 Comparison of climate models with different horizontal resolution to observation for winter precipitation 
(in mm/day) in the UK (from Maraun et al., 2010). 

GCMs have proven to reliably simulate global distributions of, e.g., temperature, 

precipitation, radiation, wind, oceanic temperature, currents, and ice covers as well as 

important patterns of climate variability as the Hadley cell, monsoon systems, or storm tracks 

(Randall et al., 2007). GCMs, however, fail at providing realistic climate information at the 
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sub-grid or even regional scale (compare Figure 2.4) as well as at the daily/sub-daily scale 

(Baede et al., 2001; Giorgi et al., 2001; Prudhomme et al., 2002). This can be related to 

systematic model errors and the absence or simplifications (parameterization) of sub-grid-scale 

processes and forcings such as complex topography, inland water bodies, or land use 

characteristics (Randell et al., 2007; Benestad et al., 2008). Small scale climate data is 

nevertheless essential for climate change impact and adaptation assessments (see Chapter 6). 

The associated problem to get to this data is obviously related to a spatial incompatibility of 

GCMs and is often called regional climate problem.  
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3 Downscaling: providing fine scale climate model data 

Following the definition of Giorgi et al. (2001), the regional scale is defined as an area 

between 104 km² and 107 km². Areas smaller than 100 km x 100 km are assigned to the local 

scale, areas greater than the regional scale are assigned to the sub-continental and afterwards to 

the planetary scale. For an appropriate description of the regional climate, processes at all 

scales have to be taken into account.  

Two pathways are common in climate modeling in order to bridge the scale gap between 

globally available and regionally or locally demanded climate data. Both pathways cascade 

“down” information from a larger spatial domain (“the large scale”) to a smaller spatial 

domain (“the small scale”; von Storch et al., 2000). Thus, these procedures are also referred to 

as downscaling procedures. The two downscaling approaches are  

 

• dynamical downscaling (DD) and 

• empirical-statistical downscaling (ESD).  

 

3.1 Dynamical downscaling 

Although this work focuses on ESD, DD is also briefly described. DD simulates regional or 

local climate conditions by nesting a finer-meshed dynamical climate model (typically 

between 10 km and 50 km grid spacing) over a limited area in coarser climate information, 

e.g., provided by GCMs (compare Figure 3.1). The GCM provides the boundary conditions 

(winds, temperature, humidity, pressure, and sea surface temperature) for the fine-mesh RCM, 

which profits from its higher spatial resolution via a more accurate representation of small 

scale forcings as listed in Chapter 2. Furthermore, processes which are parameterized in GCMs 

can be resolved hereby (Giorgi and Mearns, 1991, 1999; Laprise, 2008; Maraun et al., 2010 

and the references therein). As a consequence, RCMs have proven to add regional information 

compared to GCM outputs (e.g., Wang et al., 2004; Feser et al., 2006; Laprise, 2008) including 
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enhanced mesoscale circulation patterns (Buonomo et al., 2007) and regional scale scenarios 

for extremes (e.g., Schmidli et al., 2006; Christensen and Christensen, 2007).  

 

 

Figure 3.1 The RCM nesting scheme. In this example the fine-mesh RCM on the right hand side is nested in coarser 
resolved raster information over Europe on the left (from Deutsches Museum homepage: http://www.deutsches-

museum.de/ausstellungen/energie/umwelt/klima/klimawandel/klimamodelle/gitternetz/).  

Further information concerning RCMs and the skill of state-of-the-art RCMs can be found 

in the former listed articles as well as, e.g., in Frei et al. (2003), Truhetz et al. (2003), van der 

Linden and Mitchell (2009), Maraun et al. (2010), and Suklitsch et al. (2011).  

3.2 Empirical-statistical downscaling  

3.2.1 The history of ESD 

Although ESD studies primarily emerged since the 1970s onwards associated with the 

development of GCMs, empirical-statistical techniques to translate across spatial scales are 

already known since the 1940s in the field of synoptic climatology (Hewitson and Crane, 

1996). In Barry and Perry (1973) synoptic climatology is defined as one pathway to "obtain 

insight into local or regional climates by examining the relationship of weather elements, 

individually or collectively, to atmospheric circulation processes". The underlying assumption 

is that similar synoptic patterns result in similar regional weather conditions (compare 

classification of Grosswetterlagen; e.g., Baur et al., 1944). However, synoptic climatology 

differs from a recent definition of downscaling in its basis on a finite number of discrete 
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weather classes because this generalization of the atmospheric circulation does not accurately 

describe the evolution of weather or climate as a continuous function in time 

(Hewitson and Crane, 1996). 

3.2.2 Definition of ESD 

Based on the given definition of the regional climate, ESD is henceforth defined as the process 

of making the link between the state of some variable at the large scale and the state of some 

variable describing the small scale by using an empirically based statistical formulation 

(Benestad et al., 2008). This formulation, sometime denoted as transfer function, can be either 

deterministic or stochastic, whether it disregards any residual noise term in their model 

description or not. Formally, (in a deterministic way) this leads to 

 

 

( )
( )

( )variabletindependenfvaribaledependent

predictorfpredictand

forcingscalelargefresponseclimatelocal

=

=

=

 

 

where all three notations can be found in literature. Here, we will use the second formulation 

for all further notations.  

According to these formulations, the small scale cannot feed back into the large scale. 

Thus, ESD represents a one way coupling approach. However, it should be considered, that 

although the small scale may follow the large-scale conditions to some degree, it can also 

exhibit a behavior independent of the large-scale situation, which then is attributed as noise 

and cannot be captured by the predictor (Benestad et al., 2008).  
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3.2.3 Assumptions of ESD 

In order to generate reliable regional climate scenarios based on ESD the following four 

general assumptions have to be fulfilled (compare Benestad et al., 2008). 

 

1) The relationship is strong and physically based. 

2) The predictors are of satisfying accuracy. 

3) The statistical model is stationary over time.  

4) The incorporated predictors fully represent the climate change signal. 

 

Ad assumption 1) The found relationship should be physically meaningful and not result 

from any statistical coincidence (e.g., von Storch and Navarra, 1999). This means that the 

incorporated predictors are of relevance for the predictands (e.g., large scale humidity will 

condition local scale precipitation). In most cases, except distribution based methods (compare 

Chapter 4), the link is strong if the disparate scales show a matching time behavior, thus if they 

co-vary.  

Ad assumption 2) If defective predictors are used for model calibration, ESD will result in 

invalid estimations. The choice, which predictors should be encountered, depends on spatial, 

temporal, as well as data availability aspects. As already mentioned GCMs should be 

considered with care on the daily and regional scale whereas RCMs, if nested in reanalysis 

data, are assumed to satisfactorily represent the regional scale daily weather evolution and 

even to represent extremes to some degree. At the sub-daily scale, however, also RCMs show 

only limited skill in, e.g., reproducing characteristics as the diurnal cycle (e.g., 

Prein et al., 2011)  

Ad assumption 3) The stationarity assumption implies that the statistical link does not 

change over time. Thus, also small scale forcings such as changes in land-use characteristics or 

global characteristics such as the oceanic circulation are assumed to stay constant. 

Ad assumption 4) If the used predictors do not fully account for the climate change signal, 

ESD won’t produce reliable future scenarios. For example Wilby and Wigley (2000) 

demonstrated the importance and significant difference of precipitation scenarios with and 

without the inclusion of humidity as predictor variable. Therefore, in general it can be 
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advisable to include both thermodynamic as well as fluid dynamic predictors (e.g., Salathé, 

2003).  

Concerning assumption 3 and 4, split sample or cross validation tests are suitable tools for 

verification purposes (e.g., von Storch et al., 2000). 

3.2.4 Model Output Statistics vs. Perfect Prognosis 

Relating to the ESD classification by Rummukainen (1997), which is based on the origin of 

the used predictors, ESD can be divided in model output statistics (MOS) and perfect 

prognosis (PP; Wilks, 2006) applications (compare Figure 4.1)  

PP downscaling represents the traditional ESD application. By this means, the statistical 

link is established between observed predictors and observed predictands. Instead of observed 

large scale data, reanalysis data are often found in application. Reanalyses combine various 

data sources as observational and numerical weather prediction data (e.g., Nakiekovic et al., 

2000). The found linkage can then be applied to predictors from climate models under 

assumption 2 in Section 3.2.3, thus assuming that the model perfectly simulates (or 

prognosticates in the case of numerical weather prediction) the predictor (Wilks, 2006; Maraun 

et al., 2010). 

MOS, besides already known from numerical weather prediction, has also become popular 

in climate sciences for downscaling purposes with the increasing accuracy and availability of 

GCM and RCM data. Contrary to PP, MOS establishes a link between simulated predictors 

and observed predictands. As a consequence, MOS calibrated relationships enable to 

downscale the model data to the observational resolution and additionally account for the 

simulated model errors. However, MOS calibrated relationships are only valid for the model 

they are calibrated on, contrary to PP relationships, which are in general valid for any model. 
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3.2.5 ESD techniques 

Methodologically, three major groups of statistical techniques can be identified in ESD 

reviews referring, e.g., to Wilby and Wigley (1997), von Storch et al. (2000), or Benestad et al. 

(2008). These groups are regression models, weather typing approaches and weather 

generators. Considering the often found hybrid approaches in literature and integrating more 

recently described MOS techniques, here a slightly different classification based on Bardossy 

(2000) with four classes is presented. These four classes are: 

 

1) Regression-like methods (Hewitson and Crane, 1996; Murphy, 1999; Schoof and Pryor, 

2001; Haylock and Goodess, 2004; Benestad et al., 2008) 

2) Resampling or analogue methods (Cubasch et al., 1996; Brandsma and Buishand, 1998; 

Zorita and von Storch, 1999; Wetterhall et al., 2005; Matulla et al., 2008; ) 

3) Conditional probability methods/weather generators (Conway et al., 1996; Goodess and 

Palutikof, 1998; von Storch and Navarra, 1999; Wilks and Wilby, 1999; Wilby et al., 

2003) 

4) Scaling approaches (Wood et al., 2002; Schmidli et al., 2006; Déqué, 2007; Graham et al., 

2007; Dobler and Ahrens, 2008). 

 

In the course of this PhD, regression models, analogue methods, as well as scaling methods 

are investigated in more detail. Their methodological description can be found in Chapter 4 

and Chapter 5. These techniques are chosen to cover linear as well as non-linear, parametric as 

well as non-parametric, and techniques based on point-wise as well as spatially distributed 

predictors. 

Concerning conditional probability methods/weather generators, and, e.g., not applied non-

linear regression techniques such as artificial neural networks (ANNs), interested readers are 

directed to the respectively listed journal articles for further information.  

In general, the choice upon the applied ESD technique highly depends on the 

characteristics of the predictand. If, for example, the focus is on monthly time series at single 

observational stations, linear regression models in most cases will do a good job, as the 

predictand is expected to be normally distributed, also for precipitation amount, and the model 

can be applied station by station, without taking into account spatial correlations. If however, 
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non-normally distributed, daily precipitation fields are demanded, more sophisticated methods 

as analogue procedures, stochastic weather generators or scaling approaches might be 

advisable (von Storch et al., 2000; Themeßl 2006; Themeßl et al., 2010). 

3.2.6 Predictors  

Predictor variables can represent either grid cell values or spatially coherent patterns (e.g., 

Huth, 1999). While the application of single grid cell time series aims at taking into account 

small scale characteristics such as convection, spatially coherent predictor patterns enables to 

put more emphasis on the large scale flow. Using single grid cells, here also referred to as 

point-wise application, the question of the skillful spatial scale of a climate model occurs. 

According to the literature, 3 x 3 grid cells represent the minimum number of grid cells, which 

should be interpreted. Less grid cells are likely to be inaccurate due to numerical noise or 

parameterization schemes applied (Benestad et al., 2008; Kapper et al., 2010). Applying 

spatially coherent fields, the question of the location and extension of the domain becomes 

crucial. The “optimal” domain should be decided upon the inclusion of the relevant processes 

affecting the region (Benestad et al., 2008; Wilby et al., 2004). This may also result in 

predictor domains remote of the predictand area as demonstrated in Wilby and Wigley (2000). 

Spatially coherent predictors can be either obtained subjectively or objectively by classifying 

reoccurring spatial atmospheric distributions with distinct meteorological attributes. Subjective 

approaches comprise well known synoptic classification schemes as the European 

Grosswetterlagen (Hess and Brezowsky, 1977), or the British Island Lamb Weather Types 

(Lamb, 1972). Objective weather classification is based on statistical methods such as 

principle component analysis (PCA), canonical correlation analysis (CCA), clustering (mostly 

in conjunction with PCA analysis) or on recent developments like ANN (Self organizing 

maps) and fuzzy rule based methods. Additionally, airflow indices and circulation indices as 

the North Atlantic Oscillation (NAO) or the El Niño- Southern Oscillation (ENSO) can be 

found in this context (Yarnal et al., 2001).  

As the predictor–predictand link may vary temporally, it is often found in literature that 

predictor variables are selected, e.g., on seasonal basis (e.g., Boé et al., 2007). Besides 

empirically knowledge, statistical methods can then be applied in this context in order to 
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objectively select predictors. These so called screening approaches are described in Appendix 

A in more detail.  

3.2.7 Predictands 

Predictands can represent single station data, areal means, spatial coherent fields or probability 

density function (pdf) characteristics (Maraun et al., 2010). Usually, predictand and 

predictor(s) are different variables but not necessarily (compare Chapter 4). Using pdf 

characteristics in this context enables to implicitly capture the effects of climate change on the 

shape of the predictand’s distribution (Benestad et al., 2005; Benestad, 2007; Wang and 

Zhang, 2008). However, transient, e.g., daily time series cannot be generated hereby, which 

restricts its application in climate impact studies.  

Most ESD applications deal with standard mean meteorological parameters as rainfall (e.g., 

Salathé, 2003), temperature (e.g., Huth, 2003), wind (e.g., Kaas et al., 1996), solar radiation 

(e.g., Wilks and Wilby, 1999) or snow (e.g., Bednorz, 2004). However, ESD is also capable of 

inferring information about extreme events (e.g., Billet et al., 1997; Brandsma and Buishand, 

1998; Pryor et al., 2005; Benestad 2007; Goodess et al., 2007) as well as non-meteorological 

parameters such as agricultural yields (e.g., Sun et al., 2007). This flexibility in application 

represents one major strengths of ESD compared to DD. A general comparison of strengths 

and weaknesses between ESD and DD is given in the Appendix B. 

3.2.8 Downscaling of extremes 

Extreme events and their impacts represent large threats to our society (OcCC, 2003). 

According to the IPCC (2001) an extreme weather event is an event that is rare within its 

statistical reference distribution at a particular place (compare Figure 3.2). Due to differing 

global climate zones (e.g., Köppen and Geiger, 1961) meteorological situations that are 

common in one part of the world can be regarded as devastating extremes in another (compare 

maximum precipitation amounts in middle Europe and the same parameter at Mount 

Waialeale, Hawaii). Thus, instead of using absolute thresholds to define rare events, 

distribution-based definitions as the 10th or 90th percentile may be applied. Many 

climatological studies have investigated these sometimes called soft extremes (e.g., 

Klein Tank and Können, 2003; Goodess et al., 2007). Additional definitions of extreme indices 
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are listed in Table 6.2. An extreme climate event, for completeness, is an average of a number 

of weather events over a certain period of time, an average which is itself extreme (e.g., 

rainfall over a season) (IPCC, 2001).  

 

 

Figure 3.2 Distribution of Swiss summer temperatures for 1864−2003. The fitted Gaussian distribution is indicated 
in green. The values in the lower left corner lists the standard deviation and the 2003 anomaly normalized by the 

1864−2000 standard deviation (T'/δ) (from Schär et al., 2004). 

Especially since the Second Assessment Report of the International Panel on Climate 

Change (IPCC; IPCC, 2001) the question if the climate has become more extreme and how 

future conditions could look like has been issue to various studies. These studies comprise 

analyses of historical observational data (e.g., Alexander et al., 2006; Klein Tank and Können, 

2003) as well as of future climate conditions (e.g., Booij, 2002; Räisänen et al., 2004; 

Frei et al., 2006). Although the latter studies mainly focus on dynamical climate modeling also 

ESD techniques can be used to estimate extreme conditions as already mentioned in the 

previous section. For this purpose, ESD is classified into two categories: 

 

• direct approaches and  

• indirect approaches.  

 

Indirect approaches model daily time series of meteorological variables in a first step, and 

then derive extreme indices of this time series. Direct approaches calibrate their ESD models 

on extreme indicators (compare Schmidli et al., 2006) or attributes of extreme value 

distributions (Wang and Zhang, 2008). If direct approaches are build on extreme value 
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distributions, they can also account for problematic attributes of extremes for modeling, 

namely their rarity and their heavy tail distributions (e.g., Smith, 2001; Katz et al., 2002).  

Goodess et al. (2007) compare 22 ESD methods for extreme conditions in a comprehensive 

inter-comparison study along with the Statistical and Regional dynamical Downscaling of 

Extremes for European regions (STARDEX) project. They conclude that the performance of 

the respective ESD methods varied across regions, seasons and indices. No systematic best 

performing method could be found. These results are confirmed, e.g., by Haylock et al. (2006) 

or Schmidli et al. (2006). The latter studies also compares dynamical downscaling and ESD for 

precipitation and results in overall comparable skill for both strategies. Goodess et al. (2007), 

thus, recommends taking into account an ensemble of techniques rather than one selected 

method, plus an ensemble of RCMs and GCM in order to sample the entire range of 

uncertainty. This recommendation of Goodess et al. (2007) is also, e.g., underlined by Murphy 

(2000).  

In the presented papers in Chapter 4 and Chapter 5, indices of extremes will be obtained 

indirectly, derived from daily corrected time series. Appendix C additionally complements the 

results of Chapter 5 focusing on the generation of suitable error correction function of one 

selected DECM for extreme conditions.  
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4.1 Abstract 

Although regional climate models are powerful tools for describing regional and even smaller 

scale climate conditions, they still feature severe systematic errors. In order to provide 

optimized climate scenarios for climate change impact research, this study merges linear and 

non-linear empirical-statistical downscaling techniques with bias correction methods and 

investigates their ability for reducing regional climate model error characteristics. An 

ensemble of seven empirical-statistical downscaling and error correction methods (DECMs) is 

applied to post-process daily precipitation sums of a high resolution regional climate hindcast 

simulation over the Alpine region, their error characteristics are analyzed and compared to the 

raw RCM results.  

Drastic reductions in error characteristics due to application of DECMs are demonstrated. 

Direct point-wise methods like quantile mapping and local intensity scaling as well as indirect 

spatial methods as non-linear analogue methods yield systematic improvements in median, 

variance, frequency, intensity, and extremes of daily precipitation. Multiple linear regression 

methods, even if optimized by predictor selection, transformation, and randomization, exhibit 

significant shortcomings for modeling daily precipitation due to their linear framework. 

Comparing the well-performing methods to each other, quantile mapping shows the best 

performance, particularly at high quantiles, which is advantageous for applications related to 

extreme precipitation events. The improvements are obtained regardless of season and region, 

which indicates the potential transferability of these methods to other regions. 
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4.2 Introduction 

General circulation models (GCMs) are established tools for estimating the large-scale 

evolution of the Earth’s climate, but due to their relative coarse horizontal resolution, they are 

not suited to properly represent regional scale climate characteristics. Therefore, dynamical 

downscaling techniques are often applied to derive regional-scale information from GCMs. 

Limited area regional climate models (RCMs) are forced by lateral boundary conditions of 

GCMs or reanalysis products and simulate the regional climate over a certain area on a finer 

grid (typical horizontal resolution 10 km to 50 km; Giorgi and Mearns, 1991, 1999; Wang et 

al., 2004). RCMs have considerably advanced in reproducing regional climate, but are 

nevertheless known to feature systematic errors (e.g., Frei et al., 2003; Hagemann et al., 2004; 

Suklitsch et al., 2008, 2010). Particularly, small-scale patterns of daily precipitation are highly 

dependent on model resolution and parameterization and can often not be used directly in 

climate change impact assessment studies (Fowler et al., 2007). Statistical post-processing of 

RCMs, according to the concept of model output statistics (MOS; Wilks, 1995), may help to 

overcome these problems, leading to qualitatively enhanced climate information. Such 

statistical post-processing of RCMs is mostly neglected in climatological studies as traditional 

empirical-statistical downscaling methods (ESDMs) are preferably applied according to the 

concept of perfect prognosis (perfect prog; Wilks, 1995). Perfect prog downscaling determines 

a statistical model (transfer function) between suitable large scale observation/reanalysis data 

and local observations (e.g., Wilby and Wigley, 1997; Murphy, 1999; Schmidli et al., 2006) 

which is applied directly to GCMs for generating regionalized climate scenarios 

(e.g., Schmidli et al., 2007) but without the intention of model error correction (compare 

Figure 4.1). RCMs are often favored to traditional empirical-statistical downscaling because 

they are capable to simulate regional-scale climate feedback effects and were already shown to 

create added value compared to GCMs on the meso- and regional scale for surface variables 

(e.g., Wang et al., 2004; Feser, 2006). 
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Figure 4.1 Scheme of different downscaling approaches. Darker grey color indicates the applied approach for this 
study. Traditional empirical-statistical downscaling (right pathway) calibrates the statistical transfer function 

between large-scale observation/reanalysis data and local scale observations. These empirical-statistical 
relationships can be used for downscaling of any GCM. DECMs (left pathway) are calibrated on RCM (or GCM) 
data and local observations, account for downscaling as well as model errors, but can only be applied to the model 

they are calibrated for.  

Recently, the availability of regional RCM-based climate scenarios for Europe 

tremendously increased due to projects like ENSEMBLES (http://ensembles-

eu.metoffice.com/) or PRUDENCE (http://prudence.dmi.dk/). However, due to the error 

characteristics of RCMs and when climate information at the point scale is needed, statistical 

transfer functions are inevitable to provide suitable climate scenario data for climate change 

impact research. 

Aiming at a reduction of RCM error characteristics as well as of resolution at the same 

time, this study follows the principles of MOS and compares direct ESDMs that solely rely on 

modeled precipitation (e.g., Wood et al., 2004; Graham et al., 2007; Dobler and Ahrens, 2008) 
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to indirect ESDMs that derive fine-scale information by relating various model outputs 

(predictors − frequently upper air atmospheric data and not necessarily model precipitation) to 

observed surface variables (predictands − such as precipitation; e.g., Wilby and Wigley, 1997; 

Goodess et al., 2007; Benestad et al., 2008). All methods are applied to RCM results instead of 

their usual application to GCMs (compare Figure 4.1). In order to distinguish this application 

from perfect prog downscaling (which does not regard model errors), these methods are 

referred to as “empirical-statistical downscaling and error correction methods” (DECMs) 

henceforth. Their skill is assessed by analyzing their success in modeling daily precipitation on 

the station scale in the orographical complex Alpine region in Austria. 

The study is organized as follows: Section 4.3 introduces the applied RCM and 

observational data as well as the study region. Section 4.4 describes the implemented DECMs, 

which are evaluated in Section 4.5. Finally, Section 4.6 summarizes the key findings of the 

study.  

4.3 Data and study region 

For this study the mesoscale limited area model MM5 (Dudhia et al., 2005) from the Penn 

State University (PSU) and the National Center of Atmospheric Research (NCAR) is used to 

provide the predictor data. MM5 is a non-hydrostatic, terrain-following sigma-coordinate 

model designed to simulate mesoscale atmospheric circulation. The simulations used in this 

study originate from the Austrian project “reclip:more─Research for Climate Protection: 

Model Run Evaluation” (Loibl et al., 2007) in which parts of the ERA-40 reanalysis (Uppala et 

al., 2005) were dynamically downscaled (hindcast simulation) in a two step nesting approach 

(Gobiet et al., 2006). The data covers the domain shown in Figure 4.2(a) with a horizontal grid 

spacing of 10 km.  

Temporally, the data is given in 6 hour time steps for the time-span from 1981 to 1990 and 

the single year 1999. The year 1999 is treated as any other year in the 11 year period. For all 

parameters, except precipitation, daily mean values are calculated from 00:00 UTC to 23:59 

UTC. For comparison to the observational data, daily precipitation is summed up between 

06:00 UTC and 05:59 UTC the following day. All parameters used in the analyses are listed in 

Table 4.1.  
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Figure 4.2 Upper panel (a): Spatial domain of the RCM data. Additionally, climatological precipitation conditions 
for the Alpine region including Austria from 1981 to 1990 according to HISTALP observations. The bold, white 
line indicates the 800 m isoline for better orientation. Lower panel (b): Location of the 919 observational stations 

within Austria and the clustered eight homogeneous precipitation regions. 

The observed daily precipitation sums, provided by the Austrian Meteorological Service 

(ZAMG) and the Austrian Hydrological Service (HZB), are used as predictand for empirical-

statistical error correction at 919 observation sites, which are evenly distributed across the 

entire area of Austria (Figure 4.2(b)). The data is quality checked, but not homogenized. The 

919 observational stations fulfill the conditions of at least 80 % of data availability and 

insignificantly changed data distributions after station replacements. The latter condition was 

tested by a non-parametric Wilcoxon rank-sum test (Wilks, 1995).  
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Variable  Abbreviation Level 

Geopotential height  zg [700,500] hPa 

Mixing ratio  q [850,700] hPa 

Eastward wind u [850,700] hPa 

Northward wind v [850,700] hPa 

Upward air velocity w [700] hPa 

Vapour pressure e [850,700] hPa 

Saturation vapour pressure es [850,700] hPa 

Total surface precipitation pre surface (sfc) 

Convective rain accrcon sfc 

Advective rain  accrnon sfc 

Precipitable water pwat sfc 

Atmosphere cloud condensed 
water content 

iclc sfc 

Surface air pressure psfc sfc 

Temperature t2 2 m 

Mixing ratio q2 2 m 

Vapour pressure e2 2 m 

Saturation vapour pressure es2 2 m 

Relative humidity  f2 2 m 

Eastward wind u10 10 m 

Northward wind v10 10 m 

Sea level pressure pslv sea level (slv) 

Table 4.1 The MM5 predictor variables used in this study. 

Although Austria is a rather small country, it features several climate provinces. These 

provinces originate from three main airflow directions (Atlantic, Mediterranean, and 

continental Eastern Europe) and their interaction with the Eastern Alps which cover large parts 

of the country and vertically range from basins and low altitude regions of a few hundred 

meters in the eastern foothills of the Alps to the mountainous western parts of the Eastern Alps 

up to nearly 4000 m. The central, northern, as well as the southern parts of the Eastern Alps 

block the Atlantic and Mediterranean moist airflows, force them to raise and rain out, resulting 

in annual precipitation maxima in the northerly and southerly upslope regions of the Alpine 

crest. Due to strong advection of wet Adriatic air masses in summer months, southern and 

south-eastern parts of Austria frequently feature severe thunderstorms as well as hail. 
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Decreasing precipitation amounts towards the flatter eastern parts result from the 

predominating continental air masses there. Additionally, the inner alpine valleys feature 

reduced precipitation amounts due to the rain shadowing of the mountain ranges (compare 

Figure 4.2(a); Cebon et al., 1998; Matulla et al., 2003). The observed climatology given in 

Figure 4.2(a) covers the period 1981 to 1990 according to the focus period of this study, but 

the spatial patterns as well as the magnitudes are comparable to the climatic conditions 

between 1971 and 1990 shown in Frei and Schär (1998). Accounting for the regional 

climatological differences, the observational stations are clustered into eight sub-regions 

(Figure 4.2(b)), based on correlated daily precipitation. The clustering method is described in 

Suklitsch et al. (2008). The clusters represent spatially homogenous regions, with only two 

displaced stations (both in sub-region 6). Despite their displacement, these two stations are 

allocated to their original cluster.  

4.4 Methods 

Seven statistical approaches are applied in this study. They are applied for each observational 

station separately. The approaches are selected to span indirect DECMs (Section 4.4.1) as well 

as direct DECMs (Section 4.4.2). The former comprise linear and non-linear techniques. 

Furthermore, the selected methods cover point-wise approaches as well as spatial approaches 

that use distributed predictors. Point-wise approaches relate 3 x 3 adjacent RCM grid cells to 

each station. Spatial approaches are based on meteorological fields and use principle 

components (PCs) from the entire RCM domain shown in Figure 4.2(a) to build transfer 

functions to the station scale. The PCs originate from principle component analysis (PCA), 

which is also referred to as empirical orthogonal function (EOF) analysis in geophysics (e.g., 

von Storch and Zwiers, 1999; Zorita and von Storch, 1999).  
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4.4.1 Indirect DECMs 

Multiple Linear Regression (MLR) 

In addition to its application in MOS, MLR is frequently found in statistical downscaling of 

GCM data (e.g., Kilsby et al., 1998; Huth, 1999; Murphy, 1999; Schoof and Pryor, 2001; 

Hay and Clark, 2003) as well as in climate change impact analyses (e.g., 

Alexandrov and Hoogenboom, 2000). In general, linear regression models establish a linear 

transfer function between one or more predictors and the predictand such that 

 

∑
=

++=
l

p

pp XY
1

MLR εβα     (4.1) 

 

with α  being the intercept, β  the regression coefficients, ε  the error term, pX  the p 

predictor variables, and Y MLR the estimated predictand.  

For this study, a MLR based on ordinary least squares (OLS) is applied on daily basis, for 

each season separately and point-wise since preliminary tests favored point-wise to spatial 

application. In these tests, point-wise and spatial MLR (EOF-based) yielded similar results for 

seasonal means. However, the variability of daily errors was mostly smaller and the shapes of 

the modeled distributions were closer to the observed distributions in point wise MLR than in 

EOF-based MLR. Furthermore, several data transformations were analyzed in preliminary 

tests to account for daily precipitation’s non-normal distribution and non-linear predictors-

predictand relationships (Wilks, 1995; Kidson and Thompson, 1998). Results are shown only 

for best performing cube root transformation of the predictand (denoted as MLRT; 

Helsel and Hirsch, 2002).  

Predictors are chosen by a semi-objective procedure for each station. Physical meaningful 

variables are pre-selected empirically before a two-step objective predictor selection method is 

performed: Firstly, a stepwise regression, based on the Akaike Information Criteria (Wilks, 

1995), is used to reduce the number of potential predictors; secondly, an all subset regression 

(von Storch and Zwiers, 1999) selects the most influencing combinations of predictors, limited 
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to a maximum number of four predictors per combination, according to the adjusted 

coefficient of determination (R²; Helsel and Hirsch, 2002). 

Multiple Linear Regression with Randomization (MLRR) 

Climate impact studies often need precipitation time series with realistic day-to-day variability. 

Since MLR models reduce variability because the regression line is fitted to pass through the 

centroid of the data (Helsel and Hirsch, 2002) and only a part of local climate variability is 

related to larger-scale variability in predictors (Fowler et al., 2007), von Storch (1999) 

proposed randomization of time series to recover their original variability. MLRR extends the 

MLR estimation valMLRR,
,itY  in a given validation period (val) at station i and day t by adding 

noise calMLR,
iR  which represents the unexplained part of the regression model (compare 

Equation (4.1); Dehn and Buma, 1999) according to 

 
calMLR,valMLR,

,
valMLRR,

, iitit RYY +=  .   (4.2) 

 
calMLR,

R  is obtained from classified MLR residuals of the calibration period (cal) and grouped 

in four classes corresponding to the respective quantity of calMLR,
Y  between zero precipitation, 

the model (mod) wet-day threshold modWT , the 50th percentile of the time series, and the 

maximum estimated precipitation. modWT  is defined after Schmidli et al. (2006) that the 

number of days greater or equal modWT  in the calibration period equals the respective 

observed (obs) number of days greater or equal obsWT  in the calibration period. obsWT  is 

defined as 1 mm/day. 
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The Analogue Method (AM) 

Resampling approaches can be classified as stochastic precipitation models (von Storch and 

Navarra, 1999). Their primary application area is hydrology where they are used to generate a 

large number of synthetic observations as input to hydrological models in order to assess their 

uncertainties (Mehrotra and Sharma, 2006). The analogue method (AM) represents a special 

case of resampling. In the context of AM, the resampling is conditioned on atmospheric states 

(predictors; e.g., Zorita and von Storch, 1999) which enables its application for downscaling 

purposes. Conceptually, AM compares the atmospheric state on the day under consideration (t) 

to an archive of historic atmospheric states and determines the most similar historic 

atmospheric state – the analogue − according to some measure of similarity. The local weather 

on this analogue date u is then resampled as an estimate of the predictand on day t (Cubasch et 

al., 1996). Thus, for an adequate description of the local climate, particularly regarding 

extreme conditions, sufficiently long historic archives are necessary. The resampling limits 

AM to historical extremes, which can be considered as the method's main drawback. Further 

problems with consistency in the order of consecutive days may occur if atmospheric regimes 

are not well defined by the spatial predictors. In return, AM does not assume any particular 

probability distribution in the modeling process and enables to capture non-linear predictor-

predictand relationships (Fernández and Sáenz, 2003; Benestad et al., 2008). 

The crucial point of AM is the definition of similarity of atmospheric states (e.g., 

Wetterhall et al., 2005; Matulla et al., 2008). A method based on PCs (e.g., Zorita and von 

Storch, 1999) is implemented in this study. PCs are derived from fields of all RCM variables 

given in Table 4.1. Analogues are found for each season by minimizing a weighted Euclidean 

distance: 
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F represents the so-called feature vector at validation day t which takes into account k 

predictors. R  corresponds to the respective historical archive in the same PC phase space as 

the predictors. The weighting vector d  (Fernández and Sáenz, 2003; Imbert and Benestad, 

2005) consists of normalized eigenvalues and reflects the importance of each considered 

predictor. If the same Euclidean distance is found several times in the historical sample, the 

temporally first condition is considered. Additionally, an unweighted distance was tested with 

slightly worse results (not shown).  

Contrary to the standard AM application with multisite prediction, this study uses a site-

specific AM. Such a site-specific approach weakens the merit of maintaining the spatial 

covariance structure of the predictand, but enables the selection of the most important 

predictors for each station separately. The first three PCs of each RCM variable are proposed 

as independent predictors to the automated predictor selection scheme (see MLR description). 

The PCs are standardized to unit variance. Limitations in AM’s non-linearity due to linearly 

selected predictors are accepted. The predictor selection results in the seasonally prevailing 

predictor combination of four predictors (k = 4). 

The Nearest Neighbor Analogue Method (NNAM) 

Extending the search for the analogue towards a probabilistic approach, the nearest neighbor 

analogue method (e.g., Brandsma and Buishand, 1998; Mehrotra and Sharma, 2006; Moron et 

al., 2008) randomly chooses the analogue situation from the nn most similar historical 

conditions. Consequently, increased modeled variability can be expected with the drawback 

that equal predictor conditions on time t and t+1 may result in different local predictands. The 

same predictors as applied to AM are considered. Equal to AM, a weighted Euclidean distance 

in PC phase space provides the measure of similarity. Instead of picking the most similar 

historic condition to prediction time t (nn = 1), the nn days with smallest Euclidean distances 

(nearest neighbors) are retained. The analogue is selected using a discrete probability 

distribution that weights the nn-days according to  
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with jp  being the probability of the j closest neighbors (Lall and Sharma, 1996). By this 

means, higher weights are given to closer neighbors. Several tests with nn = 5, nn = 10, 

nn = n , with n being the calibration sample size were performed (compare 

Beersma and Buishand, 2003). In this study nn = 5 is used. Unweighted random selection of 

the analogue was tested as well, but is outperformed by the presented approach (not shown). 

4.4.2 Direct DECMs 

Local Intensity Scaling (LOCI) 

LOCI is a direct DECM and represents one traditional bias correction method (also compare 

Graham et al., 2007; Leander and Buishand, 2007), which is based on the work of 

Widmann et al. (2003), suggested by Schmidli et al. (2006) and successfully applied by, e.g., 

Salathé (2003), Dobler and Ahrens (2008), or Moron et al. (2008). The basic idea of direct 

DECMs is that climate model precipitation integrates all relevant predictors. Deviations 

between climate model precipitation and regional- or local-scale precipitation observations are 

in first order due to systematic climate model errors and an incomplete or inaccurate 

representation of the orography (Schmidli et al., 2006). Thus, instead of using various 

predictors to create local weather, LOCI applies a spatially varying scaling to climate model 

precipitation accounting for its long term bias at the location of the observation.  

Following the approach of Schmidli et al. (2006), a separate correction of wet-day 

frequency and wet-day intensity is applied point-wise and for each day of the year separately. 

With the definitions of modWT  and obsWT  (see MLRR description) climate model 

precipitation val
tX  is corrected by Equation (4.5) using scaling factor S from Equation (4.6). 

calwet,
tX  and calwet,

tY  represent climatological means on wet days (i.e., days with precipitation 

greater or equal WT) of the modeled and the respective observed precipitation data over the 
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calibration period at day t. Only pair-wise recorded modeled and observed data is used for 

calibration. 
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,,
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Contrary to previous applications, this study uses a moving window approach centered over 

focus day t to calculate calwet,
tX  and calwet,

tY . By this means, inhomogeneities at the end of 

fixed calibration periods (e.g., months, seasons) are avoided, and the dependence of model 

errors on the time of the year is included. Moving time windows between 15 days and 61 days 

were investigated. A window size of 61 days is chosen to enable an annual-cycle sensitive 

correction as well as a sufficient large sample size. Further, setting obsWT  to 0.3 mm/day and 

0.5 mm/day instead of the 1 mm/day standard value was investigated, but resulted in no 

significant differences (not shown). 

Quantile Mapping (QM) 

Extending the correction from means (LOCI) to the entire distribution, QM corrects for errors 

in the shape of the distribution and is therefore capable to correct errors in variability as well. 

This quantile based approach originates from the empirical transformation of Panofsky and 

Brier (1968) and was successfully implemented in hydrological applications (Dettinger et al., 

2004; Wood et al., 2004; Boé et al., 2007) but recently also for error correction of RCMs 

(Dobler and Ahrens, 2008; Piani et al., 2009).  

For this study, QM is based on point-wise and daily constructed empirical cumulative 

distribution functions (ecdfs; Wilks, 1995) of modeled and observed datasets in the calibration 

period. This is in contrast to other bias correction studies where theoretical cdfs are estimated 

only from wet days (e.g., Ines and Hansen, 2006; Dobler and Ahrens, 2008; Piani et al., 2009). 

Using ecdfs, QM is generally applicable to all possible meteorological parameters, whereas 

applications based on cdfs may become problematic for parameters that do not fit to theoretical 
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functions such as global radiation, where the ecdf’s shape is changing with the season 

(compare Camuffo, 1978). Equal to LOCI, a 61 days moving window, centered over the focus 

day, is used for ecdf construction. The correction function transfers raw RCM output val
X  to 

the corrected estimate val
Y  such that  

 

( )( )val
,

calmod,
,

1calobs,
,

val
, itititit XecdfecdfY

−
= ,  (4.7) 

 

with 1−ecdf  indicating the inverse ecdf, thus a data quantile. As this purely empirical QM 

only maps modeled values to observed values, no new extremes (outside the observed range) 

can be obtained. This is a suitable approach for our study, since we apply the correction to a 

historical hindcast simulation. For applications to future climate simulations, however, some 

kind of extrapolation beyond the range of observations has to be added to allow for “new 

extremes” (e.g., Boé et al., 2007). 

4.5 Results and discussion 

4.5.1 Validation framework 

Statistical approaches implicitly assume stationarity in their transfer functions in the case of 

indirect DECMs or in model error characteristics in the case of direct DECMs (Wilby, 1997; 

Benestad et al., 2008). If this assumption is violated, statistical models cannot account for 

changes described by predictor forcings. As this assumption cannot be approved in advance, a 

temporal cross-validation framework is applied which repeatedly divides the data period into a 

calibration (10 years) and independent validation period (1 year). By this means, each year is 

estimated and evaluated independently with the remaining 10 years used for model calibration 

(sometimes denoted as “leave one out” cross-validation; see Figure 4.3). 
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Figure 4.3 The “leave one out” cross validation scheme. Each of the 11 simulated years is post-processed once 
independently from the remaining 10 years used for calibration. 

For evaluation purpose, model skill scores as well as model error characteristics as used. 

The models’ performances are analyzed via mean skill scores and mean model error 

characteristics, averaged over all validation periods, as well as using the entire, not averaged, 

11 year validation time series. Mean skill scores and model error characteristics are presented 

in Figures 4.5─4.9. The models’ performances represent the station scale as each statistical 

model is calibrated and evaluated separately station by station. For graphical representation, 

the station-wise evaluation results are spatially averaged in sub-region 6, sub-region 8 

(compare Figure 4.2(b)), and for entire Austria. The two sub-regions are selected because of 

their different climate characteristics. Sub-region 6 is mainly dominated by westerly flows 

from the Atlantic with high precipitation amounts, whereas sub-region 8 features more 

continental dry characteristics with additional influence from the Mediterranean Sea.  

The results are divided in 3 parts. The first describes the general characteristics of the 

uncorrected RCM within all regions. The second focuses on the characteristics of each DECM 

and the third part analyses the effectiveness of DECMs compared to uncorrected RCM results. 

4.5.2 Regional climate model evaluation  

Gobiet et al. (2006) already compared the MM5 precipitation data from 1981 to 1990 on 

monthly scale to HISTALP observations (Auer et al., 2007). The same comparison is shown in 

Figure 4.4 on seasonal basis.  
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Figure 4.4 Mean seasonal differences of daily RCM precipitation sums compared to HISTALP observations. 
Continuous contours are positive; dashed contours are negative.  

Regarding Austria, the RCM features seasonally and regionally varying error 

characteristics with strong precipitation overestimation along the Alpine crest in winter (DJF), 

an overall good performance in summer (JJA), and underestimation at the southern Austrian 

border in autumn (SON). Gobiet et al. (2006) argue that, besides possible model deficiencies, 

the well-known problematic precipitation measurement at high altitudes, especially in DJF, 

may partly cause the pronounced overestimation. Secondly, the reduced SON precipitation in 

south-eastern parts of Austria is probably related to an under-representation of northern 

Mediterranean cyclones and a consequent lack of humidity. These findings further motivate 

the selection of sub-regions 6 and 8 for evaluation as these regions cover the problematic 

areas.  

4.5.3 Characteristics of the applied DECMs 

Referring to the MLR predictor selection, Table 4.2 shows the most important seasonal 

predictors for the considered study regions. All three regions indicate precipitation (accrnon, 

accrcon, pre), humidity-related parameters at surface (q2, pwat), as well as eastward (u) and 
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northward (v) wind at 10 m and 750 hPa, and surface vapor pressure (e2) to be the dominant 

predictors for local precipitation. The composition of the predictor set varies seasonally with 

increased importance of the convective precipitation (accrcon) and northward wind in summer 

months, which reasonably corresponds to the regional climate characteristics (see Section 4.3). 

The dominance of RCM precipitation as predictor supports the assumption that RCM 

precipitation integrates large parts of the relevant information for local precipitation. Further, 

the frequently claimed integration of humidity as predictor (e.g., Giorgi and Mearns, 1991; 

Wilby and Wigley, 2000; Fowler et al., 2007) is supported. 

Similar to point-wise predictor selection for MLR, Table 4.3 indicates that PCs of 

precipitation fields are by far most important for local precipitation for conditional resampling 

approaches. Further relevant predictors are pressure-related parameters at surface (es, psfc, 

pslv), geopotential height at 500 hPa (zg), and vertical velocity at 700 hPa (w). 

 
DJF MAM 

Sub-region 6 Sub-region 8 Entire Austria Sub-region 6 Sub-region 8 Entire Austria 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictors Prob 
[%] 

Predictor Prob 
[%] 

pre_sfc  19.5 q2_2m  16.2 pre_sfc  17.6 q2_2m 18.0 accrnon_sfc 19.6 accrnon_sfc 15.0 

accrnon_sfc  17.0 accrnon_sfc  13.1 accrnon_sfc 12.1 accrnon_sfc 12.7 accrcon_sfc 14.4 q2_2m 13.3 

u_700hPa 10.0 e2_2m  13.13 q2_2m  10.8 pre_sfc 12.7 q2_2m 8.6 pre_sfc 10.0 

iclc_sfc 8.2 pre_sfc  12.9 v_700hPa 9.8 e2_2m 11.7 e2_2m 7.5 e2_2m 9.4 

e2_2m 6.0 v_700 hPa  12.8 e2_2m  8.9 u10_10m 10.0 zg_700hPa 6.1 accrcon_sfc 6.6 

JJA SON 

Sub-region 6 Sub-region 8 Entire Austria Sub-region 6 Sub-region 8 Entire Austria 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

pre_sfc 14.5 v_700hPa 19.2 v_700hPa 17.4 pre_sfc 20.7 q2_2m 23.0 accrnon_sfc 16.6 

v_700hPa 14.2 pre_sfc 17.6 pre_sfc 15.4 accrnon_sfc 16.0 e2_2m 22.8 pre_sfc 14.5 

u_700hPa 10.7 accrcon_sfc 12.0 accrcon_sfc 7.7 q2_2m 11 accrnon_sfc 16.7 q2_2m 13.0 

accrnon_sfc 10.2 iclc_sfc 8.1 accrnon_sfc 7.4 e2_2m 10.2 accrcon_sfc 9.7 e2_2m 12.0 

pwat_sfc 8.5 u_700hPa 7.4 v_850hPa 6.3 v10_10m 7.2 pre_sfc 9.3 accrcon_sfc 8.6 

Table 4.2 Seasonal predictor variables for MLR approaches in sub-region 6, sub-region 8, and for entire Austria 
according to their occurrence probability (Prob) after objective predictor selection. Only predictors with occurrence 

probability greater or equal 5 % are taken into account. 
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DJF MAM 

Sub-region 6 Sub-region 8 Entire Austria Sub-region 6 Sub-region 8 Entire Austria 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

accrnon_sfc 
PC2  

17.2 accrnon_sfc 
PC3 

15.6 accrnon_sfc 
PC1 

11.3 accrnon_sfc 
PC2 

16.5 pre_sfc 
PC2 

23 pre_sfc_D2 
PC2 

15.6 

accrnon_sfc 
PC1  

16.7 es_2m 
PC2 

14.7 pre_sfc 
PC1 

10.6 accrcon_sfc 
PC1 

16.2 accrnon_sfc 
PC2 

17.1 accrnon_sfc 
PC2 

14.1 

w_700hPa 
PC3  

10.2 accrcon_sfc 
PC1 

13.8 accrnon_sfc 
PC2 

9.8 pre_sfc 
PC2 

11.5 pre_sfc 
PC1 

8.8 accrcon_sfc 
PC1 

10.1 

pre_sfc 
PC1  

7.7 pre_sfc 
PC1 

8.3 accrnon_sfc 
PC3 

7.7 accrnon_sfc 
PC1 

6.5 pre_sfc 
PC3 

7.4 pre_sfc 
PC1 

5.8 

psfc_sfc 
PC2  

6.7 zg_500hPa 
PC2 

6.1 pre_sfc 
PC2 

6.0     iclc_sfc 
PC1 

6.3     

JJA SON 

Sub-region 6 Sub-region 8 Entire Austria Sub-region 6 Sub-region 8 Entire Austria 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

Predictor Prob 
[%] 

accrnon_sfc 
PC1 

18.0 pre_sfc 
PC2 

18.9 pre_sfc 
PC1 

13.0 accrnon_sfc 
PC3 

22.5 accrcon_sfc 
PC3 

20.9 accrnon_sfc 
PC3 

22.1 

zg_500hPa 
PC2 

10.7 w_700hPa 
PC3 

12.9 pre_sfc 
PC2 

12.1 accrcon_sfc 
PC1 

22.0 accrnon_sfc 
PC3 

18.5 accrcon_sfc 
PC1 

14.6 

w_700hPa 
PC3 

10.5 accrcon_sfc 
PC1 

11.9 accrnon_sfc 
PC1 

10.8 pre_sfc 
PC2 

15.5 accrcon_sfc 
PC1 

15.5 accrcon_sfc 
PC3 

9.4 

pre_sfc 
PC1 

8.0 pre_sfc 
PC1 

11.5 accrcon_sfc 
PC1 

6.0     pre_sfc 
PC1 

7.5 pre_sfc 
PC2 

7.6 

pslv_slv 
PC3 

5.2 accrnon_sfc 
PC1 

7.9 w_700hPa 
PC3 

5.9     pre_sfc 
PC2 

6.6 pre_sfc 
PC1 

7.0 

Table 4.3 As in Table 4.2 but with atmospheric predictor fields for the analogue methods. PC indicates the used 
principle component. 

Figure 4.5 illustrates the annual evolution of the wet-day thresholds modWT  and the scaling 

factors S used in LOCI. Both parameters feature distinct annual cycles, which indicate 

frequency overestimation in winter and intensity underestimation in summer in the RCM. 
modWT  ranges from 1.5 mm/day to 5 mm/day, which differs from the results of Schmidli et al. 

(2006), who found wet-day thresholds around 1 mm/day for the same region with LOCI, but 

applied to coarser ERA-40 reanalysis and calibrated on the entire year. S varies around one 

with a reversed pattern compared to modWT  and shows comparable quantities to Schmidli et 
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al. (2006). The ranges of the magnitudes of S and modWT  indicate that, besides for the summer 

season, the RCM precipitation error is overall dominated by a frequency overestimation error.  

 

 

Figure 4.5 Annual cycles of wet-day threshold WT
mod (a) and scaling factor S (b) used for LOCI. Both parameters 

result from station-wise calibration and are spatially averaged. 

The seasonal correction functions of QM in Figure 4.6 show differences of all percentiles 

between observed and modeled calibration ecdfs for all study regions. The respective 

precipitation quantities are indicated on the x-axes. Generally, and particularly in winter in 

sub-region 6, the RCM overestimates wet-day precipitation intensities which leads to partly 

significant negative correction values, especially at the highest precipitation intensities (i.e., at 

the highest percentiles). By contrast, particularly in summer in sub-region 8 significant 

positive correction values at the highest precipitation intensities indicate a lack of extreme 

precipitation events in the RCM data. The highest corrections are applied to the highest 
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percentiles and range from ─12 mm/day (in winter in sub-region 6) to +15 mm/day (in 

summer and autumn in sub-region 8).  

 

 

Figure 4.6 Seasonal correction functions derived from differences of all percentiles between observed and modeled 
ecdfs in sub-region 6 (upper panels), sub-region 8 (middle panels), and entire Austria (lower panels). The 0th 

percentile represents the difference between ecdfs’ minima, the 100th percentile represents the difference between 
ecdfs’ maxima. The precipitation quantities corresponding to these percentiles are indicated on the x-axes. The 

correction functions are obtained equally as described in Figure 4.5. 

For entire Austria the correction function is strongly damped, which illustrates the 

importance of point-wise application where local error characteristics are taken into account 

instead of a broad spatial average. Abrupt changes of the correction function at highest 

modeled precipitation amounts, as illustrated in winter, spring, and summer in sub-region 6, 

are more probably related to statistical noise at these percentiles than to RCM error 

characteristics. 
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4.5.4 DECM evaluation 

For assessing the skill of the considered DECMs, their performances are evaluated regarding 

the median, variability, and indicators for extremes. Boxplots in Figure 4.7 display the median 

seasonal and annual differences between models and observations as lines in the middle of 25th 

and 75th quantile boxes derived from daily differences. Standardized Taylor diagrams 

(Figure 4.8; Taylor, 2001) show the normalized centered root-mean-square (RMS) difference 

of the different DECMs compared to observations as the distance to point 1 on the abscissa, 

the variance ratio between models and observations as the radial distance to the zero point, and 

the correlation between models and observations as the angle between the abscissa and the 

position vector (i.e. a perfect model would be displayed on point 1 of the abscissa). Error 

diagrams in Figure 4.9 illustrate the performances of the methods regarding precipitation 

intensity (SDII), wet-day frequency (Freq), the 95th percentile of all modeled days (Q95), and 

the 75th percentile on wet days (RQ75), where the latter two represent moderately extreme 

conditions. The results in Figure 4.9 are color-coded; lighter colors indicate smaller errors. 

Finally, a quantile-quantile plot in Figure 4.10 compares the 11 year seasonally and annually 

modeled to the observed distributions using all station time series within the respective region. 

This enables the analysis of the DECMs’ performances for absolute extreme conditions. In the 

case of linear regression models, also negative precipitation values are produced. Though 

unphysical, we did not replace these negative values by zeros in order to avoid the introduction 

of biases or the reduction of variability in the evaluation statistics. 

In Figure 4.7 the leftmost bars display the regional average RCM error characteristics. 

They indicate the largest error ranges in sub-region 6, as expected. The error range shows a 

high seasonality, which is related to overestimated temporal variability, shown in Figure 4.8. 

The results from Figure 4.5 and Figure 4.6, showing that higher modeled precipitation sums 

are positively biased, can be identified by the positive skewness of the difference bars.  
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Figure 4.7 Seasonal and annual errors of the uncorrected RCM and the considered DECMs in sub-region 6 (upper 
panels), sub-region 8 (middle panels), and for entire Austria (lower panels). The boxes show the 75

th
 percentile 

(upper limit), the median (line within the box), and the 25
th

 (lower limit). The respective mean observed 
precipitation amount is given in the header of each panel. The statistics result from station-wise evaluation of daily 

precipitation data and are spatially averaged. 

In comparison, all DECMs except MLR virtually correct the median error of daily 

precipitation to zero independent of season and region. QM systematically yields the best 

results followed by LOCI, AM, and NNAM. MLR partly even degrades error characteristics, 

which is probably related to non-linear relations between predictors and local daily 

precipitation as well as to non-normally distributed and heteroscedastic residuals (compare 

Wilks, 1995). However, with the simple extension of MLR to MLRR this deficiency can be 

removed due to the incorporation of error residuals (Equation (4.2)). MLRT corrects the 

median difference to nearly zero, but shifts the error distribution to negative values, whereas 

all other statistical approaches show nearly equally distributed differences around the median. 

Though only two sub-regions are presented here in detail, all DECMs show similar 

performances in all sub-regions shown in Figure 4.2. 
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Figure 4.8 Seasonal and annual Taylor diagrams comparing the uncorrected RCM and the considered DECMs with 
observations in sub-region 6 (upper panels), sub-region 8 (middle panels), and for entire Austria (lower panels). The 

skill scores (normalized centered RMS, correlation as well as normalized variance ratio) are obtained equally as 
described in Figure 4.7. 

The effect of DECMs on variability is displayed in Figure 4.8. In general, the RCM tends 

to overestimate day-to-day variability, but also shows pronounced underestimation in sub-

region 8. These deficiencies are removed by most DECMs. Major problems remain for MLR 

which strongly underestimates variability and MLRT which shows non-systematic errors in 

variability with the tendency to underestimation. However, by adding error residuals (MLRR) 

the variability is modeled adequately. Minor problems are shown for LOCI, where especially 

for entire Austria a tendency to variability overestimation is indicated. Additionally, LOCI was 

more sensitive to a reduced window size than QM concerning the variance ratio (not shown). 

None of the DECMs is able to increase correlation. This is expected for direct DECMs as they 

solely rely on temporal characteristics of climate model precipitation. AM, NNAM, and 

MLRR even degrade correlation. In the case of MLRR this is caused by the random 

resampling of residuals, whereas concerning the conditional resampling methods this might be 
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an indication that the mesoscale fields, used as predictors, do not fully explain local 

precipitation. Furthermore, with the exception of MLR, DECMs show no systematic 

reductions of the RMS, but even sometimes enlarge it. However, an increasing RMS does not 

indicate a worse model skill, as at low correlation levels an underestimated variance ratio 

lowers the RMS (compare MLR in Figure 4.8). In summary, most DECMs drastically reduce 

seasonal precipitation biases, some strongly improve the temporal variability, but any 

improves temporal correlation on a daily basis. However, since this study focuses on climate 

applications, the improvement of temporal correlation is not the objective. 

 

 

Figure 4.9 Seasonal and annual error portraits comparing the uncorrected RCM and the considered DECMs with 
observations. For each method and season, the results are given for entire Austria in the upper part, for sub-region 6 

(left) and sub-region 8 (right) in the lower part of the respective box. SDII: precipitation intensity, Freq: wet-day 
frequency, Q95: 95

th
 percentile on all days, RQ75: 75

th
 percentile only on wet days. The skill scores are obtained 

equally as described in Figure 4.7. 
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Figure 4.9 depicts several further performance indices: The uncorrected RCM 

overestimates wet-day frequency (Freq), as already demonstrated. Daily precipitation intensity 

(SDII), in contrast, shows regional variations, but the tendency to be underestimated by the 

RCM. This RCM Freq and SDII behavior is characteristic of the “drizzle” problem in climate 

models (e.g., Gutowski et al., 2003; Fowler and Kilsby, 2007). LOCI and QM correct these 

errors to virtually zero. Resampling approaches, particularly NNAM, show significant skill, 

but slight systematic underestimation of the analyzed indicators. Although MLRR improves 

MLR, both regression approaches fail in reproducing intensity and frequency, with drastic 

intensity underestimation (up to ─4.6 mm per wet day) and overestimation of frequency (up to 

about 12 days per month). MLRT shows similar results for intensity, but underestimation of 

frequency.  

Towards extreme precipitation (Q95, RQ75), the uncorrected RCM shows an 

inhomogeneous picture with overestimation in sub-region 6 and underestimation in sub-region 

8. Only in summer all regions agree in underestimation of higher precipitation amounts. QM 

and LOCI but also AM as well as NNAM systematically reduce RCM error characteristics in 

these moderately extreme precipitation indices, which is also demonstrated by the quantile-

quantile plots in Figure 4.10. MLR and MLRT underestimate Q95 and RQ75 significantly, 

demonstrating their deficiencies in estimating the daily precipitation’s distribution. MLRR 

captures Q95 surprisingly well, whereas RQ75 is heavily biased. This is related to MLRR 

resampling, which correctly broadens the entire distribution as seen in Figure 4.10, but does 

not correct the general MLR problem of estimating the right wet-day probability. The latter 

fact is confirmed by the underestimation of RQ75. The problematic characteristics of MLRT 

become obvious in Figure 4.10, which shows a significant curvature in the quantile-quantile 

relation. Figure 4.10 also confirms the superior performance of LOCI, AM, NNAM, and 

particularly QM for higher quantiles. However, minor deficiencies still remain. E.g., in winter 

in sub-region 8, LOCI significantly overestimates heavy precipitation events greater or equal 

30 mm/day. This is caused by scaling factors which adequately correct for the mean, but fail to 

correct these extremer precipitation intensities in the RCM where the error characteristics 

change from under- to overestimation (compare Figure 4.10 upper leftmost panel). 
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Figure 4.10 Seasonal and annual quantile-quantile (QQ) plots comparing the uncorrected RCM and the considered 
DECMs with observations. The QQ plots take into account the respective 11 years seasonal or annual data of each 

individual station within the considered region. If the continuous curves equal the dashed line, the modeled data has 
the same distribution as the observed data. The limit of 50 mm/day at least represents the 99th percentile in the 

observed data.  

4.6 Summary and conclusions 

State-of-the-art regional climate models feature significant errors and are therefore often not 

directly applicable to climate change impact research. This calls on the one hand for further 

RCM development and improvement and on the other hand for the more pragmatic approach 

of empirical-statistical post-processing and error correcting RCM results to create user tailored 

datasets for climate change impact research. 

This study evaluated and compared seven different empirical-statistical downscaling and 

error correction methods (DECMs) for daily precipitation sums from a RCM on the station 
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scale. For this purpose, a cross validation framework was used, where each evaluated year was 

post-processed independently from the calibration period.  

Most DECMs show enormous potential for reducing RCM error characteristics, which 

underlines the advantages of combining RCMs and DECMs in climate change impact research. 

None of the DECMs is able to improve the modeled temporal correlation with observations, 

but this is of minor importance for climatological studies. Direct DECMs (QM, LOCI) and 

non-linear indirect resampling methods (AM, NNAM) virtually remove RCM deficiencies in 

the entire precipitation distribution, i.e. they correct for mean, day-to-day variability, and 

extremes. The improvements are obtained regardless of season and region. This indicates the 

transferability of the presented DECMs from the Alpine area in this study to other regions and 

climates.  

QM, LOCI, AM, and NNAM result in nearly similar skills with slight advantages for QM. 

QM is also favorable due to its simplicity, non-parametric configuration, and consequent 

applicability to other parameters than daily precipitation. However, instabilities at the highest 

quantiles of the correction function and the possible extrapolation of the correction function 

beyond the range of observed values should be further investigated to optimize the 

applicability of QM to future climate scenarios, particularly with regard to the analysis of 

trends in extremes. LOCI is of comparable simplicity to QM, also independent of distribution, 

but features some instabilities in the estimation of temporal variability. Furthermore, as the 

LOCI scaling factors are calibrated on climatological mean values, LOCI does not adequately 

correct data which features significantly curved, intensity dependent error characteristics. The 

dominance of direct DECMs, which only build on model precipitation as predictor, is not 

surprising as the predictor selection for the indirect DECMs yielded RCM precipitation to be 

of major relevance for local precipitation. The resampling methods’ performances are 

comparable to QM as well, though they tend to underestimate the highest quantiles as 

LOCI and slightly degrade temporal correlation. The linear MLR techniques, although 

optimized by randomization, power law transformation, and objective predictor selection, are 

defective in estimating non-normally distributed daily precipitation and thus cannot be 

recommended for RCM precipitation error correction. However, non-linear regression 

techniques as the support vector regression approach (e.g., Hsieh, 2009) might be worth 

exploring. 
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The discussed improvements of DECMs are, in a strict sense, only valid for the MM5 

mesoscale climate model used in this study and cannot directly be transferred to other RCMs. 

However, further works by Piani et al. (2009) or Dobler and Ahrens (2008) and our own 

experience give confidence in the robustness especially of direct DECMs applied to any RCM, 

if the general assumption of stationary error-characteristics is not violated. 

Considering the application of the presented methods to climate scenarios, it has to be 

emphasized that this study does not take into account the effect of decadal climate variability 

on model error characteristics. Thus, the robustness of DECMs applied to long-term RCM 

simulations remains to be demonstrated in further investigations. Nevertheless, DECMs should 

be separated into two classes if applied to climate change assessment studies: Firstly, methods 

that base their calibration on pairs of observed and modeled values are only applicable where 

the calibration-simulation is correlated with weather. This applies, e.g., to a RCM simulation 

driven by reanalysis boundary conditions. Such application would correct for the RCM error 

(assuming perfect boundary conditions), but if used for a future scenario which is driven by a 

GCM, not correct the GCM error. Secondly, “climatological” methods that base their 

calibration on climatologies only, like QM and LOCI, do not require calibration-simulations 

that are correlated to actual weather. They can be, e.g., calibrated on RCM simulations driven 

by a GCM control run and would, if applied to future scenario simulations, correct for the 

combined GCM-RCM error, which is a clear advantage in climate applications.  
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5.1 Abstract 

Realizing the error characteristics of regional climate models (RCMs) and the consequent 

limitations in their direct utilization in climate change impact research, this study analyzes a 

quantile-based empirical-statistical error correction method (quantile mapping, QM) for RCMs 

in the context of climate change. In particular the success of QM in mitigating systematic 

RCM errors, its ability to generate “new extremes” (values outside the calibration range), and 

its impact on the climate change signal (CCS) is investigated. 

In a cross-validation framework based on a RCM control simulation over Europe, QM 

reduces the bias of daily mean, minimum, and maximum temperature, precipitation amount, 

and derived indices for extremes by about one order of magnitude and strongly improves the 

shapes of the related frequency distributions. In addition, a simple extrapolation of the error 

correction function enables QM to reproduce “new extremes” without deterioration and mostly 

with improvement of the original RCM quality. QM only moderately modifies the CCS of the 

corrected parameters. However, if climate variables feature a trend and have magnitude-

dependent error characteristics, QM modifies the CCS in a reasonable way. Additionally, QM 

has large impact on CCSs of non-linearly derived indices of extremes, such as threshold 

indices. 
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 5.2 Introduction 

Regional climate models (RCMs; Giorgi and Mearns 1991, 1999; Wang et al., 2004) are 

widely used tools for providing regional climate information over limited areas. With projects 

such as ENSEMBLES (van der Linden and Mitchell, 2009) or PRUDENCE (Christensen and 

Christensen, 2007) the availability and reliability of RCM simulations for Europe has 

increased rapidly in recent years. However, RCMs still feature considerable systematic errors 

(e.g., Frei et al., 2003; Suklitsch et al., 2008, 2010) which complicate the application of RCM 

results in climate change impact research.  

One common way to deal with model errors in climate change impact studies is the “delta 

change approach”, also called perturbation method (Déqué, 2007; Fowler and Kilsby, 2007; 

Graham et al., 2007). This method generates climate scenarios by adding the climate change 

signal (CCS) from a RCM simulation to daily or monthly observations. CCS is defined as the 

difference of climatological means (e.g., monthly, seasonal, or annual) between the future 

(e.g., 2021–2050) and present or past (e.g., 1971–2000) of a climate variable. By taking the 

difference, systematic model errors are removed as long as they are similar in both periods, but 

any potential change in temporal variability is removed as well, since variability is inherited 

from the observations.  

Besides the delta approach, more sophisticated RCM post-processing methods have been 

proposed and evaluated by, e.g., Boé et al. (2007), Graham et al. (2007), Leander and 

Buishand (2007), Lenderik et al. (2007), Dobler and Ahrens (2008), Piani et al. (2009, 2010), 

or Themeßl et al. (2010). These approaches belong to the family of Model Output Statistics 

(MOS; Wilks, 1995; Maraun et al., 2010) and are termed “empirical-statistical downscaling 

and error correction methods” (DECMs). DECMs are technically identical to empirical-

statistical downscaling (ESD; Benestad et al., 2008) but relate modeled instead of observed 

predictors to observations (predictand). As a consequence, DECMs are only valid for the 

model they are calibrated on and, in addition to the ESD’s traditional purpose of downscaling 

coarser resolved model results to the local scale, also aim at the reduction of model errors. 

Although the success of DECMs for correcting RCM simulations has already been 

demonstrated (e.g., Dobler and Ahrens, 2008; Terink et al., 2010; Themeßl et al., 2010), these 

studies focused on the evaluation of DECMs applied on relatively short simulations of the past. 

Applications to longer climate simulations also exist but primarily in hydrological literature 



5.3 Data and methods 
 

 

  
49

and rather focus on the results of hydrological models (Dettinger et al., 2004; Wood et al., 

2004; Fowler and Kilsby, 2007; Leander et al., 2008; van Pelt et al., 2009) than on the 

performance of the error correction. Thus, the aim of this study is a) to extend the available 

studies by analyzing the performance of one particular DECM in the context of climate 

change, b) to demonstrate the flexibility of the DECM to be successfully applied to different 

parameters c) to investigate options to reproduce “new extremes” (values outside the 

calibration range) with DECMs, and d) to analyze the impact of the DECM on the CCS.  

The article is structured as follows: Section 5.3 focuses on the data used in this study and 

on methodological issues. Section 5.4 discusses the performance of the applied DECM for 

different parameters and its impacts on CCSs, followed by Section 5.5 which summarizes and 

discusses the key findings of this study. 

5.3 Data and methods 

5.3.1 Data 

Daily mean, minimum, and maximum temperature as well as daily precipitation amount from 

the COSMO model in climate mode (CCLM, version 2.4.6; Böhm et al., 2006) are used in this 

study. The model data is provided by ETH Zurich within the ENSEMBLES project and covers 

entire Europe with a gridspacing of about 25 km. The applied simulations are driven by lateral 

boundary conditions from the ERA-40 reanalysis (Uppala et al., 2005) for the period  

1961–2000 (hindcast simulation) and from the coupled ocean-atmosphere general circulation 

model (GCM) HadCM3 with normal sensitivity (Q0; Gordon et al., 2000) for the period  

1951–2050 (control and scenario simulation). The control simulation (1951–2000) is based on 

observed greenhouse gas concentrations and the scenario simulation (2001–2050) on the SRES 

greenhouse gas emission scenario A1B (Nakicenovic et al., 2000). Within the ENSEMBLES 

project 23 RCM simulations driven by 8 different GCMs are available. Compared to other 

simulations in this ensemble, the CCLM simulation can be regarded as sensitive in terms of 

temperature change and moderate in terms of precipitation change (Heinrich and Gobiet 2010).  

The E-OBS dataset (version 2; Haylock et al., 2008) provides the observational reference 

for this study. We use the 0.25-degree gridded version of E-OBS, which contains daily mean, 

minimum, and maximum temperature as well as daily precipitation amount for the period 
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1950–2006. The data represents spatially averaged values rather than point-scale information 

and is therefore suited to be compared or related to RCM results (Déqué, 2007). However,  

E-OBS features known deficiencies, i.e., mean values and temperature parameters are of 

higher quality than extremes and precipitation amount (Hofstra et al., 2009). As E-OBS lacks 

some data at the beginning of the 1960s, only grid cells with at least 80 percent data 

availability between 1961 and 2000 are used. 

For the subsequent evaluation, Europe is divided into eight sub-regions, according to 

Christensen and Christensen (2007) (Table 5.1). 

 
Sub-region 

number 

Sub-region name Western 

Boundary 

[°E] 

Eastern 

Boundary 

[°E] 

Southern 

Boundary 

[°N] 

Northern 

Boundary 

[°N] 

1 British Islands (BI) ─10 ─2 50 59 
2 Iberian Peninsula (IP) ─10 ─3 36 44 
3 France (FR) ─5 5 44 50 
4 Mid-Europe (ME) 2 16 48 55 
5 Scandinavia (SC) 5 30 55 70 
6 Alps (AL) 5 15 44 48 
7 Mediterranean (MD) 3 25 36 44 
8 Eastern Europe (EA) 16 30 44 55 

Table 5.1 European sub-regions. 

5.3.2 Method 

Basic Quantile Mapping method 

Based on the results of a DECM inter-comparison by Themeßl et al. (2010), quantile mapping 

(QM) is chosen as DECM for this study. Our implementation of QM can be classified as 

distribution-based (calibrated on climatological distributions rather than on paired data), direct 

(predictor and predictand are the same parameters), and parameter-free (using empirical 

cumulative density distributions, ecdfs, rather than theoretical cumulative distribution 

functions). QM is applied on daily basis and for each grid point separately resulting in a 

corrected time series corY at time t and grid cell i via  
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( )( )raw
,

calmod,
,

1calobs,
,

cor
, itidoyidoyit XecdfecdfY

−
=   (5.1) 

 

with 1ecdf −  being the inverse ecdf and doy indicating the respective day of the year in the 

calibration period (cal). According to Equation (5.1), QM corrects raw climate model output 
raw

X  by mapping the modeled (mod) on the respective observed (obs) ecdf of the calibration 

period (cal) (compare Panofsky and Brier, 1968). For QM calibration, doy is centered within a 

31 days moving window which is used to construct an ecdf for each day of the year. 

Frequency adaptation 

This study extends the basic QM procedure described in the previous subsection (QMv0, 

further details in Themeßl et al., 2010) by frequency adaptation (QMv1). Frequency adaptation 

(FA) is applied in order to account for a methodological problem which occurs if the dry-day 

frequency in the model results ( calecdf mod, ) is greater than in the observations ( calobsecdf , ). 

Usually this is not the case, since many RCMs tend to underestimate the dry-day frequency 

(“drizzling-effect”; e.g., Gutowski et al., 2003), but occurs, e.g., along with the so called 

summer drying problem of RCMs in south-eastern Europe (Hagemann et al., 2004;  

Jakob et al., 2007). In such cases, QM without FA results in a systematic wet precipitation bias 

as any dry day in raw
X  is mapped to a precipitation day (compare Figure 5.1). With FA only 

the fraction ( ) ( )( ) ( )0/00 calmod,
,

calobs,
,

calmod,
,0 idoyidoyidoy ecdfecdfecdfP −=∆  of such dry-day cases with 

probability P0 are corrected randomly by linearly interpolating between zero precipitation and 

the precipitation amount of ( )( )0calmod,
,

1calobs,
, idoyidoy ecdfecdf

−
 (the first precipitation class in QM 

without FA). By this means, the wet bias is removed (Figures 5.1a and 5.1b). FA also confirms 

its applicability and stability in a stricter evaluation setup with differing calibration and 

evaluation periods (decadal cross validation, see Section 5.4.1) between 1961 and 2000. 

Applied on the control RCM simulation and the observational reference E-OBS, the summer 

season precipitation overestimation in Eastern Europe of QM without FA is removed 

systematically. 
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Figure 5.1 The impact of FA on QM’s performance for daily precipitation. QMv0 and QMv1 are shown. Both QM 
versions are calibrated and evaluated for the July 1 1961─2000 at one single grid-cell in Eastern Europe with 

pronounced summer drying problem (panels a and b). Precipitation in panel b is classified into 1 mm/d bins, where 
the respective class mid is indicated on the x-axis. Panels c (QMv0) and d (QMv1) show the cross validated summer 

season precipitation bias maps for Eastern Europe. 

New extremes 

In climate change applications, the question arises how to treat values outside the range of the 

calibration period (“new extremes”). Unlike for a wide range of values that are not too close to 

the outer bounds of the calibration range (where QM clearly reduces model errors, see 

subsequent sections), DECMs are expected to deteriorate RCM results with regard to new 

extremes, since they are often per construction not able to reproduce such values. In order to 

mitigate this problem, two further extensions of QM are proposed here and compared to 

QMv0. These extensions comprise  
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a) a constant extrapolation of the correction value (difference between calobsecdf ,  and 
calecdf mod, ) at the highest and lowest quantiles of the calibration range (QMv1a; compare 

Boé et al., 2007; Déqué, 2007) and 

b) the same extrapolation, but neglecting the three highest/lowest correction terms (QMv1b). 

This approach is based on the assumptions that the tails of the correction functions are 

likely to be very noisy. 

 

Fitting theoretical distributions to the empirical distribution function of the data (e.g.,  

Piani et al., 2009; Dobler and Ahrens, 2008) would resolve the “new extremes” problem as 

well, but is not part of this study, since this would lead to a loss of information compared to 

empirical distributions, as well as to a limitation of the flexibility of QM, which can, in our 

implementation, be applied to any parameter in any region without prior knowledge of its 

distribution. Also fitting arbitrary functions to the ecdfs resolves the “new extremes” problem 

(see Piani et al., 2010 for an application on global climate models), but still, some a priori 

information about the shape of the ecdf is needed which again limits the flexibility of the 

method to some degree and potentially introduces biases.  

The evaluation of QMv1a and QMv1b is based on the ERA-40-driven CCLM hindcast in 

order to assure highest possible temporal correlation between the model and observations. This 

is necessary in order to design an evaluation setup that contains “new extremes” in the 

observational data of the evaluation period, which should be also represented in a well-

performing model. The annual maxima of uncorrected, corrected (3 variants), as well as 

observed daily time series for the 5 years containing the highest annual maxima in the 

observation between 1961 and 2000 are evaluated at each grid cell over Europe. The 

evaluation years are always left out in the calibration process, which guarantees that the 

evaluated extremes are outside of the calibration range. Quantile-quantile (QQ)-plots in Figure 

5.2 show the results for maximum one day precipitation for entire Europe. Comparable results 

are obtained for the three temperature parameters.  
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Figure 5.2 Comparison of different QM approaches applied to new extremes of daily precipitation amount. The QQ-
plot compares yearly maxima of the 5 years with highest maxima for each grid cell in entire Europe between 1961 

and 2000. 

The uncorrected RCM overestimates the maxima in this case, while QMv0 significantly 

underestimates the new extremes due to its methodological constraint of mapping to the 

maximum of the calibration period. In contrast, QMv1a and QMv1b are both able to generate 

new extremes. In addition, both extrapolation methods are capable to partly outperform the 

uncorrected RCM even for new extremes. This is surprising, since the simple extrapolation is 

based only on weak empirical evidence. The remaining overestimation in the upper tails is due 

to the fact, that allowing new extremes in QM is accompanied with the loss of the ability to 

reliably remove outliers from the RCM output (as done by QMv0). Comparing QMv1a to 

QMv1b, QMv1a performs slightly better in this example due to the relatively smooth tails of 

the CCLM error correction functions (not shown), but for stability reasons and concerning 

other parameters and RCMs, it might be still advisable to apply QMv1b in climate change 

applications. In our subsequent analyses QMv1a is applied. This analysis clearly indicates that 

such kind of extrapolation of the correction function is favorable, since it removes the major 

drawback from the QM method without deterioration of the RCM quality. 
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5.4 Results 

5.4.1 Evaluation of QM with regard to temperature and precipitation 

The evaluation focuses on QM’s error correction potential, not on downscaling, as the RCM 

and E-OBS feature comparable spatial resolutions. In order to assess the applicability of QM to 

a climate simulation setup (i.e., to a GCM-driven RCM), our evaluation is based on the control 

simulation between 1961 and 2000 and the observational reference E-OBS. Based on the 

climate simulation setup, QM corrects for the combined GCM-RCM error. Such application is 

only possible with distribution-wise DECMs that do not rely on temporal correlation between 

the model and the observation. The flexibility of QM is assessed by evaluating not only daily 

precipitation amount, for which the method was originally designed (Themeßl et al., 2010), but 

also daily mean, minimum, and maximum temperature.  

We apply a decadal “leave one out” cross validation approach (e.g., Themeßl et al., 2010), 

where each decade within 1961─2000 is corrected independently with the remaining 30 years 

used for calibration. The error characteristics are discussed either averaged over the four 

validation decades via spatial bias maps or for the entire 40 validation years via probability 

density functions (pdfs) for sub-regions.  

Uncorrected daily mean temperature in Figure 5.3 features a seasonally and regionally 

varying bias between ─3.6 K and +2.8 K (sub-regional averages). Smaller scale biases are 

larger and often associated with orographical features and coastlines. With the exception of the 

summer season (JJA), CCLM is too cold with strongest negative biases in spring (MAM) in 

SC as well as throughout the year along the Alpine crest. In summer the model exhibits a 

strong warm bias in large parts of continental Europe peaking in IP, EA, and MD. Biases of 

minimum and maximum temperature partly strongly deviate in their patterns as well as in 

magnitude from these mean temperature characteristics (not shown).   

Regardless of the spatially and temporally varying error characteristics, QM corrects the 

temperature bias to virtually zero throughout Europe (lower panels in Figure 5.3). Remaining 

absolute biases are ≤ 0.2 K on the sub-regional scale and ≤ 0.3 K on the grid cell scale. Similar 

results are obtained for daily minimum and maximum temperature (not shown).  
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Figure 5.3 Seasonal bias of uncorrected (upper four panels) and corrected (lower four panels) mean temperature 
from the RCM control simulation (1961─2000) compared to E-OBS. Sub-regional mean biases and the respective 

mean observations (lower number in upper four panels) are given in the middle of each box. Statistics for entire 
Europe are given in the left upper corner of each panel. 
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Figure 5.4 Seasonal observed, uncorrected model, and corrected model pdfs (upper sub-panels) of mean temperature 
for IP (top row), SC (middle row) and AL (bottom row). Differences between the uncorrected/corrected and 

observed data at different percentiles are shown in the lower sub-panels. 

The modeled and observed temperature pdfs are shown in Figure 5.4 for the sub-regions IP, 

SC, and AL. These sub-regions have been selected for closer evaluation due to their differing 

climatic conditions and their differing bias characteristics and will be used subsequently for all 

further analyzes. The uncorrected RCM pdfs roughly capture the seasonal characteristics, but 

show notable deviations from the observational reference. The errors at different percentiles 

are mostly in the range of ±3 K and highly magnitude dependent. Remarkable is the frequency 

peak of the RCM at zero degree in SC. This is most probably related to problems in the 

representation of melting and freezing processes in the CCLM soil and snow models.  

In contrast, all corrected pdfs nicely resemble the observations and do not feature any 

spurious deviations at zero degree. However, the percentile difference plots also show that the 

tails of the corrected time series still feature considerable errors. Nevertheless, they tend to be 
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smaller than in the uncorrected time series and only concern rare values outside the ±2δ range. 

Similar results are obtained for daily minimum and daily maximum temperature (not shown). 

 

 

Figure 5.5 The same as in Figure 5.3 but for precipitation amount. 
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In the case of daily precipitation amount (Figure 5.5) the uncorrected CCLM biases range 

from ─0.7 mm/d to +1.5 mm/d and the relative regional biases vary between about ─40 % and 

+70 % (sub-regional averages). The bias pattern features more pronounced regional/local 

variation than the temperature bias, and particularly follows orographic structures in winter 

(DJF), spring and autumn (SON). Referring to Hofstra et al. (2009), who concluded that E-

OBS is of limited quality in areas with complex terrain, these biases could be partly due to 

errors in the reference dataset. Simultaneously, a wet bias covers major parts of continental 

Europe with widespread areas of more than +0.7 mm/d. In summer, precipitation is strongly 

underestimated in southern Europe with dry maxima in IP, MD and EA. Together with the 

strong overestimation of temperature in the same sub-regions, this deviation represents the 

already mentioned summer drying problem, which is found in several RCMs over Europe.  

 

 

Figure 5.6 The same as in Figure 5.4 but for precipitation amount. 
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With QM (including frequency adaptation) the bias is almost removed across Europe, 

independently of region and season. Remaining regional scale absolute biases amount to 

≤ 0.1 mm/d at sub-regional scale and ≤ 0.5 mm/d at grid cell scale. 

The pdfs of daily precipitation amount (Figure 5.6) reveal that the dry-day frequency is 

systematically underestimated by CCLM, which is compensated by the overestimation of 

precipitation between 0.1 mm/d and 1 mm/d (“drizzling effect”). The frequency of heavy 

precipitation events is mostly overestimated by CCLM. Similar to mean temperature, the 

precipitation error is clearly dependent on the magnitude of precipitation amount. 

Quantile mapping corrects the frequency of dry days adequately, also through the 

implementation of FA, and properly adjusts intensities below 30 to 50 mm/d; the frequency of 

higher intensities is still often overestimated, depending on season and region. However, these 

errors are of smaller magnitude than the uncorrected ones.  

5.4.2 Evaluation of QM with regard to derived parameters  

The performance of QM with regard to derived parameters is investigated in this subsection. 

For this purpose, we consider different indices of extremes including absolute maxima, such as 

maximum daily mean temperature (tasx) and maximum one day precipitation (px1d), as well 

as indices related to thresholds, such as number of summer days (days with maximum 

temperature > 25°C; txn25), number of tropical nights (days with minimum temperature > 

20°C; tnn20), precipitation intensity (mean precipitation amount on days ≥ 1 mm/d; pint), and 

number of heavy precipitation days (days with precipitation amount ≥ 10 mm/d; pn10).  

Without correction, all temperature extreme indices in Figure 5.7 feature a positive bias in 

average and a north-south gradient from negative or nearly no bias in SC and parts of BI to 

strong positive bias in southern Europe. The positive biases and the respective bias patterns are 

mainly related to the warm bias of CCLM in summer. For tasx the sub-regional biases vary 

between ─0.6 K and +5.2 K, whereas sub-regional biases for txn25 and tnn20 amount up to 

about +28 days/year (days/y) and +20 days/y, respectively. In the case of tnn20, the maximum 

sub-regional biases exceed the respective observations by one order of magnitude. 

After error-correction the spatial biases are either completely removed or reduced by 

roughly one order of magnitude: remaining sub-regional absolute biases are ≤ 0.6 K (≤ 1.6 K 

on the grid cell scale) for tasx, ≤ 2.2 days/y (≤ 4.4 days/y on grid cell scale) for txn25, and 
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≤ 0.4 days/y (≤ 2.7 days/y on grid cell scale) for tnn20. QM also adapts the shape and kurtosis 

of the pdfs. Minor discrepancies at the tail of the tasx distribution (< ±3 K) remain, whereas 

errors for corrected txn25 and tnn20 remain small throughout the entire distribution. Similar 

results are obtained for IP and SC (not shown). 

 

 

Figure 5.7 Annual bias characteristics of tasx (top row), txn25 (middle row) and tnn20 (bottom row). The left 
column shows the uncorrected RCM bias, the middle column the corrected RCM bias and the right column the pdfs 

(upper sub-panels) and differences between the uncorrected/corrected and observed data at different percentiles 
(lower sub-panels) for AL. 
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Figure 5.8 The same as in Figure 5.7 but for pint (top row), pn10 (middle row) and px1d (bottom row). 

Biases of precipitation-related indices in Figure 5.8 reveal that the uncorrected model 

overestimates precipitation extremes in most parts of Europe, with the already described 

orographically induced structures. The overestimation patterns for pint and pn10 essentially 

cover the same regions with large areas ≥ +0.7 mm/d and ≥ +7 days/y, respectively. px1d is 

overestimated even more widespread by more than +9 mm/d. The relative biases for all three 

parameters only exceed +50 % in rare cases for px1d. QM reduces the sub-regional absolute 

biases to ≤ 0.1 mm/d (≤ 0.5 mm/d on grid cell scale) for pint, ≤ 0.3 days/y (≤ 2.6 days/y on 
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grid cell scale) for pn10, and ≤ 4.4 mm/d (≤ 19.5 mm/d on grid cell scale) for px1d. Similar to 

the temperature extremes the errors in the shape as well as in the kurtosis of the pdfs are 

strongly reduced. All three corrected indices of precipitation extremes feature a slight wet bias 

at the lowest values (similar to the uncorrected indices). Furthermore, a reduced 

overestimation of px1d remains above about 75 mm/d. Similar results are obtained for IP and 

SC (not shown). 

5.4.3 Impact of QM on the climate change signal 

In order to evaluate the impact of QM on the CCS, QM calibrated on the control simulation 

between 1961 and 2000 is applied to the RCM control and scenario simulation until 2050. 

CCSs are then calculated on monthly basis between the periods 1971─2000 and 2021─2050 

for the uncorrected as well as for the corrected time series and compared with regard to the 

mean CCS, spatial CCS pattern, annual cycle of the CCS, and the significance of the monthly 

CCS. Differences between corrected and uncorrected CCSs are given in absolute and relative 

numbers. In cases with small absolute CCSs, numbers are given with higher accuracy, as the 

small rounded absolute differences then may result in misleading relative differences. 

Significance is determined by the Wilcoxon rank sum test (Wilks, 1995) on the 95 % 

significance level.  

For the purpose of correcting future scenarios, it is assumed that the error correction 

function (the statistical model) from the calibration period remains valid for the future period 

(stationarity assumption; Benestad et al., 2008; Maraun et al., 2010). A consistent evidence for 

the validity of this assumption is beyond the scope of this study, but it can be expected that in 

our application the stationary assumption is better met than in most classical statistical 

downscaling approaches, since we apply a direct method and do not involve large scale-gaps. 

By this means, the effects of climate change are already represented in the predictor to a large 

degree and the transfer function can be expected to be largely unaltered by climate change 

within the calibration range. Given that, and the already demonstrated skill of QM within the 

calibration range and partly beyond, we are confident in the application of QM to future 

scenarios. However, a consistent quantification of the limitations arising from the stationary 

assumption is one of the most important issues for further research in our field.  
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Figure 5.9 displays the uncorrected and corrected CCS of mean temperature. According to 

the uncorrected RCM, Europe will experience a mean temperature increase of +2.0 K on 

average until the mid of the 21st century. Northern Europe features the highest increase 

(+2.4 K in SC) whereas continental Europe warms between +1.7 K and +2.0 K on the sub-

regional scale. The smallest temperature increase is found in BI with +1.5 K. The sub-regional 

absolute impact of QM on the annual temperature CCS is ≤ 0.3 K, thus ≤ ~20 %. 

 

 

Figure 5.9 Annual mean maps of the uncorrected monthly CCS (left column), the difference between the 
uncorrected and the corrected CCS (middle column), and the respective annual cycles of the CCS for three sub-

regions. Top row: temperature; bottom row: precipitation amount. In the lower part of the annual cycle plots change 
of significance is indicated with “o” (unchanged significance), “-“ (loss of significance after correction), and “+” 

(significance established after correction). 

The impact pattern features a north-south gradient from local increase in northern SC to 

more widespread decreases in EA, AL, MD, and IP. The corresponding annual cycles for IP, 

SC, and AL reveal regionally and seasonally differing characteristics, with CCSs between 

+0.9 K and +3.5 K. The overall characteristics of the annual cycles are not changed by QM. 
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Nevertheless, QM impact peaks at ─0.5 K in January in AL (~20 % of the uncorrected CCS). 

This can be related to the shape of the error correction function in combination with a general 

positive trend (Figure 5.10): E.g., the DJF temperature pdf is shifted towards higher 

temperatures in the scenario period, which are corrected by smaller positive correction terms 

than the lower temperatures in the control period. Thus, the CCS is reduced compared to the 

uncorrected scenario. Similar reasoning applies to other regions and seasons. The significance 

of the monthly CCS remains unchanged.  

The precipitation CCS shows a north-south gradient over Europe. The uncorrected 

precipitation CCS ranges from an increase of +0.3 mm/d in SC to a decrease of ─0.2 mm/d in 

IP. This pattern is already known from various RCM simulations and, e.g., discussed in Giorgi 

and Coppola (2007) or van der Linden and Mitchell (2009). QM leads to scattered local impact 

on the CCS mostly around mountain ridges or coastlines and only small impact (about 10 %) 

on the sub-regional scale. The sub-regional uncorrected annual cycles of CCSs vary between 

─0.7 mm/d and +0.6 mm/d depending on region and season. Similar to mean temperature, the 

overall characteristics of the annual cycles are not changed by QM. Only during summer 

months systematic differences of 0.1 mm/d (about 30 %) are visible in IP and AL. This 

increased negative CCS is related to more wet days between 20 mm/d and 50 mm/d in the 

control period compared to the scenario period and the high correction values at these 

intensities (see Figure 5.10 for AL). Similar to mean temperature, the significance in the 

obtained CCSs remains unchanged in almost all cases.  

Figure 5.11 shows uncorrected and corrected CCSs of the investigated temperature-related 

extremes. Uncorrected tasx increases stronger in the north and south (+1.7 K to +2.0 K sub-

regionally) than in the rest of Europe (+1.2 K to +1.6 K). The mean tasx CCS (+1.8 K) is 

smaller than the mean temperature CCS. txn25 and tnn20 show a gradient of increasing 

summer days and tropical nights from north to south, with no change northern of a certain 

latitude. The southern boundary of this zero-change area is strongly related to the threshold 

values used in the calculation of the indices. The sub-regional maximum changes amount to 

+1.8 days/month (days/m) (≙ 21.6 days/y) and +1.7 days/m (≙ 20.4 days/y) for txn25 and 

tnn20, respectively. The impact of QM on the annual CCS is not uniform between indices and 

regions. While the sub-regional impact of QM on tasx CCS is around 10 % or smaller, QM 

modifies the CCS of txn25 and tnn20 by up to 80 %.  
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Figure 5.10 Seasonal pdfs in AL for mean temperature (first row) and precipitation amount (third row) for the 
period 1971─2000 (light grey) and 2021─2050 (black). The lower part of each panel displays the differences 
between scenario and control period at different percentiles. The second and fourth rows show the seasonal 

temperature and precipitation correction functions. Correction terms are derived from differences at different 
percentiles between observed and modeled ecdfs. The regional mean quantities corresponding to these percentiles 

are indicated on the respective x-axes. 
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The annual cycle of tasx CCS varies between +0.8 °C and +3.1 °C and is comparable to 

mean temperature, except that IP does not feature an outstanding tasx warming. Similar to 

mean temperature, QM does not change the general characteristic of the annual cycle, but 

shows notable correction in certain months, e.g., in AL peaking in June at +0.7 K (more than 

20 %). These differences are related to the same reasons as discussed for mean temperature.  

 

 

Figure 5.11 Same as Figure 5.9 but for tasx (top row), txn25 (middle row) and tnn20 (bottom row). 
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The annual cycle of the uncorrected txn25 CCS shows two maxima in IP and SC and one 

maximum in AL between March and November and ranges up to +5 days/m. Strong impact of 

error correction is visible for SC and IP, while the scattered local impact cancels out in AL. In 

IP in August, the CCS is more than doubled by QM and the maximum is shifted from spring to 

autumn. Here, a positive bias in maximum temperature is removed by QM (not shown) which, 

in combination with a positive trend in maximum temperature results in far stronger reduction 

of threshold exceedances in the control than in the scenario period. Regarding tnn20, its annual 

cycle of the CCS peaks in summer at +3.5 days/m and +6.5 days/m in AL and IP, respectively, 

and is trivially zero for SC (no tropical nights). With QM the tnn20 CCSs are reduced by up to 

─2.3 days/m (about ─60 %). This strong effect of QM can be argued similarly as for txn25. 

Concerning the changes in the significance of the CCSs for temperature extremes, no 

systematic impacts are obtained. 

Figure 5.12 shows uncorrected and corrected CCSs of precipitation-related indices. pint 

results in a rather homogenous increase in the uncorrected scenario simulation with a mean 

annual CCS of +0.3 mm/d, large areas ≥ +0.2 mm/d, and the sub-regional maximum in SC at 

+0.4 mm/d. This general increase of precipitation intensity is not consistent with the CCS 

pattern of precipitation amount. The differences can be explained by the increased frequency 

of dry days in the scenario period as depicted in Figure 5.10 for AL. Contrary to pint, px1d and 

especially pn10 exhibit north-south gradients from increase to decrease, similar to precipitation 

amount. The sub-regional CCS for px1d ranges from +1.6 mm/d to ─0.6 mm/d and from 

+0.3 days/m to ─0.2 days/m for pn10 with maxima in SC and IP.  

The impact of QM on the annual CCS of all precipitation related indices is scattered only 

exceeds 50 % in rare cases on the sub-regional scale. Only in SC and EA a systematic 

reduction of precipitation extremes due to QM can be found.   

The annual cycles of the CCSs of precipitation-related indices show comparable 

characteristics as the CCS of precipitation amount and range from ─0.6 mm/d to +1.2 mm/d 

for pint, from ─0.8 days/m to +0.8 days/m for pn10, and from about ─4 mm/d to + 4 mm/d for 

px1d. pint accords more in its peaks to px1d than to precipitation amount. Similar to 

precipitation amount, CCSs of all precipitation indices are reduced by QM in summer. E.g., the 

CCS of pint in IP in July is reduced by about 60 %. By this means also the annual cycle is 

altered by shifting the maximum to September. Concerning pint and px1d in IP, QM also 
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strongly increases the autumn CCS (up to 200 % of the uncorrected monthly CCS). As a 

consequence, single negative months are shifted to positive ones. Again, this can be explained 

by the shape of the correction function (not shown) and the trend in the parameter. 

 

 

Figure 5.12 As for Figure 5.9 but for pint (top row), pn10 (middle row) and px1d (bottom row). 
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5.5 Summary and conclusions 

This study evaluates the performance of an empirical-statistical downscaling and error 

correction method (DECM), quantile mapping (QM), applied on a RCM climate simulation 

over Europe regarding daily mean, minimum and maximum temperature, daily precipitation 

amount, and derived indices for extremes. In addition, two issues related to the climate change 

contexts are discussed in more detail: A methodological extension of QM which allows “new 

extremes” (values outside the calibration range) and the impact of QM on the climate change 

signal (CCS).  

In a decadal cross validation of a 40 years RCM (CCLM) control simulation, QM confirms 

its applicability for longer climate simulations and for several parameters, regardless of 

spatially and temporally varying error characteristics. This regional transferability strongly 

suggests a general transferability of QM to any regional climate model.  

Quantitatively, we demonstrate that QM reduces biases of daily mean, minimum, 

maximum temperature, and daily precipitation amount by roughly one order of magnitude. In 

most cases, the remaining absolute biases are smaller or equal than 0.1 K for temperature and 

smaller or equal 0.1 mm/d for precipitation amount on the sub-regional scale. For daily 

precipitation these results are obtained only after frequency adaptation, which assures an 

adequate performance of QM in situations with more modeled dry days than observed. It has 

to be noted, that for the application of QM to single decades biases are expected to be larger 

due to the yet not fully investigated impact of decadal climate variability on the stationarity of 

DECMs. However, since in our application no considerable scale gaps have to be bridged and 

since atmospheric parameters are directly mapped, it can be expected, that this restriction 

affects our application to a lesser extent than most other statistical downscaling approaches. 

The stationarity of DECMs under climate change is an important issue for further 

investigation.   

Concerning derived indices for extremes, QM shows comparable skill as for daily 

temperature and precipitation. Particularly indices related to threshold values can feature 

tremendous biases in uncorrected RCM data, which can be easily removed be QM. 

Nevertheless, absolute extremes are more prone to biases after error correction than mean 

parameters. The analyzed indices do not include parameters which are based on temporal 

correlation, such as maximum number of consecutive dry days. QM corrects distribution-wise 
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and cannot account for errors in temporal correlation as, e.g., demonstrated by Themeßl et al. 

(2010).  

Errors in the shapes of the daily temperature and precipitation pdfs are corrected adequately 

at least within the ±2δ range around the mean (temperature) or up to the 99th quantile 

(precipitation). Regarding “new extremes”, it could be demonstrated that by simple 

extrapolation of the correction terms, QM successfully produces new extremes without 

deterioration (and mostly with improvement) of the RCM quality.  

Furthermore, this study shows that QM moderately modifies the climate change signal 

(CCS) of the corrected parameters. This is reasonable considering magnitude-dependent error 

correction functions and a trend in the underlying data. CCSs of indices that are non-linearly 

derived from the corrected quantities, such as threshold indices, can be strongly modified by 

QM. Such modifications are reasonable regarding the biases in uncorrected RCM results, 

improve the reliability of the CCSs and, obviously, lead to significantly different results in 

climate change impact investigations based on threshold parameters.  

In application to climate change impact research one should keep in mind that QM, as 

applied here, post-processes each variable separately. As a consequence, the physical 

consistence between variables and/or autocorrelation structure may be distorted, which could 

lead to unexpected effects in the impact models (e.g., Boé et al., 2007).  
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6 Data demands of the climate impact community  

Having described techniques to generate fine scale climate information in the previous 

chapters, these downscaled data may not be an end itself, but, e.g., function as input for further 

assessments of the sensitivity of various sectors on climate conditions.  
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Figure 6.1 Number of scientific publications per year since 1993 in the field of “downscaling” (purple) and 
“downscaling and impact” (yellow). The data is taken from the ISI Web of Knowledge. 

However, regarding Figure 6.1, the ISI Web of knowledge reveals that while the number of 

publications focusing on pure downscaling issues still strongly increases (search criterion 

“Downscaling and Climate”) only between a third and a half of downscaled data enter further 

impact assessments (search criterion “Downscaling and Impact”). These numbers underline 

Cramer et al. (2000) who state "climate change scenarios for impact assessments are usually 

an offspring rather than an intended result". The question thus remains why only such a 

limited number of downscaling studies go beyond the pure downscaling. Referring to a 

questionnaire presented at the Infrastructure for the European Network for Earth System 
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Modelling (IS-ENES) workshop 2011 in Copenhagen entitled "Bridging Climate Research 

Data and the Needs of the Impact Community" 2011 in Copenhagen (Swart, 2011), impact 

scientists from different disciplines listed 5 broad categories of problems of available climate 

data: 

 

1) data format 

2) user-friendly data access to data 

3) required spatial and temporal resolution 

4) reliability and uncertainty 

5) specific local needs. 

 

Following this listing, problems are obviously either related to different data management 

policies and habits in different disciplines (point 1 and 2), which leads to technical difficulties 

in data exchange or missing communication between producers and user (point 3 to 5), which 

leads to the problem of unsuitable available data.  

6.1 Useful data for climate impact studies 

Facing the problems of available climate data, the following sections aim at providing a 

general description of useful data, concepts to produce them, as well as concrete data 

requirements of different user groups and sectors. 

6.1.1 General definition of useful data  

McNie (2007) defines useful data in science by salience, credibility, and legitimacy. Salient 

information represents data that is context-sensitive and tailored to the users demand. I.e., an 

urban administration is interested in very high resolved precipitation data, temporally as well 

as spatially, e.g., in order to assess possible discharges for planning canal systems. For such 

users, monthly climate scenarios from GCMs are obviously insufficient for making appropriate 

decisions.  

Secondly, data users should trust the data they are working with. Credibility in the data 

may be achieved by various pathways ranging from scientific most rated peer review 

processes, via strong communication between producers and users to the inclusion of users in 
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the data production process. Jacobs et al. (2005) stated the ease of interpretation, the clear 

communication of accuracy, or the possibility to assess the accuracy of the provided data by 

themselves, e.g., by hands on trainings, to be essential. Furthermore, clear communications 

about the made assumptions, methodological shortcomings, validation methods as well as 

statements about uncertainties are important points towards more credibility concerning the 

applied data (Maraun et al., 2010).  

Legitimacy, finally, defines that the provided data are generated free from political suasion 

or bias and that the interests of the users have been encountered in the generation process 

(McNie, 2007). Useful data will account for these three points in a balanced way. 

6.1.2 Generation and evaluation of useful data 

Jacobs et al. (2005) describes 6 phases in the direction of useful data generation. Firstly, if, 

e.g., climate modelers want their data to be implemented in further applications they have to 

learn what information is needed (intelligence phase). Here for example, workshops are 

helpful to get the right insights. Then, the data producers enter the promotion phase, where 

they have to communicate their results, thus make them understandable for further user, but 

also scientifically sound for peer review processes. This phase is followed by the prescription, 

implementation and application phase, where data users decide which data to apply. Finally, 

the termination phase decides if data is no longer useful and the evaluation phase determines if 

the implemented data was useful in meeting the needs of the users. The lessons learned should 

then enter via a feedback in the intelligence phase of consequent projects.  

The general usefulness of data may be judged in various ways. Possible measurements may 

be peer-reviewed results in science, or even already measurable reduced losses from climate 

related impacts such as floods due to adaptation measurements. Furthermore, such 

measurements could include new and sustainable contacts between research institutions, an 

open and participatory process, better scientific understanding or increased demand for 

information (Jacob et al., 2005 and references therein).  

Relating to the promotion phase, the problem of scientific boundaries is often visible in 

interdisciplinary projects. In this context Callahan et al. (1999) and Jacobs et al. (2005) define 

science integrators as important intermediaries or translators at the boundaries between 

producers and user. They represent the interface between different science disciplines but also 
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between science and stakeholders, know and understand both sides and thus ensure that 

science and its results meet the needs of the users and are understood correctly. Jacobs et al. 

(2005) define such integrators to have: outside-the-box mentality; interdisciplinary background 

and willingness to bridge disciplinary gaps; credibility in the science community and 

knowledge how to translate complex information; expertise in a specific sector; understanding 

of the institutions and cultures of the partner in the project and the ability to facilitate and to 

build science-practice networks. 

6.1.3 Definition of user groups and user sectors 

Beyond the former given general definition of useful data, useful data in practice will vary 

depending on who is using the data and where it is applied. Thus, in the following likely user 

groups of climate data as well as application sectors are defined. Along with the definition of 

user sectors, also those there specifically requested meteorological variables are given in order 

to concretize useful data for climate change impact research and decision making. These 

definitions are primarily based on a working paper of Themeßl et al. (2011) which was 

prepared for an Austrian Climate Data Centre as well as on Swart (2011). In general, these 

sections will only focus on meteorological data, and do not include, e.g., socio-economic or 

demographic data needs, which are of course equally essential in any integrated assessment 

(compare IPCC-TGICA, 2007).  

Overall, five groups of data users are defined as follows: 

 

1) climate and climate impact researchers 

2) experts in environmental and conservation organizations, or in NGOs 

3) experts from private sector (consultants, spatial planners, architects,..) 

4) people in federal institutions  

5) politicians and policy makers. 

 

The order of the user groups is chosen to range from 1) specialist users who need detailed 

data but little guidance to 5) non-specialist users who mostly need guidance (compare  

Swart and Pagé,  2010).  
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Sector Required parameters Temporal 

Resolution 

Spatial 

Resolution 

Periods 

Research Temperature (mean, min, 
max), precipitation, 
humidity, wind (speed, 
direction), pressure, 
surface radiation budget, 
extreme indices 

Sub-daily, Daily, 
Monthly, Seasonal, 
Annual, Decadal 

Point, Grid 
(50 km─1 km 
and below) 

1900─2100; 
Ensemble of 
scenario periods 

Education Temperature (mean, min, 
max), precipitation, wind 
speed, wind direction, 
snow (depth cover), 
indices as frost days, 
tropical nights 

Daily, Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km), 
municipality 

Climatological 
normal period 
(1971─2000); 
Exemplary 
scenario period 
(2021─2050) 

Hydrology and  

Water 

management 

Temperature (mean, min, 
max), precipitation, 
humidity, river discharge, 
surface runoff, water 
vapor, global radiation, 
evapotranspiration, 
indices of extremes 

Sub-daily, Daily, 
Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km─1 km 
and below) 

1900─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Energy Temperature (mean, min, 
max), precipitation, wind 
(speed direction), global 
radiation, indices such as 
heating/cooling degree 
days 

Sub-daily, Daily, 
Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km─1 km) 

1961─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Tourism Temperature (mean, min, 
max), precipitation, 
sunshine duration, snow 
(depth, cover) 

Daily, Monthly, 
Seasonal, Annual 

Point, Grid 
(25 km), 
municipality, 
NUTS regions 

1961─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Table 6.1 Definition of user sectors in climate change impact research and those there requested data according to 
the temporal and spatial resolution as well as the needed time span. 

According to their diverging working field, Table 6.1 list 10 sectors, which are dependent 

on or interested in climate data. The listed data requirements should be regarded as an 

overview and are based on the 50 Essential Climate Variables (ECVs) defined by the Global 

Climate Observing System (GCOS), as well as on experiences and questionnaires, e.g., from 

IPCC-TGICA (2007), Swart (2011), the Climate Impacts Group, Center for Science in the 

Earth System at the University of Washington (Lee and Whitely Binder, 2010), the EU FP6 

Climate Change and Variability: Impact on Central and Eastern Europe (CLAVIER) project 
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(www.clavier-eu.org), the EU FP7 Assessing Climatic Change and Impacts on the Quality and 

Quantity of Water (ACQWA) project (http://www.acqwa.ch/) as well as Themeßl et al. (2011). 

For further details, interested readers should consider the mentioned references. 
 

Sector Required parameters Temporal 

Resolution 

Spatial 

Resolution 

Periods 

Agriculture-

Forestry-

Ecosystems 

Temperature (mean, min, 
max), precipitation, global 
radiation, wind (speed), 
snow (depth), humidity, 
indices as frost, heat 
waves, drought indices 

Daily, Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km─1 km) 

1900─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Health Temperature (mean, min, 
max), precipitation, 
humidity, derived indices 
as human comfort index, 
heat waves, tropical nights, 
summer days 

Daily, Monthly, 
Seasonal, Annual 

Point, Grid 
(25 km) 

1961─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Infrastructure-

spatial planning-

transport 

Temperature (mean, min, 
max), precipitation, snow, 
wind, river discharges, 
extremes as maximum one 
day precipitation, frost 
days 

Sub-daily, Daily, 
Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km─1 km 
and below) 

1961─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Insurance and 

finances 

Temperature (mean, min, 
max), precipitation, snow, 
wind, hail, derived 
extremes as frost days, 
heat waves, drought 
indices, extreme 
precipitation, wind storms 

Sub-daily, Daily, 
Monthly, 
Seasonal, Annual 
(also  required 
frequency or return 
periods instead of 
transient time series) 

Point, Grid 
(50 km─1 km), 
NUTS regions 

1900─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

Civil protection Temperature (mean, min, 
max), precipitation, snow, 
wind, hail, derived 
extremes as frost days, 
heat waves, drought 
indices, extreme 
precipitation, wind storms 

Sub-daily, Daily, 
Monthly, 
Seasonal, Annual 

Point, Grid 
(50 km─1 km 
and below) 

1961─2011; 
Ensemble of 
scenario periods 
(2021─2050) 

 

Table 6.1 Definition of user sectors in climate change impact research and those there requested data according to 
the temporal and spatial resolution as well as the needed time spans (continued). 
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Table 6.1 only contains surface parameters and does not include, e.g., 3 dimensional 

atmospheric fields, which would be needed as boundary conditions for modeling purposes in 

the research sector. 

In summary, the main meteorological data such as temperature, precipitation, wind, 

humidity, and radiation as well as derived indices such as extremes, which are in more detail 

listed in Table 6.2, are required by climate impact researchers and decision makers. 

Concerning the respective scales, variables are in fact needed on all temporal scales (ranging 

from sub-daily to annual) and on spatial scales between points of interest to grids (between 

50 km and 1 km resolution). Experiences however show that spatially the Europe-wide state-

of-the-art ~25 km grid is sufficient for most climate change impact assessments. 

Concerning the requested time periods, usually historical data as well as future scenarios 

are required. Historical records are chosen in this context to represent some kind of base line, 

which is representative of the present day or recent climate average (e.g., from 1971 to 2000) 

and also sufficient long to encompass a range of climatic variation (IPCC-TGICA, 2007). For 

example hydrologists use 100 year time series to estimate a realistic variability for their 

hydrological models (Salathé et al., 2007). Future scenarios in most cases cover the period 

until 2050 or until the end of the 21st century. Transient data is demanded if effects such as 

trends are to be assessed or if the data is needed to initialize subsequent impact models. Often, 

however, impact modeling is undertaken with equilibrium modeling approaches where impact 

models are run once for the current climate and then for a future climate. Then, future climates 

are defined as mean states of time slices extracted from transient runs (Cramer et al., 2000). If 

climate impacts are assessed until the end of the 21st century, the range of the available 

scenarios becomes more and more important as from the mid of the century on the scenarios 

start to diverge (compare IPCC, 2007). In practice, usually not all scenarios are implemented 

for assessments due to computational limitation. Thus, the spread of differing climate 

scenarios is then taken into account by applying, e.g., 3 scenarios representing low, mid and 

high climate changes which are considered to lead to the best, medium, and worst impacts for 

the focused sector.  

Beyond the data requirements of the different user sectors concerning spatial and temporal 

characteristics, climate impact researchers often also define useful data via attributes such as 

spatial coherence, temporal persistence or physical consistency (e.g., Kilsby, 2000; 

Maraun et al., 2010).  
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6.1.4 Categories of useful data 

Concluding the definition of useful data, this section introduces 5 categories of useful data. 

These categories mainly describe the data’s origin and can be classified into 

 

1) metadata 

2) observational data 

3) direct model output 

4) downscaled and error corrected data 

5) derived indices. 

 

Metadata represent background information on and descriptions of the data set, i.e., its data 

sources, its producer, its provided variables, its assumptions and its consequent limitations and 

uncertainties or other information about its reliability or performance skill. Such meta 

information is essential for the correct application of the dataset and increases the credibility of 

the data set (Lee and Whitely Binder, 2010). 

Observational data represent the basis of any climate and climate impact study. 

Observational data enables to assess historic conditions and trends or to calibrate and evaluate 

models. Besides point-scale time series from federal meteorological services or, e.g., the 

European Climate Assessment & Dataset (ECA&D) project (http://eca.knmi.nl/) for entire 

Europe, gridded observational data is, e.g., available globally on monthly basis for 

temperature, diurnal temperature range, precipitation amount, vapor pressure and cloud cover 

from 1901─2000 at a spatial resolution of 0.5 degrees (Mitchell et al., 2004). For Europe, the 

most recent gridded observational dataset ─ E-OBS ─ contains minimum, maximum and mean 

temperature, as well as precipitation amount and sea level pressure and is available on daily 

basis between 1961 and 2010 on a 25 km grid (Haylock et al., 2008; van den Besselaar et al., 

2011). For precipitation amount a similarly resolved gridded data set on daily basis is available 

for the Greater Alpine region from 1971─1990 (Frei et al., 2006). For Austria a gridded dataset 

for mean temperature and precipitation amount at 1 km resolution is also available from 

1961─2009 (Beck et al., 2009).  

Gridded observational data is important for climate model validation purposes as it does 

not represent point scale but area average information and thus has the same statistical 
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properties such as climate model output (e.g., Goodess et al., 2003 and references therein; 

Déqué, 2007). 

Direct model output, especially from RCMs has recently become available for Europe and 

the USA along with various regional climate modeling projects such as ENSEMBLES or 

NARCCAP (http://www.narccap.ucar.edu/). Due to their fine resolution between 50 km and 

25 km and their strengths listed in Appendix B, such data is often used in complex impact 

models.  

Downscaled and error corrected data represent an important data category for climate 

change impact studies. Such post-processed data increase the reliability of impact assessments 

by reducing sources of errors in the modeling chain. In its simplest form an error corrected 

climate scenario can be obtained via the so called delta approach where the difference between 

a future period and a reference period from a climate simulation is added as a climate change 

delta on reference observations (Déqué, 2007; Graham et al., 2007). By this means, it is 

expected that systematic errors are cancelling out. However, this approach also features 

shortcomings such as unchanged future variance characteristics. Besides, more sophisticated 

techniques can be found in literature and are applied and described in Chapter 4 and Chapter 5. 

Because all DECMs are dependent on observational data, already published studies on 

downscaled and error corrected data are yet limited on the one hand side to the main 

meteorological parameters temperature, precipitation, humidity, pressure, wind speed and 

global radiation (compare Chapter 4 and Chapter 5; Fuchs, 2011; Wilcke et al., 2011) and on 

the other hand side to industrialized countries with long-term observational networks.  

Derived indices are useful information for various sectors, as they describe either sector-

relevant thresholds or non-linear sector-relevant effects by combining different variables. 

Table 6.2 lists commonly demanded indices and provides respective definitions. Some indices 

are also exemplarily included in the analyses presented in Chapter 4 and Chapter 5.  
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Derived indices Short description or reference 

Temperature related indices  
90th percentile of maximum temperature 90th percentile of daily maximum temperature  
10th percentile of minimum temperature 10th percentile of daily minimum temperature 
Heating degree day Prettenthaler et al. (2008) 
Cooling degree days Prettenthaler et al. (2008) 
Summer days No. of days with maximum temperature > 25°C 
Tropical nights No. of days with minimum temperature > 20°C 
Frost days No. of days with minimum temperature < 0°C 
Growing season length Nr. of days between first occurrence of at least 6 consecutive day with 

> 5°C and the first occurrence after 1st July of at least 6 consecutive days  
with < 5°C 

Start of growing season Date due to definition of growing season length 
Precipitation related indices  
Precipitation intensity mean daily precipitation sum on wet days (days where pr_24h exceeds 1 

mm/day) 
Precipitation frequency No. of wet days 
90th percentile of rain days 90th percentile of daily precipitation sums on wet days 
Greatest 1-day rainfall maximum precipitation sum in one day 
Greatest 5-day rainfall maximum precipitation sum in 5 consecutive days 
Intense precipitation No. of days with precipitation > 10 mm/day 
Heavy rainfall days Nr. of events > long-term 90th percentile of wet days 
Snow related indices  
Snow days No. of days with snow height ≥ 1 cm 
Heavy snow days No. of days with snow height ≥ 30 cm 
Wind related indices  
Strong wind days No. of days with maximum wind speed > 15 m/s 
Storm days No. of days with maximum wind speed > 30 m/s 
Aridity indices  
Palmer Drought Severity Index Heinrich and Gobiet (2011) 
Standardized Precipitation Index Heinrich and Gobiet (2011) 
Aridity Index Heinrich and Gobiet (2011) 
Others  
Potential evapotranspiration Thornthwaite (1948) 
Hail frequency No. of days of hail per hail season 
Hail intensity Energy per hail event per area 

Table 6.2 Derived indices for the climate impact research community. The indices are based on STARDEX, 
CLAVIER and ACQWA project as well as via the ECA&D dictionary of indices 

(http://eca.knmi.nl/indicesextremes/indicesdictionary.php). 
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7 Discussion and conclusions 

This PhD work investigated the applicability and skill of empirical-statistical techniques for 

downscaling and error correction of daily precipitation, temperature, and derived extremes 

from regional climate models (RCMs) in Europe. Furthermore, error-corrected, 25 km 

resolved climate scenarios of the respective parameters were produced for Europe and the 

impact of the applied empirical-statistical downscaling and error correction methods (DECMs) 

on the climate change signal (CCS) was investigated. In addition, a definition of useful climate 

data and their likely users was provided in order to increase the collaboration of climate 

modeling and climate change impact research or decision making. 

In recent years the availability of RCM simulations for Europe tremendously increased due 

to projects like PRUDENCE and ENSEMBLES. This ensemble of simulations will be further 

extended by the CORDEX project in the near future. However, the skill of the actually 

provided regional-scale climate data does not yet fulfill the user demands of the climate 

change impact community such as generally reproducing the climate conditions of the recent 

decades. Besides the steady enhancement of RCMs, DECMs, based on the concept of model 

output statistics (MOS), offer a straightforward option to mitigate such error characteristics 

and to provide user-tailored climate information.  

In a comprehensive inter-comparison study, seven different DECMs were tested for daily 

precipitation and derived indices. Daily precipitation represents one of the most challenging 

meteorological parameter due to its stochasticity and its bounded by zero, left-skewed 

distribution. The evaluation was performed at the station scale in the orographically 

demanding region of Austria for selected 11 years between 1981 and 1999 and was based on a 

10 km resolved MM5 hindcast simulation. The investigated DECMs included Quantile 

Mapping (QM), Local Intensity Scaling (LOCI), Multiple Linear Regression (MLR), Multiple 

Linear Regression with transformed predictors (MLRT), Multiple Linear Regression including 

Randomization (MLRR), the Analogue Method (AM), and the Nearest Neighbor Analogue 

Method (NNAM). These methods were selected to comprise linear and non-linear, parametric 

and non-parametric, direct and in-direct, as well as point-wise and spatial techniques. Direct 
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techniques were defined such that predictor and predictand were the same variable, whereas 

indirect techniques could combine different predictor variables to estimate the predictand. 

Spatial techniques used characteristics of coherent atmospheric fields as predictors (e.g., taken 

from empirical orthogonal functions), whereas point-wise techniques built their statistical 

model for each grid cell separately. Based on different evaluation skill scores, derived from a 

yearly temporal cross validation, the following results were obtained: 

 

• all DECMs, except MLR, virtually removed the model bias, independent of region and 

season considered  

• MLRT shifted the error distribution to negative values 

• all DECMs, except MLR and MLRT, corrected errors in day-to-day variability 

• MLRR, AM, and NNAM degraded RMSE and correlation 

• all DECMs, except regression based techniques, improved precipitation intensity and 

frequency estimation 

• QM, LOCI, AM, and NNAM improved parameters related to extremes.  

 

Overall, QM outperformed all other investigated DECMs, although LOCI and the analogue 

methods resulted in comparable results. However, especially the usage of analogue approaches 

may be advantageous if multisite, spatially coherent, daily predictand time series are requested, 

as well as if there is a strong physical linkage between “large scale” circulation patterns and 

local scale predictands, e.g., comparing extreme weather patterns in Austria and their relation 

to extreme precipitation (Seibert et al., 2007). In contrast, MLR approaches although 

optimized by randomization and predictor transformations failed in correcting daily RCM 

precipitation amounts, as expected.  

Based on these findings, QM was selected to produce error-corrected regional climate 

scenarios for daily mean, minimum, maximum temperature, daily precipitation amount, and 

derived extreme indices for entire Europe until 2050. The corrected scenarios were based on 

the RCM CCLM and were corrected according to the E-OBS observational dataset. For this 

purpose the originally applied QM version was extended in two directions: a) by a frequency 

adaptation (FA) tool and b) by the constant extrapolation of the extremes’ correction terms. 

The implementation of FA fixed a QM methodological shortcoming in cases when there were 

more modeled dry days than observed, which usually does not occur due to the RCMs 
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drizzling problem. The simple extrapolation of the error correction function was proposed as 

due to global warming new extremes outside the calibration range are expected to occur and 

the originally implemented QM version would have limited the scenarios to the historical data 

range. The respective results are summarized in two parts as follows: 

 

Evaluation of QM between 1961 and 2000 in Europe based on a decadal cross-validation: 

• QM confirmed its applicability for different meteorological parameters (daily mean, 

minimum, maximum temperature, and precipitation amount) and reduced the 

respective biases by roughly one order of magnitude; mostly remaining biases were 

near zero.  

• QM reduced errors in variability and corrected the shape of the pdfs to a large degree 

• similar results were obtained for derived extremes 

• evaluation result were obtained independent of region and season considered 

• QM was able to generate new extremes, outside the calibration range without 

deterioration and mostly with improvement of the original RCM quality 

 

Evaluation of the impacts of QM on the CCS: 

• QM moderately modified the CCS of the corrected parameters (mean, minimum, 

maximum temperature and precipitation amount) 

• CCSs of non-linearly derived indices of the corrected quantities, such as threshold 

indices, partly showed strong modification due to QM 

 

Concerning the impact of QM on the CCS, the obtained effects were related to magnitude-

dependent error correction functions as well as trends in the climate scenarios of the 

uncorrected data.  

 

Based on the described results, several new research questions and topics emerged, 

especially concerning the application of QM as DECM. In the following these questions are 

put together. Further development of QM should in particular focus on the correction of 

extreme events based on, e.g., the theoretical application of extreme value distributions 

(compare Maraun et al., 2010 and references therein) or the implementation of QM based on 

weather types (compare Bardossy and Pegram, 2011). In addition, the issue of yet un-
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improved temporal persistence characteristics such as correlation or wet and dry period spells 

should be envisaged. Possible pathways in this direction are, e.g., shown by Srikanthan and 

Pegram (2009) who explicitly correct for autocorrelations. Furthermore, the issue of spatial 

coherence of daily predictand fields based on point-wise generated QM scenarios is 

questionable, at least for extreme conditions in smaller sub-region such as river catchments. 

Another important question, which partly is already investigated in literature, concerns the 

issue of physical consistency and the question if QM destroys the inherent RCM physical 

linkages between variables if it is applied separately on several parameters. Concerning the 

application of QM on future climate conditions, the assumption that the error correction 

remains stationary is yet not fully answered. Here also the implementation of weather-typing 

based QM could enhance the robustness of the generated results. Finally, the question of 

sample uncertainty in the QM procedure as well as the impact of QM on the RCM uncertainty 

of future climate realizations remains to be answered. 

 

Besides the methodological part of this PhD work, the question of useful climate data 

frequently re-occurred during the work. Thus, based on already existing literature, experiences 

and questionnaires from various national and international climate change impact assessment 

projects, this PhD thesis furthermore dealt with a definition of useful data from the climate 

impact communities’ point of views. Useful data, in general, was defined to be context-

sensitive, credible, legitimate, and easily accessible. However, it was shown that the usefulness 

of climate data is highly dependent on its application purpose. Likely user groups for useful 

climate data range from specialized users such as researchers that need detailed data via 

experts in, e.g., private or federal working environments to politician and policy makers that 

overall need guidance and science translation along with the data. Any user groups, in 

addition, revealed differing data requirements within different user sectors such as research, 

energy, tourism, health, insurance, or civil-protection. Overall, questionnaires revealed that the 

standard meteorological variables such as temperature, precipitation, wind, humidity, and 

global radiation are mostly required, with resolutions ranging from the sub-daily to the annual 

scale and from spatial grid information of about 25 km resolution down to the point scale. For 

certain application also data on political sub-regions such as counties or NUTS regions are 

requested. NUTS is a nomenclature of regional units for statistics, partitioning Europe in 

socio-economic regions. Furthermore, the importance of derived indices such as extremes was 
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underlined during this PhD work as they describe either sector-relevant thresholds or non-

linear sector-relevant effects. Dependent on the application, these parameters may be provided 

by different data sources such as observations, direct model output or post-processed, e.g., 

error corrected, climate model simulations. Which data in the end is relevant, in fact, can only 

be decided via strong communication between data producers and users. This communication 

should also deal with meta-information such as the accuracy and uncertainties of the data in 

order to increase the user’s credibility in the data as well as the suitability of the data. 

Credibility in the data can furthermore be achieved by an early integration of the users in the 

data generation process, which additionally eases the accessibility and interpretation of the 

data, and overall fosters an integrated assessment beyond disciplinary borders. 

Finally, this PhD work also revealed the success of science integrators in the generation of 

useful climate data. Science integrators are scientists that aim at bringing together different 

science disciplines or different climate data user groups under one research topic. For this 

purpose, they have to bridge disciplinary borders, build interfaces, translate knowledge; all in 

all they guide producers as well as users to achieve scientific as well as project-related added 

values. 
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Appendix A  

A.1 Objective predictor selection 

Objective predictor selection is based on linear regression models and selects those predictors 

that contribute significantly to the predictands variability using statistical criteria. In the 

following, such screening procedures are briefly discussed.  

Based on Equation (4.1), a predictand at time i ( MLR
iy ) is estimated via a linear regression 

model. The difference between the estimation of MLR
iy  and iy  observed is described by the 

residual, or noise  

 
MLR
iii yye −=

.   (A.1) 

 

Thus, minimizing the residual sum of squares in Equation (A.2) 
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obviously improves the estimation of the predictand, where n denotes the sample size.  

 

In general, four objective model selection procedures can be found in literature. The 

following methodological description is based on von Storch and Navarra (1999), Helsel and 

Hirsch (2002), and Sachs and Hedderich (2006). 

Firstly, backward elimination starts by fitting the full regression model using all available 

predictors xp. Then, iteratively those predictor variables that result in the lowest 

statisticˆ −F according to Equation (A.3) 
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are removed from the model with p predictors if the respective statisticˆ −F is smaller than the 

critical value outF  (null hypothesis 0:0 =jH β ). As the distribution of this statistics varies 

with the sample size and those in the model included predictors, often a conservative outF  

threshold of 4 is implemented in order to stop the selection at an adequate step. 

Secondly, forward selection starts with an initial model of one predictor variable and then 

iteratively adds further predictors to the model if they significantly influence the predictand 

(under the same null hypothesis than given for backward elimination). Included are those 

predictors with the greatest statisticˆ −F according to Equation (A.4). 
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For similar reasons as given along with Equation (A.3) a threshold of 4 can be also found here 

for inF .  

Thirdly, stepwise regression combines both forward selection and backward elimination. 

After each forward selection a backward elimination is performed as selected predictors of 

previous iterations may become redundant later on. 

Fourthly, all subset regression calibrates all p2   possible predictor-combinations and 

selects the best performing predictors according to screening statistics. This procedure has 

become feasible along with the increasing computational power over the last years. Well-

established screening statistics, e.g., are Mallow’s Cp, the PRESS statistic, the adjusted 

coefficient of determination (adjusted R2) or Akaike’s Information Criterion. Akaike’s 

Information Criterion (AIC) is often found in literature as it aims at a parsimonious model, 

thus penalizes models with too many predictors. In the special case of a least squares 

calibrated regression model, assuming normally distributed residuals with constant variance, 

the AIC can directly be calculated by Equation (A.5)  
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( ) ( )12ˆlog 2 ++= pnAIC σ    (A.5) 

with 

1
ˆ 2

−−
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pn

RSS
σ .   (A.6) 

 

Figure A.1 shows an example of an all subset screening. Daily winter precipitation at the 

observational station Fresach in Carinthia/Austria is related to various point-wise predictor 

variables from a RCM hindcast. The figure should be interpreted like a table, where each row 

represents one calibrated regression model. Colored rectangles indicate that the predictor 

variable is included in the respective model. The types of the colors are neglectable. The 

abbreviated predictors on the x-axis are defined in Table 4.1.  

 

 

Figure A.1 Example of an all subset screening for daily winter precipitation at the observational station Fresach in 
Carinthia/Austria. Illustrated are the 3 best performing models with 1 to 8 predictors included. The predictors are 
listed on the x-axis and defined in Table 4.1. On the y-axis the adjusted coefficient of determination is given as 

screening statistic. 
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Thus, in the first model at the bottom of Figure A.1 (grey colors) the intercept as well as the 

northward wind at 700 hPa (v_700) are included. On the y-axes the screening statistics 

(adjusted R2) shows that this model explains 15 % of the predictand’s variability. For 

illustrative purposes, only the 3 best performing models including 1, 2, 3, 4, 5, 6, 7, and 8 

predictors (neglecting the intercept as predictor) are displayed from the bottom row of Figure 

A.1 to the top row. Thus, the lowest 3 rows indicate the best three performing models with one 

predictor variable, the following three rows indicate the respective best performing models 

with two predictors, and so on.  

Overall, the screening reveals that the more predictor variables are included the more 

variability can be explained, as expected. However, that the inclusion of more than four 

variables, only adds very little additional information to the model, which is able to describe 

~45 % of the entire predictand’s variability. In addition, Figure A.1 indicates large scale 

advective precipitation (accnon_sfc) as the most important variable for this specific location as 

the predictor reoccurs in all displayed predictor combinations. 
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Appendix B 

B.1 Comparison between ESD and DD 

 Statistical Downscaling Dynamical Downscaling 

Strength +Provides station scale information (point 
values, e.g., for impact studies) 
+Computationally undemanding and readily 
transferable 
+Production of ensembles of climate scenarios 
for risk assessment/uncertainty analyses readily 
feasible 
+Flexibility (e.g., can be applied to GCM/RCM 
output and also non-meteorological parameters)
+Possibility of correcting model biases 
+Based on standard statistical procedures 
+Can directly incorporate observations 

+Grid resolution of 10 km–50 km 
+Higher spatial resolution than GCM should 
reduce some biases (e.g., concerning extremes) 
+Resolve regional scale atmospheric processes  
and dynamics such as orographic precipitation 
+Respond in a physically consistent way to 
different external forcings (ability of 
incorporating feedbacks) 
+Coherent in time, space and between variables 
+Independent of local observation data 
(applicable in peripheral regions without 
observational network) 
+Readily transferable to other regions 

Weakness ─Dependent on realism of dynamical model 
(affected by their biases) 
─General assumption are difficult to validate 
─Do not account for possible systematic 
changes in regional forcing conditions or 
feedbacks 
─Requirement of sufficient long high resolved 
observation data  
─Arbitrary choice of domain size 
─Sensitivity of choice of predictor variables 
and different transfer functions  
─By definition limited to the calibrated 
variability 

─Computationally demanding 
─Relatively few independent ensembles 
available 
─Affected by bias in underlying GCM 
─Sensitivity of choice of domain size  
─Parameterization of different processes (e.g., 
possible influence of different cloud/convection 
schemes) 
─Sensitivity of parameterization schemes  
─Temporal highly resolved GCMs needed as 
input data (not always available) 

In betweens ?Few method provide multi-variate outcomes 
?Some provide multi-site information 

 

Table B.1 Comparison between dynamical and statistical downscaling (based on Goodess et al., 2001, 2007; Fowler 
et al., 2007 with own comments). “+” indicates a strength, “─” indicates a methodological weakness.
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Appendix C 

C.1 Downscaling of extremes: issues concerning Quantile Mapping 

Accompanied by the expected global warming until the end of the 21st century, new extremes 

outside the calibration range are likely to occur (IPCC, 2001, 2007; van der Linden and 

Mitchell, 2009). Dealing with conditions outside the calibration range, any DECM in fact 

becomes invalid. Thus, the original QM version, applied in Chapter 4, where the extremes are 

fixed to the historical observational range (compare Figure C.1), had to be questioned and 

further extended to produce reliable scenarios also for new record breaking extremes. This 

appendix is intended to give additional information how these extensions were defined. Thus, 

in the following evaluation results of seasonal error correction functions for single grid cells 

and European sub-regions are illustrated and discussed. 

  

 

Figure C.1 The scheme of QM. An uncorrected daily value from the climate model (1) is related to its respective 
empirical cumulative distribution function (ecdf, Wilks, 2006) for the same day in the calibration period (2). The 

value, corresponding to the same probability the calibrated observational ecdf (3) is taken as the corrected value in 
the left panel (4). The question remains, what happens at the tails of the ecdfs indicated by the red circle? 
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Figure C.2 and C.3 illustrate seasonal correction functions for three subjectively chosen 

grid cells across Europe. The correction functions are derived by comparing the CCLM 

(Böhm et al., 2006) control run between 1961 and 2000 to the respective E-OBS observational 

data (Haylock et al., 2008) at all percentiles (compare Figure C.1). The respective correction 

functions for temperature (Figure C.2) and precipitation (Figure C.3) feature a rather chaotic 

behavior at the tails compared to the rest of the correction function. In many cases, an obvious 

break followed by a change of the correction-direction is visible there. 

 

 

Figure C.2 Seasonal correction functions for daily mean temperature. The correction functions are derived from 
differences of all percentiles between observed (E-OBS) and modeled (CCLM) ecdfs at one selected single grid cell 
in the Iberian Peninsula (upper panels), in Scandinavia (middle panels) and in the Alpine sub- region between 1961 
and 2000. The 0th percentile represents the difference between the ecdfs’ minima, the 100th percentile represents the 
difference between the ecdfs’ maxima. The temperature quantities corresponding to these percentiles are indicated 

on the x-axes. 
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Figure C.3 Seasonal correction function for daily precipitation amount. The respective description is the same as in 
Figure C.2. 

Focusing on the tails of the correction functions, Figure C.4 and C.5 show the lowest and 

highest ten correction values for mean temperature (Figure C.4) and the highest ten correction 

terms for precipitation amount (Figure C.5) for three sub-regions in Europe, namely for the 

Iberian Peninsula, Scandinavia, and the Alpine region. Their exact geographical boundaries are 

given in Chapter 5. The ten correction values account for about 1 % of the sample size of 1200 

values (40 years with a window size of 31 days, compare QM description in Chapter 5). For 

both parameters, it can be seen that those in Figures C.2 and C.3 illustrated breaks at the 99th 

percentile for single grid cells are located at the 99.7th percentile for the respective sub-regions 

(compare vertical dashed grey lines). 

Based on these error function characteristics, it is firstly concluded that fitting arbitrary 

functions in the shown correction functions, which is, e.g., done by Piani et al. (2010), would 

in general lead to an insufficient representation of the specific correction functions at the 
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extremes. Thus, retaining the empirical error correction functions, Déqué (2007) proposed the 

constant extrapolation of the correction terms of the extremes for values outside the calibration 

range and added that “the application of more sophisticated techniques for correcting new 

extremes with QM would lack robustness and might introduce unphysical extreme values after 

correction”. Based on Déqué (2007) and the shown correction function characteristics in 

Figures C.3 and C.4, two extensions of the original QM version namely QMv1a and QMv1b 

were proposed. QMv1a constantly extrapolates the lowest/highest correction term on new 

record breaking extremes, whereas QMv1b assumes the correction functions tails to be noisy 

and thus disregards the lowest/highest three correction terms for extrapolation. Both QM 

versions are evaluated in Chapter 5. 

 

 

Figure C.4 Seasonal correction functions for daily temperature extremes. The left side in each panel represents the 
lowest 1 % of correction values in 0.1 % steps. The right side illustrates the respective highest 1 % of the correction 

functions. The upper row represents the Iberian Peninsula, middle row Scandinavia and the bottom row the Alps 
sub-region. 
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Figure C.5 Seasonal correction functions for daily precipitation extremes. Shown are the highest 1 % of correction 
values in 0.1 % steps. The respective description is the same as in Figure C.4. 
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Abstract 
 
Although RCMs have already proven their capability to simulate regional climate and its 
variability, they still feature systematic errors compared to observations. Besides their steady 
enhancement, empirical-statistical post-processing, based on the concept of model output 
statistics (MOS), provides a ready opportunity to mitigate RCM error characteristics and to 
further downscale climate model data to the point-scale. In the course of this PhD work, 
seven empirical-statistical downscaling and error correction methods (DECMs) are inter 
compared for their applicability to and error correction potential for daily precipitation, 
temperature, and derived extreme indices from RCMs in Europe. 
Furthermore, error corrected climate scenarios for the respective parameters are generated 
for Europe and the impact of DECMs on the climate change signal (CCS) is investigated. 
Overall, the findings of this PhD work strongly suggest the combination of RCMs and DECMs 
to provide suitable climate data for climate impact assessments and decision making. 
DECMs drastically reduce the error characteristics of RCMs regarding mean, variability, and 
extremes. Particularly, Quantile Mapping (QM) has an outstanding error correction potential 
and can be considered as highly recommendable due to its simplicity and flexibility. In 
application to future climate scenarios QM only moderately modifies the CCSs of 
mean,minimum, maximum temperature, and precipitation amount. In contrast, QM strongly 
changes the CCSs of non-linearly derived indices of extremes such as threshold indices in 
some cases. These modifications are caused by magnitude-dependent error characteristics 
of the respective uncorrected parameters  and trends in the future scenarios. Besides the 
analysis of DECMs, this PhD work also defines useful climate data from the point of view of 
the climate impact community and decision makers. 
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