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Abstract

State of the arte assimilation techniques, such as 3D-Var, are relatively seldom used within climate analysis frameworks, partly because of the
enormous numerical costs. In order to face this issue ESA's high performance computing Grid on-Demand (G-POD) is used. We assimilate Global
Navigation Satellite System (GNSS) based radio occultations (RO). RO data in general exhibit some favorable properties, like global coverage,
all-weather capability expected long-term stability and accuracy. These properties and the continuity of data offered by the Meteorological
Operational Satellite (MetOp) program and other RO missions are an ideal opportunity to study the long term atmospheric and climate variability.

This paper investigates the assimilation of RO refractivity profiles into first guess fields derived from 21 years of ECMWF's ERA40 dataset on
a monthly mean basis divided into four synoptic time layers in order to take the diurnal cycle into account. In contrast to NWP systems, the
assimilation procedure is applied without cycling, thus enabling us to run our 3D-Var implementation within G-POD parallel for different time
layers. Results indicate a significant analysis increment which is partly systematic, emphasizing the ability of RO data to add independent
information to ECMWF analysis fields, with a potential to correct biases. This work lays the ground for further studies using data from existing
instruments within a framework based on a mature methodology.
© 2007 Elsevier Inc. All rights reserved.
Keywords: Assimilation; Radio occultation; CHAMP; ERA40 climatology; 3D-VAR; Climatology; Climate change; Natural climate variability; Distributed
computing; ESA's high performance computing Grid on-Demand
1. Introduction

Climate change is one of the important contemporary issues
discussed globally, potentially having a socio-economic and
political impact of enormous consequences. Detecting changes
and characterizing the natural variability of the global climate
system is a major challenge which the atmospheric sciences
community will have to face over the next decades. Since there
is evidence that the Earth's climate system is influenced by
human activities e.g., IPCC (2007) the accurate determination
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of the atmospheric state is mandatory to monitor and project the
evolution of the climate system into the future.

Within the next years assimilation methods will increasingly
play an important role in this process due to the broader
availability of necessary computing resources and the mutual
benefit this methodology is providing by optimization of
geophysical information retrieval from different sources. Sources
of Earth observation data differ with respect to sampling volume,
spectral range, radiative process sensitivity, integration times,
geometry, spatial coverage etc., so the combination of data from
sources with different properties provides, e.g. significant added
value in the sense of global coverage, observations quality
control, and consistent observation bias correction procedures
(Collard and Healy, 2002). Since the MetOp series of satellites
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(operated by EUropean Organisation for the Exploitation of
METeorological SATellites (EUMETSAT)) will carry the Global
Navigation Satellite System Receiver for Atmospheric Sounding
(GRAS), a new state of the art Global Navigation Satellite
System (GNSS) based radio occultation (RO) instrument Loiselet
et al. (2000), the perspective for a long unbroken chain of
globally distributed continuous RO observations of fundamental
atmospheric parameters is excellent. The MetOp series of polar
satellites Edwards and Pawlak (2000), Silvestrin et al. (2000) is
scheduled and financed for a lifetime of 15 years comprising
three satellites, the 1st successful launch took place 19, October
2006.

Due to the measurement principle, the RO technique features
some preferable characteristics which make it an ideal method for
long term monitoring of atmospheric key parameters cf. Anthes
et al. (2000), Kirchengast et al. (2000), Leroy and North (2000),
Steiner et al. (2001). Global coverage, all weather capability (the
signals are not hampered by clouds and precipitation), a priori
long term stability, and a self-calibrating concept favors its data
utilization within frameworks conducting climate studies. The
latter property, which distinguishes RO from most other space-
borne observational techniques, allows for rather easy inter-
comparison of data, offering the opportunity to get a compre-
hensive data series over decades comprising observations from
different receivers and platforms (e.g. Constellation Observing
System for Meteorology Ionosphere and Climate COSMIC,
whichwas launched from the VandenbergAir Force Base, CA, on
Friday, April 14. 2006; Rocken et al. (2000)). Problems inherent
to other types of remote sensing techniques, like different
generations of instruments, calibration problems, and instrumen-
tal drift over time cf. Anthes et al. (2000) are mitigated and ease
the use of data within assimilation systems. The RO experiment
on-board CHAMP, which was launched on July 15, 2000 into a
low earth orbit (LEO), provides almost continuously about∼250
globally distributed occultation events per day from which ∼170
quality approved atmospheric profiles can be derived since late
2001, (IGAM, geometrical optics processing) Gobiet et al.
(2004b), Wickert et al. (2001), Wickert et al. (2004). CHAMP
data has been used at the UKMet Office and ECMWF to perform
impact studies showing a clearly positive effect on the analyses,
despite the limited amount of assimilated observationsHealy et al.
(2005), Healy and Thepaut (2006). Studies by Foelsche et al.
(2003) showed that the sampling error caused by the sparse data
flow of one single GPS RO receiver, still allows for accurate
global season-to-season temperature climatologies resolving
large horizontal scales N1000 km. Nevertheless, with new
satellites like MetOp and COSMIC, a broader base of data,
which is essential for a better distribution of the local time
sampling, can be expected in the near future. These kind of single
instrument climatologies have a clear benefit for climate studies,
although the data fields might be not consistent due to inadequate
coupling of atmospheric parameters. The mix of information
comprising unknown error characteristics shall be reduced in
order to avoid an increasingly difficult estimation of accuracy.
Especially for remote sensing data, where observations aremostly
indirect, this criteria of having a pure signal, without additional
uncertainty from system inherent errors, is hard to fulfill. RO data
itself is closer to an ideal observation for technical reasons
compared to most other observations from space-borne instru-
ments. To convert raw observed data into useful variables for the
majority of scientists processing steps assuming local spherical
symmetry have to be performed. In the future one can probably
think of the use of parameters like bending angles or refractivity
Leroy et al. (2006) best suited to detect changes of the climate
system. In our case statistical optimization and high altitude
initialization are used Sokolovskiy and Hunt (1996). This
additional information introduced within the retrieval process at
high altitudes is only propagated in negligible quantities down to
the altitude region of interest. On the other hand reanalysis
exercises like ERA40 Kållberg et al. (2004) or NCEP-NCAR
50 Years Reanalysis Kistler et al. (2001) which deliver consistent
fields and mitigate the problem caused by the changes and
developments within the model itself over the years by freezing
the model version and rerun it with the data over large time
frames, have proven to be problematic in showing trends and the
temporal evolution of the climate system Bengtsson et al. (2004).
These problems are mostly caused by the change in the
observation systems (new instruments, different generations of
instruments, and change of the sensitivity over time due to the
space environment and calibration issues).

In order to ease the error characterization and to avoid a
possible contamination reducing the information content,
observations used in data assimilation systems should be as
raw and unprocessed as possible. Obviously there are limits,
mostly caused by the complexity of the observation operator,
which relates the observed quantity to the control variables, One
has either find justified simplification and/or apply some pre-
processing steps prior to assimilation to cut down the numerical
cost. As we can see, both approaches use raw observation for
almost the same reason. Assimilation systems couple the
observed physical quantities at different processing levels
directly via the observation operator to the atmospheric
parameters of the background field.

Single or multiple instrument climatologies are derived by
processing the observations carefully avoiding any unnecessary
introduction of information and interpolation of the results to a
grid. In this context the assimilation procedure, if conducted on a
suitable grid, directly delivers fields which are due to the analysis
process consistent as awhole. This approach has a clear advantage
especially if multiple instrument observations are used as input in
contrary to the interpolation of processed data onto a grid.

This suggests that the careful use of additional information,
namely the background within a 3D-Var scheme is justified and
lead to valuable insights of the temporal variations and the
evolution of the Earth's climate system. This procedure has to
be seen as a compromise between two contrary methods to
derive global fields of atmospheric key parameters (single or
multiple instruments versus output from NWP's). It provides
additional insight and helps to evaluate the results derived by
other methodologies.

In general, the use of assimilation techniques within clima-
tological applications is often very costly regarding computing
resources. Many years of data from different sources have to be
made available. In order to face this issue we make use of ESA's
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high performance computing Grid on-Demand offering the
opportunity to compute many time windows in parallel. This
breaks down the computing time significantly. Grid on-Demand
provides an easy to use, very efficient, and highly collaborative
tool to faster process and interpret large amounts of Earth
observation data. The Grid uses storage and computing elements,
which are located in different geographic locations and combines
them to a single instrument. The Grid is the perfect tool to
sophisticatedly treat scientific applications and results coming
from a variety of atmospheric instruments, where single
instrument applications are often lacking proper comparison or
even validation mechanisms with similar instruments or equiv-
alent data products.

For this study we use CHAMP observations between 5 and
35 km which had been processed by Geo Forschungs Zentrum
Potsadam (GFZ) to Level 2 (phase and orbits) and from the
Wegener Center for Climate and Global Change (WegCenter) to
refractivity (Level 2a).

The first studies show promising results for temperature
proving the chosen concept. Taking the limited amount of
observations and the conservative approach to describe their error
characteristics into account, the shown impact is reasonable and
mirrors the structure of the background error especially at
southern high latitudes proving the ability to correct shortcomings
in the first guess. Nevertheless the error structures have to be
studied further andmay be relaxed to allow for bigger increments.
The impact on water vapor is still unclear since we omit most of
the moist part of the atmosphere (cut-off height 5 km). The use of
wave optics processed RO data will enable to review the cut-off
criteria and assess the impact on the water vapor fields in the near
future. Surface pressure shows an expected behavior which
depends to a certain extent on the local orography.

In Section 2 a brief description of the used methodology is
given and our specific implementation is presented. Section 3
focuses on the used data, their error characteristics and the
selected processing (ESA's Grid on-Demand); Section 4
presents the results of our first assimilation experiments and
finally Section 5 provides a summary of our findings and an
outlook on future developments.

2. Methodology

2.1. 3D variational assimilation

2.1.1. 3D-Var overview
3D-Var is an iterative optimization methodology to combine

data of different sources (e.g. NWP model fields and
observations) in a statistically optimal way. This technique
and its successor 4D-Var, which takes also the time component
of the observations into account, is state of the art and
successfully used in NWP centers worldwide, to derive initial
conditions for the model runs. In 4D-Var the process is more
continuous, as in 3D-Var with defined cut-off times for the
observations to be used, generating a real initial condition for
the next forecast run. An introduction to the assimilation
methodology is given in Bouttier and Courtier (1999), Kalnay
(2003). In short, the minimization problem for finding a mini-
mum of the cost function J(x) (also called penalty or misfit
function) can be expressed as follows:

xa ¼ Arg min J ; ð1Þ

JðxÞ ¼ JbðxÞ þ JoðxÞ; ð2Þ

JðxÞ ¼ 1=2fðx� xbÞTB�1ðx� xbÞ
þðy� HðxÞÞTR�1ðy� HðxÞÞg;

ð3Þ

jJxa ¼ B�1ðxa � xbÞ þHTR�1½HðxaÞ � y� ¼ 0: ð4Þ
The observation and the background cost function are

denoted by Jo(x) and Jb(x), respectively.
The solution of the minimization problem requires the

calculation of the gradient ∇Jx and can be performed either in
terms of full fields J(x) or in terms of analysis of increments

dx ¼ x� xb; ð5Þ

JðdxÞ ¼ 1
2
½dxTB�1dxþ ðHdx� dÞTR�1ðHdx� dÞ�; ð6Þ

d ¼ y� HðxbÞ; ð7Þ
jJ ¼ B�1dxþHTR�1Hdx�HTR�1d; ð8Þ
where the analysis is found by adding the final increment to the
first guess

xa ¼ xb þ dxa: ð9Þ
δxa is found byminimizing the cost function (Eq. (6)) using the

cost function gradient (Eq. (8)) and a suitable optimization
algorithm. The differences H(x)−H(xb) may be written Hδx
using a linear approximation, where H is the potentially non-
linear observation operator, H the linear approximation (tangent
linear operator) of H, HT the adjoint operator, x the atmospheric
state vector, y the observation vector,R and B are the observation
and background error covariance matrices, respectively. This
formulation is still very expensive from a numerical point of view.
Here control space transformations are performed, which include
preconditioning procedures, in order to get a better posed problem
cf. Zupanski (1993), Kozo (1997).

2.2. Specific implementation

2.2.1. Assimilation system setup
In our climate application of the 3D-Var procedure an

incremental approach using control space transformations with
empirical orthogonal functions (EOF's) and recursive filters
was chosen (details on used data and error characteristics cf.
Section 3). The dimensions of the background are selected to
best fit to the specific application and computational require-
ments resulting in the use of a GCM compliant Gaussian grid
G48 corresponding to 96 latitudes×192 longitudes. This is
equivalent to a grid point spacing of ∼208 km at the equator
comprising 60 model levels. These hybrid, terrain following σ-
levels have a smooth transition to pressure levels with an
uppermost level at 0.10 hPa or ∼64.56 km. The vertical
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coordinate system is available as grid of pressure, geometrical
height (over reference ellipsoid) or geopotential height on the
ECMWF hybrid levels. For this assimilation experiment
geometrical height was used. The spatial horizontal resolution
(G48) is well suited for our application and the grid point
spacing agrees excellent with the integrating character of the
RO technique Wickert (2002) in the horizontal domain. The
24 h of a day are divided into 6 h time windows around 00, 06,
12 and 18 UTC. A separate assimilation run is performed for
every single 6 h interval using the appropriate background fields
and set of observations. The whole setup is based on the
analysis of monthly means, where the background is a monthly
mean of the appropriate time layer. Observations within the
assimilation time window (±3 h around the analysis time) from
the whole month are used.

The control variables used in the assimilation framework are
temperature, specific humidity, and surface pressure. Cross cor-
relations between the control variables are assumed to be small
enough to be neglected, which gives block-diagonal background
covariance matrices. Moreover we assume that the horizontal and
vertical correlations are separable. The cost function is minimized
by using a routine for Large-scale Bound-constrained or Un-
constrained Optimization (L-BFGS-B), an iterative quasi Newton
limited memory algorithm based on the Broyden–Fletcher–
Goldfarb–Shanno Method Zhu et al. (1995), Nocedal (1996).
The approximated Hessian matrix of second derivatives is con-
structed by analyzing successive gradient vectors, which allows to
apply a quasi Newton fitting method. The Hessian Matrix is not
computed at any stage, but the assumption of a locally quadratic
approximated function around the optimum has to be made.

2.2.2. Control space transformations
For a model state x with n degrees of freedom (in our case

∼2.3×106) minimization of the cost function is numerically
costly and can make the problem practically unsolvable for
usual n's. One practical solution to this problem is to perform
the minimization in a control variable space v (same dimension
as x), which leads to a preconditioning of the problem at the
same time Barker et al. (2003) and is given by

x ¼ Uv: ð10Þ
The transformation matrix U has to be chosen in a way that

B ¼ UUT : ð11Þ
In control space v the number of required minimization

calculations is reduced since the problem becomes better posed.
The background error covariance matrix in control space
approximately satisfiesBc=I, where I denotes the identity matrix,
hence the problem is effectively preconditioned. In terms of
increments the control variable transform can be written as

dx ¼ Uv: ð12Þ
There are different ways to specify the transformation

v ¼ U�1dx: ð13Þ
The definition must provide ways to break down the

atmospheric state x in uncorrelated but physical realistic error
modes which can be penalized in Jb according to their estimated
error magnitude Skamarock et al. (2005), Barker et al. (2004).
The control variable transform as expressed in Eq. (12) is in fact
composed of a series of operations

dx ¼ UhUvv; ð14Þ
where the subscript h denotes horizontal and v the vertical part
of the control space transform. The respective transformations
proceed from control to model space but are reversed in the
adjoint calculations where B in expanded form is written as

B ¼ UvUhU
T
hU

T
v : ð15Þ

To verify the adjoint code at different levels (single loops and
whole modules) the dot-product test had been used, which
verifies the adjoint code with respect to the tangent linear model
e.g. Kalnay (2003).

2.2.3. Vertical control variable transform
The vertical transform serves to project control variables

from model levels onto the weighted eigenvectors of the
vertical component of the background error covariance matrix.
The vertical covariance matrix Bv is given as a k× k positive-
definite symmetric matrix where k is equal the number of
vertical levels. These are properties which allow to perform an
eigenvalue decomposition with a multiplication by the scaling
factor P. B̄ v denotes a latitude dependent domain averaged Bv

(cf. Section 3.3.2).

Bv ¼ P�1EKETP�1; ð16Þ

B̄v ¼ EKET ð17Þ
The inner product P (here used in scalar notationP=1) defines

a weighted error which could be used to introduce e.g. synoptic
dependencies. The columns of the matrix E are k eigenvectors
e(m) of Bv, which obey the orthogonally relationship

EET ¼ I: ð18Þ
The diagonal matrix Λ contains the k eigenvalues λ(m) of

Bv; this standard theory can be used to define a transform Uvv
between variables δx(k) on model levels and their projection
onto vertical modes m defined by

Bv ¼ UvU
T
v : ð19Þ

The comparison of Eqs. (16) and (19) allows deriving

dx ¼ Uvvv; ð20Þ

dx ¼ P�1EK1=2vv: ð21Þ
Eq. (19) can be inserted into the background cost function in

control variable space form

Jb ¼ 1
2
dxTB�1

v dx; ð22Þ
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which gives

Jb ¼ 1
2
vTv vv; ð23Þ

Jb ¼ 1
2

X
m

v2vðmÞ; ð24Þ

for the background cost function and

jJb ¼ vv; ð25Þ
for the calculation of the background gradient. As can be seen
here there are several effects of the Uv transform.

• The projection onto the uncorrelated eigenvectors of Bv

leads to significant CPU savings as can be seen easily via Eq.
(24) in the calculation of the background cost function
respectively in the calculation of the background gradient
(see Eq. (25)).

• The scaling by the square root of the eigenvalues λ1/2(m)
serves as a preconditioner.

• The eigenvectors are ordered by the size of their cor-
responding eigenvalues, meaning that λ(1) is the dominant
structure where λ(k) essentially contains low amplitude
noise. One can use this order to filter vertical grid scale noise
by neglecting small-scale eigenvalue structures, which
contribute little to the total error. Such a filtering is not
part of our current implementation.

2.2.4. Horizontal control variable transform
A transformation δx=Uv is defined which relates the

preconditioned control variables v to the analysis increment
δx in model space. The horizontal control variable transform
uses the identity

Bh ¼ UhU
T
h ; ð26Þ

and follows closely the basic description of the vertical control
variable transform, but is realized by scaled recursive filters
(RF). The RF has to be applied in a non-dimensional space (since
the filter coefficients are defined in non-dimensional space)

ṽ ¼ F1=2v; ð27Þ
where the scaling factors F contain the grid box areas (planar
elements of the horizontal background grid), ṽ denotes a non-
dimensional control space. The relation between the horizontal
part of the background error covariance matrix B̃h and the
background error covariance matrix B̃h, where the tilde stands
for non-dimensional space, is given by

Bh ¼ F�1=2B̃hF
�1=2: ð28Þ

A comparison between Eqs. (26) and (28) indicates that the
horizontal component of the control variable transform Uh can
be represented by using a recursive filter R as

dx ¼ rbF
�1=2RF1=2v; ð29Þ
where σb is the background standard deviation if not already
implicitly applied through the vertical control space transfor-
mation (in our case σb is used to introduce the surface pressure
standard deviation). The basic algorithm for a recursive filter is
quite simple. The RF is defined through an initial function Aj at
grid points j where 1≤ j≤J. A single pass of the RF consists of
an initial smoothing from left to right

Bj ¼ aBj�1 þ ð1� aÞAj for j ¼ 1 N J ; ð30Þ
followed by another pass from right to left

Cj ¼ aCjþ1 þ ð1� aÞBj for j ¼ J N 1: ð31Þ
The application of the RF in each direction is performed to

ensure zero phase change. So a 1-pass filter is defined as a
single application of Eqs. (30) and (31), an N-pass RF is defined
by N sequential applications of Eqs. (30) and (31). The α
denotes the filter coefficients which can be derived in a way,
taking the number of filter passes N into account, that the filter
output matches analytical functions. For the limit N→∞ the
output of the RF tends to a Gaussian function. In short α is
calculated as follows:

a

ð1� aÞ2 ¼
1
2E

; ð32Þ

E ¼ NðDxÞ2
s2

; ð33Þ

where Δx denotes the grid spacing and s the characteristic
length scale which can be empirically derived to match given
correlations. It follows for α

a ¼ 1þ E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE þ 2Þ:

p
ð34Þ

Finally a scaling factor S has to be defined to conserve the
background error variance, for the zero distance case. S is
calculated as the inverse of the zero distance response of a one
dimensional N-pass RF to a delta function. In consequence of
the non-equidistant Gaussian grid α is spatially dependent. A
two dimensional RF results by the perpendicular application of
a one dimensional RF and the use of S2 as scaling factor. When
the RF is applied within our assimilation framework only N/2
passes are performed, as indicated in Eq. (26) the other N/2
passes are performed by the adjoint transform. Details
concerning RF's and the matching with analytical functions
are given in Lorenc (1992), Hayden and Lorenc (1995). In our
application we use a six pass filter (N=6) which quite
accurately resembles a Gaussian function. The filter coefficients
Α are calculated in a way to approximate the horizontal error
structures of the control variables. To avoid a boundary problem
(no transfer of information from point 1 to point J and vice
versa) the filter is applied twice with a shifted grid arrangement
Löscher et al. (2006).

2.2.5. The observation operator
The observation operator as applied within our system to the

data introduced in Section 3 consists of the interpolation
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procedures and the forward model to convert interpolated state
vector quantities to the observed quantity (in our case
refractivity). To calculate the background values at the spatial
location of the observations two bilinear horizontal and one
(linear for temperature, logarithmic for pressure, and specific
humidity) vertical interpolations are performed. The σ level
pressure grid is first calculated from the surface pressure. As
forward model a simplification of the Smith–Weintraub formula
(no k2 term which is small enough for microwave frequencies to
be neglected in our application and no terms describing the non-
ideal gas as in the Thayer formula) is used so the refractivity
forward operator can be written as:

N ¼ k1
pA
T

þ k3
e
T 2

: ð35Þ

This formulation follows e.g., Kursinski et al. (2000), where
N denotes the refractivity, T is the absolute temperature, e is the
partial pressure of water vapor, k1 and k3 are empirical
constants. In order to calculate the corresponding gradients,
the adjoint of the observation operator is used, which was partly
derived by using TAPENADE (Tangent and Adjoint PENulti-
mate Automatic Differentiation Engine) INRIA (2002) and
partly by manual coding. TAPENADE is an automatic code
differentiation tool from the Institut National de Recherche en
Informatique et en Automatique (INRIA), which is available
via the web (http://tapenade.inria.fr:8080/tapenade/index.jsp,
Aug. 2006).
3. Used data and selected processing

3.1. Grid on-Demand

The European Space Agency (ESA) Science and Application
Department of Earth Observation Programmes Directorate at
ESRIN has focused on the development of a dedicated Earth
Science Grid infrastructure, under the name Earth Observation
Grid Processing on-Demand (G-POD). This environment
provides an example of transparent, fast, and easy access to
data and computing resources. Using a dedicated Web interface,
each application has access to the ESA operational catalogue via
the ESA Multi-mission User Interface System (MUIS) and to
storage elements. It furthermore communicates with the
underlying Grid middleware, which coordinates all the
necessary steps to retrieve, process, and display the requested
products selected from the large database of ESA and third-
party missions. This makes G-POD ideal for processing large
amounts of data, developing services which require fast
production and delivery of results, comparing scientist
approaches to data processing and permitting easy algorithm
validation Fusco et al. (2007).

While conducting their research, Earth scientists are often
hindered by difficulties locating and accessing the right data,
products, and other information needed to turn data into
knowledge, e.g. interpretation of the available data. Data
provision services are far from optimal for reasons related
both to science and infrastructure capabilities. The process of
identifying and accessing data typically takes up the most time
and recourses. Of the different base causes, those most
frequently reencountered relate to:

• The physical discontinuity of data.
• The diversity of (meta) data formats.
• The large volume of data.
• The unavailability of historic data.
• The many different actors involved.

At ESA the current functionality in Grid on-Demand
Retscher et al. (2006) for atmospheric science purposes
provides access to ERS-2 and Envisat atmospheric data, such
as the Global Ozone Monitoring Experiment (GOME), the
Global Ozone Monitoring by Occultation of Stars (GOMOS),
the Michelson Interferometer for Passive Atmospheric Sound-
ing (MIPAS), and the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Cartography (SCIAMACHY). Other
Envisat data like the Medium Resolution Imaging Spectrometer
(MERIS), the Advanced Along-Track Scanning Radiometer
(AATSR), and the Advanced Synthetic Aperture Radar (ASAR)
are also available. On Grid there is as well a collection of other
satellite data, such as the Meteosat Second Generation (MSG),
or Advanced Very High Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectroradiometer (MODIS).

For this work we integrated a CHAMP dataset thus opening
the door for a new data type coming from RO experiments.

Grid on-Demand not only holds a large amount of data, it
moreover stands for distributed computing by offering access to
a vast number of computing elements controlled by the user via
a single website. (cf. http://eogrid.esrin.esa.int, Aug 2006). Grid
on-Demand as well offers the access to data and supports
applications using ESA toolboxes like the integrated Basic
Envisat & ERS-2 Atmospheric Toolbox (BEAT), Basic ERS &
Envisat (A)ATSR and MERIS Toolbox (BEAM), and Basic
Envisat SAR Toolbox (BEST).

3.2. RO observations

RO observations exhibit a high vertical resolution, which
depends to a certain extent on the used retrieval technique, for
geometrical optics retrieval roughly 0.5–1.5 km, and a high
accuracy from the upper troposphere to the lower stratosphere
of b1 K Gobiet et al. (2007). The quality of the retrieved data is
foreseen to be further improved by the use of novel algorithms
like wave optics methods Gorbunov (2002), Gorbunov and
Lauritsen (2004), Jensen et al. (2003), which improve the
retrieval quality especially in the troposphere and enables us to
process the data within the lower troposphere almost down to
the surface at a vertical resolution better than 500 m which will
improve our database in terms of numbers and vertical
coverage.

3.2.1. Choice of used quantity
It is desirable to use observations as close to the raw state as

possible within a data assimilation system Kuo et al. (2000).
There are several reasons to do so, first it is in general more

http://tapenade.inria.fr%3A8080/tapenade/index.jsp
http://eogrid.esrin.esa.int


Fig. 1. Schematic representation of the data reduction process.
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difficult to describe the error characteristics of the observed
quantities after several processing steps, which might introduce
additional uncertainties and correlations which are hard to
determine. Secondly we have to pay attention to the so-called
incest problem, a phenomenon caused by the use of background
information in observation pre-processing procedures. In that
case observations already contain background information prior
to the assimilation process. The resulting analysis is artificially
drawn closer to the background than is justifiable. For RO data
there are three immediate options, first the use of bending
angles, second the use of refractivities, and third the use of
further processed data like temperature or humidity profiles.
Option three is out of discussion since only dry temperature can
be retrieved without the use of additional information to solve
the temperature humidity ambiguity. This leaves options one
and two, where we have chosen to implement an operator based
on the assimilation of refractivity data. Refractivity operators
already have a successful track record in quasi operational use
and proofed to be accurate and computationally inexpensive.
The error structures in refractivity space are assumed to be well
defined. The use of bending angles potentially has some
advantages and is considered as add-on to the current system.
Local bending angle operators are computationally feasible, full
2D operators performing ray tracing within the occultation
plane are expensive from the computing point of view. Using
bending angles reduces the vertical correlation within one
observation profile since solving the Abel integral can be
omitted, a processing step that has to be performed to derive
refractivity which in addition introduces assumptions due to the
high altitude initialization. Several types of bending angle
operators have been developed and successfully tested.

3.2.2. RO processing and preprocessing
The mathematical theory of data assimilation assumes bias

free observations entering an assimilation framework, so pre-
processing of the data must assure the removal of any known
biases prior to further processing. CHAMP data exhibit a
negative refractivity bias of roughly up to 2%, in the amazons
region a positive biases exceeding 1% can be observed, within
the lower troposphere Beyerle et al. (2006) in general. This
study focuses on the use of data between the upper troposphere
and the lower stratosphere, a region which is almost bias free, so
a bias removal during the observation pre-processing has been
omitted; we are using the fraction of data where its quality is
best (5–35 km). Since the RO data products consist of profiles
with a vertical resolution, which exceeds the vertical resolution
of the used hybrid grid by far (300–400 observations within the
interesting altitude domain), a data reduction procedure has to
be applied prior to assimilation to reduce the numerical cost and
to smooth the profile.

The number of observations within single profiles is reduced
by a linear averaging procedure in log space, taking the spacing
of the mean global vertical grid into account. Fig. 1 depicts the
strategy to calculate two super observations between two hybrid
levels from the CHAMP profiles, which enter the assimilation
scheme. Within the pre-processing step, the quality flags of the
observations are used to reject as suspicious flagged data. The
quality check uses internal and external criteria at different
levels of processing to flag data and identify the problem like
not enough data or missing reference data.

The purpose of this procedure is on one hand the reduction of
the numerical cost and on the other hand a smoothing since the
vertical resolution of the observations capture smaller scale
atmospheric features than the background grid is capable to do.

The CHAMP data had been processed using the IGAM
retrieval scheme Gobiet and Kirchengast (2004a).

3.2.3. RO error characteristics
A simple error covariance matrix formulation was used. Full

vertical correlation, no horizontal correlation between the single
profiles is assumed since their separation in time and space is
sufficient. This formulation was deduced from empirical
estimated matrices Steiner and Kirchengast (2005). Similar
formulations can be found in Poli et al. (2002) and Healy and
Eyre (2000). A least square method was applied to fit analytical
functions to the relative standard deviation which shows a
different behavior below and above the tropopause. The
empirical relative standard deviation can be approximated
with an exponential increase above the upper troposphere and
lower stratosphere (UTLS) region. Between about 14–20 km it
is closely constant, and it can be described with a decrease from
near 14 km downwards proportional to an inverse law. To be
able to scale the error magnitude, which is receiver dependent,
the standard deviation in the UTLS domain (rutls) can be tuned.
Eq. (36) gives the analytical functions for the relative standard
deviation rz over all altitude domains, where z denotes the
height, zTropotop the top level of the troposphere domain, zStratobot
the bottom level of the stratosphere domain and HStrato the scale
height of the error increase over the stratosphere.

Rz ¼
rutls þ r0d

1
zp

� 1
zTropotop

� �
; for 2 km bzVzTropotop ðaÞ

rutls; for zTropotopbzV zStratobot ðbÞ
rutlsd exp

z� zStratobot
HStrato

� �
; for zStratobot bzV50 km ðcÞ

8>>>><
>>>>:

ð36Þ
To be able to derive the error covariance matrix the

correlation length L(z) has to be determined. The best values
for L(z) are 2 km within the troposphere (up to ∼15 km) and a
linear decrease of L(z) above the troposphere to 1 km at 50 km



Table 1
Parameters used to model the CHAMP error characteristics

rutls: 0.5% zStrato: 15 km
r0: 4.5% p: 1.0
zStratobot: 20 km L(z), 15 km≤ z: Linear decrease to 1 km at 50 km
zTropotop: 14 km L(z), 2 km≤ z≤15 km: 2 km
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altitude (details cf. Steiner and Kirchengast (2005)). The
observation error covariance matrix R can now be described as

R ¼ Rij ¼ rirjdexp � jzi � zjj
LðzÞ

� �
: ð37Þ

This formulation of the observation error covariance matrix
also accounts for the error of representativeness due to its
derivation. No additional specification within the assimilation
framework is necessary. The values which had been used within
this assimilation experiment to describe the error characteristic
of CHAMP data are listed in Table 1.
3.2.4. Spatial distribution and temporal sampling
The question of spatial and temporal sampling has to be

addressed, since it is impossible to get a really homogenous
Fig. 2. Observation distribution for the 00 time layers of the JJA season 2004 (a, b, c) and
coverage of the whole globe with one close to polar orbiting
satellite (which results e.g. in more profiles at high latitudes
than in the tropics and an inhomogeneous local time sampling).
For our climate application it is appropriate to focus on seasonal
means, a time frame which allows for a sufficient global
coverage in space and time by combining the single month
analyses (see Fig. 2) Pirscher et al. (2007). Data from COSMIC
will significantly improve the inhomogeneous local time
sampling present at the moment.

3.3. Background data

3.3.1. First guess fields
Our background data set consists of temperature, specific

humidity and surface pressure fields on an ECMWF hybrid grid.
To avoid any incest problems, we decided to derive a generic data
set from monthly mean ERA40 analysis fields which do not
contain RO data. A suitable timeframe to generate first guess
fields from this data set are the years 1980 to 2000. This time
frame covers a period of increasing and lately massive use of
satellite observations, improving the analysis over remote and
data sparse areas like the southern hemisphere significantly. This
monthly mean fields are averaged separately for the four 6 hours
the combined observation distribution of the 00 time layer for the JJA season 2004.

http://dx.doi.org/10.1029/2006JD007934


Table 2
Details CHAMP data JJA 2002, JJA 2003, JJA 2004 and JJA 2005

Time Number of profiles Number of pre-processed
observations

JJA
2002

JJA
2003

JJA
2004

JJA
2005

JJA
2002

JJA
2003

JJA
2004

JJA
2005

00 3213 3619 2905 3372 176509 198859 157757 184794
06 3444 3345 2897 3288 188893 183358 157395 179739
12 3191 3312 2922 3208 175535 181127 159869 175521
18 3507 3422 2849 3307 192268 187823 155596 181558
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time windows around 00, 06, 12 and 18 UTC. The fields are
directly drawn from the ECMWF data archive (Meteorological
Archival andRetrieval SystemMARS) in the usedN48 resolution
as gridded binary (GRIB) files.

3.3.2. Background error characteristic
Monthly mean error patterns are not readily available and

had to be derived (standard methods like e.g. NMC method
(Parrish and Derber (1992) can not be used in this context). For
this dataset the monthly mean variances of the used atmospheric
parameters (temperature, specific humidity and surface pres-
sure) are available from the MARS system too and calculated as
follows

avar ¼ 1
k � 1

Xn¼k

n¼1

ðan � ̂aÞ2; ð38Þ

where k denotes the number of days, avar the monthly mean
spatially varying variance of a parameter, a the daily analysis
value and â the corresponding monthly mean. The vertical
background correlation matrices of the monthly mean fields are
not available and calculated from a subset, namely from the
years 1980, 1985, 1990, 1995 and 2000. First the vertical error
covariance matrix B (where B denotes here an error covariance
matrix in a general sense) is computed from the differences Δxn
between the monthly mean and the true values as which the
daily analyses serve, for the k vertical levels.

B ¼ 1
k � 1

Xn¼k

n¼1

ðDxnÞðDxnÞT
" #

ð39Þ

The diagonal elements of B represent the variances (Bii) at
vertical level i with its non-diagonal elements representing the
covariance (Bij) between the vertical levels i and j. From B the
error correlation matrix Cv with its elements Cij denoting the
error correlations between Δxi at level i andΔxj at level j can be
derived. Cv is finally calculated by dividing the covariance Bij

by the square root of the product of variances Bii and Bjj

Cij ¼ Bijffiffiffiffiffiffiffiffiffiffi
BiiBjj

p
:

ð40Þ

This procedure is repeated for every latitude longitude
position of the grid. Since the correlations are not uniform over
the whole globe the single correlation matrices are averaged
separately for five latitude bands. The correlation matrices are
setup with 30° bands for northern high, northern mid, equatorial
(60°), southern mid, and southern high latitudes.

The final vertical background error covariance matrices of
the control variables are composed of the five derived
correlation matrices and the global grids of variances. The
same averaging procedure in time as used for the first guess
fields had been applied to derive the final error characteristics of
the control variables. The horizontal correlations which are not
latitude dependent are functions of point to point separation
which follow roughly the characteristics of the global mean
horizontal error correlations in use at ECMWF within the IFC
framework at 2003. A similar procedure as to derive the vertical
correlations is executed at the moment.

The total background covariance matrix is formed by means
of Eq. (15) where the spatially dependent field of variances and
the corresponding correlation matrices are used to form the total
background covariance matrix.

3.4. Timeframe of the experiment

For this kind of studies the availability and continuity of data
is of paramount importance. The northern hemisphere summer
season (JJA) from 2004 has been chosen to perform the
experiment. The prepared CHAMP data set for the period from
2002–2005 is listed in the following table (Table 2) showing the
continuity of the data flow over several years. The number of
RO events is in general lower at low latitudes compare to high
latitudes, an effect which stems from the orbit characteristic of
satellites in a close to polar orbit.

4. Results and discussion

The assimilation results are presented as seasonal zonal mean
increments (δxa in Eq. (9)) for temperature, specific humidity
from model level 40 to 10 and as seasonal mean increment for
surface pressure. The covered altitude interval is roughly 5 to
37 km since sigma coordinates are terrain following the altitude
scale of the plots represents a global mean of the vertical height
grid over reference ellipsoid. Refractivity is also shown as an
example of our observed variable with the same graphical
characteristics as temperature.

We present as an example the 00 time layer of the JJA season
2004, corresponding to the observations shown in Fig. 2. The
analyses for other time layers are consistent with the presented
results.

4.1. Zonal mean temperature

Fig. 3 shows the zonal mean increment of the temperature
analysis where significant patterns of increments are apparent at
the southern and less significant at northern high latitudes.
Wave like increment structures seen in other assimilation
experiments within an operational context Healy and Thepaut
(2006) (analysis differences) or in a comparison study of
ECMWF analysis and CHAMP data which is based on
temperature difference profiles Gobiet and Kirchengast
(2004a) are not visible. This difference stems from the

http://dx.doi.org/10.1256/qj.04.182
http://dx.doi.org/10.1256/qj.04.182


Fig. 3. Zonal mean temperature increment of the 00 time layer of the JJA 2004.
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background used in our experiment where the averaging over
21 years of ERA40 data seems to compensate (damping effect
due to the averaging process) model shortcomings at the
southern high latitudes especially during the (southern) winter
season. Similar experiments using short term forecasts and their
respective error structures as first guess resulted in increments
comparable to Gobiet and Kirchengast (2004a) and Healy and
Thepaut (2006). The increment pattern presented here agrees
well with the used background temperature error structure
indicating a high temperature information content of the
observations (cf. Refractivity Section 4.4).
Fig. 4. Zonal mean specific humidity increme
4.2. Zonal mean specific humidity

Since the most water vapor is within the lower troposphere
there is not much impact above model level 32 (clearly visible
in Fig. 4) which corresponds roughly to 10 km, although it has
to be noted that the overall increment is negative. Isolated
increments at higher altitudes should be ignored since the
system assigns there small numbers and treats them as zero (for
initial temperatures below 230 K the system assigns a value of
10−12, the gradients for that values are set automatically to zero,
negative humidity values appearing during the minimization
nt of the 00 time layer of the JJA 2004.

http://dx.doi.org/10.1256/qj.04.182
http://dx.doi.org/10.1256/qj.04.182


Fig. 5. Surface pressure increment of the 00 time layer of the JJA 2004.
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process are subsequently set to 10−12 , and treated accordingly).
Below level 32 a pattern is apparent but the increment is small
compared to the humidity uncertainties of the background. The
humidity information content is highest for ray-paths that are
close to the surface, these observations are omitted at the
moment due to their potential bias.

4.3. Surface pressure

The surface pressure increment shows very pronounced
features over Antarctica (see Fig. 5), a phenomenon also
Fig. 6. Zonal mean refractivity increment
observed in the results of other RO assimilation experiments
Healy and Thepaut (2006). This might be an effect caused by
the special orography of the Antarctic plateau (the magnitude
of the increments depends on the distance between the
surface and the lowermost observation Palmer et al. (2000),
this effect is subject to the specific implementation). The
missing increments at low latitudes can be explained by the
fact that RO observations around the tropics are harder to
retrieve down to the lowermost layers of the atmosphere due
to the strong humidity gradients there, new processing tech-
niques (wave optics) are better at coping with this problem.
of the 00 time layer of the JJA 2004.

http://dx.doi.org/10.1256/qj.04.182
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The use of these methods will enable to review the cut-off
criteria in future with considerable impact on the humidity
analysis.

4.4. Refractivity

The difference between the refractivity calculated from the
first guess data and the analysis is shown in Fig. 6 which mirrors
the temperature plot (Fig. 3) with different sign. The
interrelationship of these quantities suggests such a result but
it also shows that the refractivity is predominantly a function of
temperature in our analysis.

5. Summary, conclusions, and outlook

An assimilation scheme was presented using RO data from
CHAMP and a first guess derived from ECMWF ERA40 fields
for global climate studies. This choice of background
information provides us with a versatile dataset based on
monthly means which is static and model independent in
contrast to dynamic model fields (meaning the operational
output of NWP's), where any change in the model will alter the
error characteristic. With the static approach no reconsideration
of the error derivation is needed. Furthermore we are not
affected by a possible incest problem, allowing us to use the
whole spectrum of remote sensing data available.

Nevertheless one has to mention that the background might
be biased and the analysis thus might carry a signature of that
bias, since assimilation systems in general are designed to cope
with unbiased observations and background information.
Although this poses no problem in itself as long as the time
variations under study vary more slowly than the phenomena
one wants to capture.

We run the system on ESA's high performance computing
Grid on-Demand framework, opening the door for a new
observation type and successfully demonstrating the feasibil-
ity of assimilation methods for climate studies. Distributed
computing is an enabling technology to solve these kind of
problems which are demanding in terms of CPU. Since the
day is divided in four time layers one year of observations can
be processed on a monthly mean base using 48 nodes within
approximately 3 – 4 days (the actual computing time depends
heavily on the number of used observations and to a certain
extent on the load on the grid). Due to the fact that we cut-off
the RO profiles at 5 km the impact on the specific humidity
and surface pressure analyses is quite limited, temperature and
refractivity analyses have the most value. The use of novel
retrieval techniques like wave optics processing is expected to
change this situation. At the moment we focus on RO data
since their inherent properties make them ideal for climate
studies, with the launch of COSMIC the number of
observation per day multiplied and later this year we expect
from the GRAS instrument on-board MetOp data with
unprecedented accuracy. Nevertheless the use of complemen-
tary observations with high spatial resolution like IASI (In-
frared Sounding Interferometer) will be considered for future
algorithm enhancements. For validation purposes the obtained
analysis should be verified by using in situ measurements as a
reference.

As a next step the implementation of a bending angle oper-
ator is foreseen further reducing the number of pre-processing
steps fostering assimilation principles. The presented scheme
will be adapted by the GRAS-SAF (GRAS Satellite Application
Facility) in future to generate fields based on GRAS data. We
successfully showed the relevance of assimilation techniques
for climate studies and the feasibility if the necessary computing
infrastructure is available. Thus we expect that these techniques
will play a more prominent role in future not only in climate
applications but also in cross validation activities and bias
removal procedures. Balancing the shortcoming of different
remote sensing techniques by combining them, results in a
product of significant added value reflecting, in an optimal case,
only the advantages of the different observations used. These
activities will increase our knowledge about the accuracy of
remote sensing data sets and might as well be used to consol-
idate long term records from past decades if complementary
information is available, potentially having a profound impact
on climate research.
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