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The presence of those seeking the truth.
is infinitely to be preferred to the presence.

of those who think they have found it.

Terry Pratchett; Monstrous Regiment
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Introduction

The issue of global climate change mostly known under the concept of global warming
encounters growing public interest during the recent years. This issue is tackled on an
international base by the IPCC (Intergovernmental Panel on Climate Change), and the
ongoing debate whether there is a climate change triggered by human influence, and if
what are the consequences, is quite lively.

NWP (Numerical Weather Prediction) systems have reached a certain level of ma-
turity due to ongoing research and development on the one hand an exponential increase
in computing power on the other hand. With these developments also GCM’s (Global Cir-
culation Models) to simulate the global climate within an expanded timeframe inherited
many advanced techniques. Not to mention the increase of available information, namely
observations, which are available in numbers which tremendously increased during the
recent decades.

A key role for these new observations plays the increasing number of satellite plat-
forms carrying a wide variety of new instruments delivering an increasing amount of data
with global coverage. New observation concepts have to prove to be superior to older ones
and/or provide added value till they are used on an operational base. In contrast purely
scientific missions such as ENVISAT (Environmental Satellite) or CHAMP (Challenging
Mini Satellite Payload) often play the role of proof of concept missions and quasi opera-
tional testbed for future fully operational platforms (the term operational often concerns
standard quality assurance procedures and stringent time constraints, as for example NWP
systems can only use observations within limited time windows).

Relatively new concepts like RO (Radio Occultation) offer the opportunity to develop
new processing techniques and strategies to exploit the data in the best possible and most
efficient way. The RO experiment on-board CHAMP is the first system which delivers
continuous observations on a quasi-operational basis, preparing the ground for the first
RO-only based global climatologies. With the GRAS (GNSS Receiver for Atmospheric
Sounding) sensor on-board the METOP (Meteorological Operational Satellite) satellite a
fully operational system delivering RO observations will be available soon. On the other
hand the development of NWP systems during the last years improved the forecast skill
and the quality of the analyses continuously. So it would be interesting to use the NWP
methodology to introduce data into the model (in our case 3D-Var), first with single sets
of observations, later with whole climatologies, to study the increments of monthly and
seasonal mean fields.

This would allow to deliver a second set of global climatologies, which are somewhat
adjusted by ECMWF analyses, to the community, besides the RO-only based ones. Sec-
ondly this would allow interesting insights into potential biases in the ECMWF analyses,
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which are assumed to be the dominating error structure of monthly and seasonal mean
fields. Furthermore, the future prospect of an unbroken chain of RO instruments on or-
bital platforms is realistic and would deliver an unmatched record of global climate data
if continued for several decades, possibly being a key factor in distinguishing between nat-
ural variability and anthropogenic climate change in future. This work is dedicated to
contribute achievement of these goals, and to exploit RO data in the best possible way via
climate data assimilation systems. The work is organized as follows.

Chapter 1 A brief overview on the atmosphere and climate in general and on detecting
trends and climate change in some more detail is given. Building of climatologies based
on remote sensing data is briefly explained and illustrated by a state-of-the-art example,
utilizing RO data.

Chapter 2 The principles of data assimilation are explained, with a focus on 3D-Var,
the methodology used in this work. Some of the numerical pitfalls are shown, and the
mathematical background is explained briefly.

Chapter 3 The kind of data which is used for the assimilation experiments is introduced.
On one hand the ECMWF model data, which we used as background and on the other
hand the CHAMP RO data. Both sources of information are specified here in some detail,
with a brief outlook on future model updates and RO missions.

Chapter 4 Here the specific implementation of the refractivity-only and the temperature,
specific humidity and surface pressure (TQPsurf) 3D-Var systems is described in detail.
The realization of control space transformations and the preconditioning is explained, as
well as the use of recursive filters within this framework. The observation and background
covariance matrices are defined, and the derivations of background refractivity standard
deviation and correlations are illustrated. The observation operators are described in
detail and the minimization routine is introduced.

Chapter 5 Within this Chapter, the test procedures of both modes of the assimilation
framework (refractivity and TQPsurf analysis), are described. The error patterns method-
ology was applied for first experiments, to simulate real conditions, and assimilation runs
with raytraced data were conducted. The data thinning as part of the preprocessing of
observations is described here. The convergence behavior of both assimilation modes is
shown.

Chapter 6 Here the results of assimilating real CHAMP data for both assimilation modes
are shown. Deficiencies of the input data (at the moment retrieved CHAMP refractivity
profiles are showing a small systematic deviation), of the background data (southern winter
hemisphere polar vortex model representation), analysis increments, and the convergence
behavior are shown. The result of processing one month of CHAMP data is presented,
which served as the monthly mean analysis test case completing this work.
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Conclusions The conclusions of three and a half year of work, concerning the assimilation
of radio occultation data to build global climatologies are drawn here, an outlook is given
and future perspectives are discussed.

Appendices Additional information
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1
Atmosphere and Climate

1.1 The Atmosphere

The Earth’s atmosphere is characterized by an exponential decrease of density and pres-
sure. Here the atmosphere is denoted as the volume below the exosphere (height 500 - 600
km), nevertheless 80% of the total mass is concentrated in the troposphere. The vertical
structure and its classification is shown in Fig. 1.1. Also almost all weather phenomenons
are bound to the troposphere, the main constituents of the atmosphere are shown in Tab.
1.1, [Malberg (2002)].

Name Chemical Symbol Dry Air [Vol%] Moist Air[Vol%]

Nitrogen N2 78.08 77.0

Oxygen O2 20.95 20.7

Argon Ar 0.93 0.9

Carbon Dioxide CO2 0.033 0.03

Trace Gases Ne, He, Kr, CH4, H2, O3,
SO2

< 0.01 < 0.01

Water Vapor H2O - 1.3

Table 1.1: Main atmospheric constituents.

From the climatological point of view H2O as water vapor, CO2, O3 and CH4 are
playing key roles in the atmospheric radiation budget. They are denoted as Greenhouse
gases beside other trace gases of minor importance.

1.1.1 The Physical Composition of the Atmosphere

The atmosphere can be described by the laws of thermodynamics and the Newtonian
equations of motion, and is dominated by the incident solar flux (at the top of the at-
mosphere ∼ 1372 Wm−2) [Salby (1996)]. Secondly; the global biosphere is dominated by
the radiative equilibrium, which is determined by the in- and outgoing electromagnetic
fluxes (cf. Section 1.2.1). In Fig. 1.1 a vertical profile of temperature against altitude and
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Figure 1.1: Atmospheric temperature profile based on the CIRA-86 climatology (courtesy
C. Retscher, IGAM/UniGraz).

pressure is depicted (based on the CIRA-86 climatology), showing the principal vertical
classification of the atmosphere in a thermal sense. An alternative approach is to use the
physical-chemical mixing behavior of the atmospheric constituents. This classification is
based on homogenous mixing of the atmospheric constituents; up to 100 km (homosphere)
caused by turbulent air motions (mostly large scale convections in the troposphere and
small scale eddies beyond that region) whereas above, diffusion stratifies the constituents
according to their molecular and atomic mass, respectively [Raith (1997)]. In our ap-
plication we are confined to the troposphere and stratosphere, considering especially the
vertical interval between the surface and 35 km.

1.1.2 Parameters Describing the Atmospheric State

In principle there is a wide variety of parameters necessary to describe the atmospheric
state. In practice, i.e., in the case of GCM’s, used for numerical weather prediction or
climate change simulations, the number of simulated parameters has to be cut down to
computational feasible numbers. In fact most parameters depend on each other, mak-
ing the overall situation even more complicated. Nevertheless, dependent on the specific
application, the atmospheric state can be broken down into a limited number of largely
independent parameters with, to a certain extend, small cross correlations. These decom-
positions (for example PCA) have to be done very carefully, by reducing the number of
variables one has to be deliberate not to discard essential information. Besides these facts,
the atmosphere is closely coupled with the oceans and the land, which makes it even more
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complicated to describe the global atmosphere within a numerical model, where all these
correlations should be taken into account (coupled atmosphere, ocean, ice sheets and land
models).

In our application the atmospheric key parameters such as temperature, specific
humidity and surface pressure are taken into consideration. The derivation of further
parameters like, geopotential height, pressure and refractivity are occupying a central
position in our considerations.

1.2 Climate

1.2.1 Climate Change

Climate change on a global scale is classifiable into two categories, natural variability and
anthropogenic climate change. The Earth’s climate is not a static system and is subject
to constant changes over the centuries. Careful analysis shows some periodicity within the
parameters used for climate analysis over long time frames [Burroughs (2001)].

Periodic Climate Cycles

The main source of energy to drive the global atmospheric system is the sun, which behaves
approximately like a black body of 6000 K surface temperature. The emission of radiation
by the Earth is more complicated to describe, but a simple model would be a black body
of 287-288 K surface temperature. Changes in the Earth’s climate must be discussed in
the context of factors which control the radiation balance of the Earth. One important
factor is how the Earth’s orbit around the sun and its own rotation around its tilted
axis controls the amount of solar radiation falling on the globe. This regular changes are
almost constant in time1 and control the daily (diurnal), seasonal and annual cycles which
dominate the climate on Earth. Beside this rather short term variations, the long term
variations in orbital parameters like eccentricity (e) of the Earth’s orbit, the tilt of the
Earth’s axis to the orbital plane and obliquity of the ecliptic (ε), which change periodically,
do matter. Each of this orbital elements is a quasi-periodic function of time. The variation
of these parameters combine to effects affecting the amount of received solar radiation over
time scales from thousands of years to million of years. The sun’s activity follows a mean
11.2 years cycle with distinctive maxima and minima where the total amount of emitted
energy varies about 0.1%, which is rather little, but much of the change in the solar output
is concentrated in the UV part of the spectrum. The theory of the climatic effects of the
orbital variations are often denoted as the Milankovitch cycles.

Causes for Climate Change

Beside the already mentioned cyclic variations, the climate can be changed, at least tem-
porary by single events. This might be volcanic eruptions or even bolide impacts, which
happened regularly in the past. These and other causes for climate change can be denoted

1Earth’s rotation is slowing down ∼ 2 milliseconds per century due to tidal friction.
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as natural, whereas especially during the last century the human race developed the po-
tential to alter the climatic circumstances on a global scale, which will be discussed briefly
within the next Section.

Figure 1.2: Comparison of different CO2 emission scenarios, their impact on atmospheric CO2
concentrations and the consecutive forecasted increase of global mean temperature, IPCC Report
2001.

Anthropogenic Climate Change

Common opinion suggests that at least a fraction of recent climate change can be at-
tributed to human activities. Not only the production of greenhouse gases have to be
taken into account, but also the change of land use like deforestation and urbanization
have to be considered. Nevertheless the most prominent issue is the increase of the global
atmospheric concentration of radiative active gases like CO2, which contributes signifi-
cantly to the global warming in every scenario. Estimations suggest a radiative forcing
of about ∼ 2.5 Wm−2 caused by the, since the industrialization, constantly increasing
atmospheric levels of CO2. Fig. 1.2 depicts several emission scenarios and their expected
impact onto global mean temperatures [Houghton et al. (2001)]. One has to be aware that
besides the green house gases other factors may damp down or enhance global warming
in a highly non linear way, like change in albedo or dust content of the atmosphere. Pre-
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dicting climate change is a delicate task, taking into consideration that numerical weather
prediction models are able to deliver relatively reliable forecast for up to 10 days. These
models, which are constantly at the limit of which is numerically manageable concerning
resolution and number of variables, still have problems to cope with sudden switches in
circulation patterns of stable regimes. To overcome this problem a statistical approach is
used to identify these regimes by starting with slightly different initial conditions (ensem-
ble forecasts). For climate models, which have to calculate global data fields for decades
or even hundreds of years into the future, the general approach concerning the resolution
and number of variables has to be different. One of the probably most important things
that climate models can inherit from NWP models is the physics behind several processes
(e.g. cloud formation, surface fluxes, etc.), which are extremely important on the long
run.

Retrospective Climate Analysis

Retrospective climate analysis brought a lot of insight into natural variability and the
occurrence of natural cycles. As mentioned later the historical data record is quite lim-
ited. In the Section about proxy data some of the sources of information are mentioned
to reconstruct paleoclimatic circumstances. These retrospective analyses over great time
frames also helped to discover cyclic changes mentioned earlier, which are very important
to distinguish between the several causes, which trigger alteration within the global cli-
mate system. These kind of analysis leads to important insights into the climate system.
Another kind of retrospective analysis in known as reanalysis which basically means to run
a NWP system with a fixed development state of the model for several past years, using
all the available observations (e.g. ECMWF, ERA40). This exercise helps on one hand
to find model deficiencies and on the other hand to get an unbroken record over a longer
time-frame. In practice a model is updated and enhance in a regular manner, making it
complicated to compare results of different model versions. Furthermore the newer model
versions can exploit historical data in a more sophisticated way, delivering added value.

Climate Monitoring

During the last century a dense global observation network evolved, mainly for the purpose
of weather prediction. It consists of a global network of ground stations which conduct
measurements to agreed times and various stations are starting balloon sondes for vertical
atmospheric sounding. Furthermore observations are carried out from planes, ships and
buoys. The global observation network is complemented by satellite observations, which
are steadily growing in importance. This information is collected and incorporated into
the numerical weather prediction models by the NWP centers globally. The variety of
information, often in conjunction with sophisticated computer models is also the main
source of present global climate change monitoring.

Direct Observations The time frame of which direct observations are available is nat-
urally very limited compared to the age of the Earth. Some time series of temperature
measurements, spanning several hundred years, are available from the same location. Even
to interpret this data is tricky, taking the change of instrumentation and land use of the
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surrounding area (e.g. deforestation, urbanization) during the centuries into considera-
tion. Another example is sea surface temperature along the trade routes. During the last
century the number of global observations increased continually, covering even the most
remote places on Earth during the last decade, by the use of remote sensing techniques.

Proxy Data Most of the data used nowadays to reconstruct past global climate is so
called proxy data which allows to derive parameters like mean temperature or precipitation.
But one has to be very careful to interpret the various sources of information correctly.
Typical examples of proxy data are tree rings, lake and ocean sediments, ice cores and
chemical composition of sea shells. Many of these methods depend on chemical analysis
and the proportion of isotopes, derived by mass spectroscopy. Some information can also
be derived from human records other than direct observations, like time of wine harvest
or amount of harvest and crop prizes.

Atmosphere
Model

ECHAM5-MA(MPIM
Hamburg)

Change
Monitoring:

in JJA seasonal aver-
age fields as they evolve
from 2001 to 2025

Model Resolution T42L39 Domain: 17 latitude bins of 10◦

width 24 height levels
from 2 km to 50 km

Model Mode Atmosphere only
(monthly mean SST)

Vertical
Resolution:

1-2 km

Model Runs 1 run with transient
GHGs+Aerosols+O3,
1 control run (natural
forcing only)

Table 1.2: ECHAM5 model run parameters.

1.2.2 Detecting Climate Change

One issue in detecting climate change, is the dispensability of accurate and consistent ob-
servations over long time frames, where you can identify and remove periodic cycles, prior
to the analysis, which yields the natural variability and possibly underlying trends. That
kind of data is not available, neither locally, nor least of all globally. The global coverage
was significantly improved over the last decades, using Earth observation satellites. The
nature of that kind of observations is mostly indirect, i.e. parameters like temperature can
not be deduced directly. As an example, radiometers to determine vertical temperature
profiles are in fact measuring radiances. Another problem in getting consistent data series
is the change in instrumental properties during the lifetime of these instruments. The
same applies to successive generations of instruments in orbit, which makes it difficult
to merge the data series in a consistent way (e.g. appearance of discontinuities). To be
able to merge the data sets in a consistent way, a substantial overlap in time of different
instruments and different generations of instruments is necessary.



1.2. Climate 13

One of the advantages of the radio occultation technique is the theoretical self cal-
ibrating nature of the observation (cf. Section 3.2), which makes it comparably easier to
confer and match the observations of different instruments and platforms.

Another challenge is the choice of atmospheric parameters to detect climate change.
For example if one uses refractivity, which is a derived parameter, one has to be aware
what exactly happens, if different atmospheric parameters are changing. A very interesting
example is the change in zonal refractivity as it evolves during a 25 years model run, which
was performed in the CLIMATCH project of IGAM/UniGraz with MPI Hamburg [Foelsche
et al. (2003)]. The used parameters for this model run can be seen in Tab. 1.2.

Figure 1.3: JJA mean relative refractivity trend of a 25 year ECHAM5 model run (courtesy
U. Foelsche, IGAM/UniGraz).

A positive temperature trend of about 1 K, roughly between 10 km and 20 km, can be
seen evolving after 25 years (cf. Fig. 1.4, upper panel), which is not mirrored in the
refractivity trend (cf. Fig. 1.3). The relative change of refractivity in the same region
is effectively zero. This surprising fact can be easily explained, looking at the change in
pressure at Fig. 1.4 lower panel, which compensates the change in refractivity, caused by
the increase in temperature (for the exact correlations see equation 4.3). This example
shows, that conclusions can only be drawn after careful considerations, and taking the big
picture into account.

1.2.3 Climatologies

Applications for climatologies are not only found within a framework for studying climate
change, but also as first guess for retrieval procedures, guidelines in engineering and
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JJA mean relative temperature trend of a 25 year ECHAM5 model run.

JJA mean relative pressure trend of a 25 year ECHAM5 model run.

Figure 1.4: Validation of error patterns implementation by reconstructing the refractivity standard
deviation and the bias (courtesy U. Foelsche, IGAM/UniGraz).
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construction, or as a first step for cost assessments of insurance companies, just to mention
a few applications. There are standard climatologies existing like CIRA [Rees (1988)] and
MSISE [Hedin (1991)] which have their deficiencies [Randel et al. (2002)].

As for the weather as a chaotic system it is vital to know the initial state of the at-
mosphere as accurate as possible before a new forecast run of a NWP system is conducted.
Due to recent developments (4D-Var) this initial state is somewhat blurry because of tak-
ing the time dimension into consideration, which means comparing the observations at the
appropriate time with the model values, instead of condensing this comparison at fixed
time intervals (cf. Section 2.8). Another interesting application would be the comparison
of independent climatologies of monthly or seasonal means with the corresponding mean
analysis fields of e.g. ECMWF to detect model biases.

Figure 1.5: The two modes of the direct binning. Overlapping equal area bins at regular 18 latitude
x 24 longitude grid, with three exemplary latitude bins highlited to the left and non overlapping
equal area bins at 18 latitude x longitude dependent longitude grid to the right (courtesy M.
Borsche, IGAM/UniGraz).

Radio Occultation Based Climatologies

As an example the radio occultation based climatologies, which are the main product
of the CHAMPCLIM project, a joint undertaking of the IGAM/UniGraz and the GFZ
Potsdam are explained here briefly. The main objective of this project is to exploit the
CHAMP radio occultation data in the best possible manner for climate monitoring. The
climatologies are based on the complete CHAMP RO data set provided by GFZ at excess
phase level (GFZ level 2), which is processed to obtain atmospheric profiles of refractivity,
geopotential height and temperature (humidity profiles are foreseen for the near future).
The processed data is validated against ECMWF analysis fields at T42L60 resolution,
which serve as a reference. The goal is to provide monthly and seasonal mean climatologies
by direct binning and comprising rigorous error statistics in order to monitor the error
characteristics of both RO profiles and ECMWF data. Additional quality checks will be
performed using selected RAOB sites and complementary satellite data (e.g. Envisat/
MIPAS). The direct binning grids for the climatologies are set up in two modes, which
differ in the arrangement of the equal area bins into which the profiles are averaged (cf.
Fig. 1.5). Along latitude, both modes have the meridian divided into 18 bins of 10◦
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width (or a multiple/fraction thereof). Along longitude, the first mode (cf. Fig. 1.5 left
panel) uses a fixed 24 bins (baseline) at all latitudes, leading to bin overlapping, whilst
the second mode (cf. Fig. 1.5 right panel) uses a latitude-dependent number of bins such
as to obtain non overlapping equal area bins. While climatologies on the regular latitude
× longitude are most convenient to handle, comparison to the second mode allows study
of the potential relevance of error correlations between overlapping bins. In Figs 1.6 to
1.9 the first preliminary results for seasonal zonal mean climatologies of dry temperature
of the year 2002 and 2003 are presented2. One of the striking features is the southern
winter polar vortex which can be seen for 2002 as lower panel in Fig. 1.8 and for 2003
as lower plot in Fig. 1.8, showing the potential of RO based climatologies (more details
on RO data cf. Section 3.2). Within the next chapters a second approach to exploit the
radio occultation data will be presented, adding another set of climatologies, which are
the result of an optimal fusion process, of the RO observations and ECMWF analysis
fields, performing a statistical approach (in our case 3D-Var). These climatologies will
offer interesting insights into the error characteristics of the data fields as mentioned in
Section 1.2.3. It is vital for this statistical optimization procedure, to have a good idea
about the error characteristics of all fields which enter the assimilation procedure, so great
emphasis is given to a rigorous error estimation of the RO-only based climatologies.

2Data and plots provided by M. Borsche, worked out by the CHAMPCLIM project team of
IGAM/UniGraz [Gobiet et al. (2004)].
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Figure 1.6: CHAMP based seasonal climatologies for March, April, May and June, July, August
2002 (courtesy M. Borsche, IGAM/UniGraz).
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Figure 1.7: CHAMP based seasonal climatologies for Sep., Oct., Nov. and Dec., Jan., Feb.
2002/2003, (courtesy M. Borsche, IGAM/UniGraz).
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Figure 1.8: CHAMP based seasonal climatologies for March, April, May and June, July, August
2003 (courtesy M. Borsche, IGAM/UniGraz).
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Figure 1.9: CHAMP based seasonal climatologies for Sep., Oct., Nov. and Dec., Jan., Feb.
2003/2004, (courtesy M. Borsche, IGAM/UniGraz).
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2
Assimilation Concepts

The atmospheric system can be simulated effectively by discrete numerical models, and,
provided that the initial state of the system is known, accurate forecasts of future dynamic
behavior can be determined. Complete information defining all of the states of the system
at a specific time are, however, rarely available. Moreover, both the models and the mea-
sured data contain inaccuracies and random noise. In this case, observations of the system
measured over an interval of time can be used in combination with the model equations to
derive estimates of the expected values of the states. The problem of constructing a state
estimator, or observer, for the system can be treated by using feedback design techniques
from control theory. For the very large nonlinear systems arising in climate, weather and
ocean prediction, however, traditional control techniques are not practicable and data as-
similation schemes are used instead, to generate accurate state-estimates. The aim of
data assimilation is to incorporate measured observations into a dynamic system model
in order to produce accurate estimates of all the current (and within a model framework
future) state variables of the system in a statistically optimal way. The problem can be
stated as follows.

Problem 1 Given a (noisy) discrete model of the dynamics of a system, find estimates
of the system states from (noisy) observations.

So the basic goal of an assimilatation procedure is the generation of an analysis,
which is an accurate image of the true state of the atmosphere at a given time, represented
in a model as a collection of numbers. An analysis is useful in itself as a comprehensive
and self-consistent diagnostic of the atmosphere, but is also used as input data to other
operations like the initial state for a numeric weather forecast system, or it can provide
a reference against which to check the quality of observations. The basic objective in-
formation which is available to produce the analysis is a collection of various observed
values provided by observations of the true state. If the model state is overdetermined
by the observations then the analysis is reduced to an interpolation problem. Usually
the analysis problem is under determined because of data sparse areas and data which
is only indirectly related to the model variables. Nevertheless the problem is sometimes
locally overdetermined in areas of high data density. In order to make the problem well
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posed, it is necessary to rely on some background information in the form of an a priori
estimate of the model state, which can be a climatology, a trivial state, generated from
the output of a previous analysis, using some assumptions of consistency in time of the
model state, or the evolution predicted by a forecast model. Some physical constraints on
the analysis problem can also help to get a better posed problem. So the basic concept of
data assimilation is, that a well behaved system allows to accumulate information in time
into the model state and to propagate it to all variables of the model.

Definition 2 Data assimilation is an analysis technique in which the observed informa-
tion is accumulated into the model state by taking advantage of consistency constraints
with laws of time evolution and physical properties.

There are two approaches to this problem, which is sequential assimilation, a tech-
nique which only considers observation made in the past until the time of analysis (real
time assimilation systems) and non-sequential or retrospective assimilation, where obser-
vations from the future can be used (for example in a reanalysis). Another way to break
down the methods is the distinction if they are intermittent or continuous in time. The
physically more realistic approach of continuous assimilation considers observations over
longer periods, so the correction to the analyzed state is smooth in time. The technically
more convenient intermittent method considers observations only in small patches [Nichols
(2003)], [Swinbank et al. (2003)], [Kozo (1997)].

2.1 A Simple Approach-the Cressman Scheme

Most material presented in this Chapter is based on presentations during a NATO ASI
workshop in Italy 2003 and ECMWF training courses [Swinbank et al. (2003)], [F. Bouttier
(1999)], [ECMWF (2004b)]. The Cressman analysis scheme is a simple algorithm in which
the model state is set equal to the observations in the vicinity of available observations,
and to an arbitrary state (like a climatology) otherwise. If we assume the model state as
univariate and in a grid-point representation, and denote by xb a previous estimate of the
model state (background) provided by climatology, persistence or a previous forecast, and
by y(i), a set of i = 1...n observations of the same variable. The following update equation
defines a simple Cressman scheme, provided by the model state xa defined at each grid
point j

xa(j) = xb(j) +

nP
i=1
w(i, j) [y(i)− xb(i)]

nP
i=1
w(i, j)

, (2.1)

w(i, j) = max

Ã
0,
R2 − d2i,j
R2 + d2i,j

!
, (2.2)

Where di,j defines a measure of distance between the points i and j. The xb(i) is the
background state interpolated to point i. The weight function w(i, j) equals one if the
grid point j is collocated with the observation i (zero distance response). It is a decreasing
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function of distance defined by the user provided radius of influence R beyond which
observations have no influence (weight is zero if di,j > R). There are many variants of the
Cressman correction, a more general algorithm is the successive correction or observation
nudging. The key problem with these kinds of algorithms is the lack of a direct method to
determine the optimal weights. As there are errors in the model and in the observations,
we can never be sure which one to trust. So it is necessary to represent the uncertainty
of the data mathematically, which means deriving or assuming the error statistics, and
model it, using probabilistic concepts. This allows to design the analysis algorithm in a
way that in the average the analysis error must be minimal, which means that the analysis
problem can be written as an optimization problem.

2.2 State Vector, Observations and Control Space

2.2.1 State Vector

The values representing the state of the atmosphere are stored in the so called state vector
x. The xt is the best possible representation of reality (but of course is not equivalent to
reality, which is too complex), also called the true state at the time of the analysis. Other
values of the state vector x are xb, the a priori or background estimate of the true state
also called first guess, before the analysis, valid at the same time. The analysis itself is
denoted xa.

2.2.2 Observations

To derive an analysis we need observed values, which are gathered into an observation
vector y. The observations stored in the vector y have to be compared with the state
vector during the analysis procedure. Usually the location of the observations do not
correspond with the discrete representation of the state vector. Furthermore the measured
physical quantities are often not represented in the state vector, but linked to the state
vector values by physical laws. This observations are denoted as indirect measurements.
To compare them with the state vector the so called observation operator H, which is
in fact a function from model state space to observation space, is needed. This operator
generates the values1 H(x) that the observation would take if both the observations and the
state vector would be perfect and error free. In the simple case of corresponding physical
quantities in state and observation vector H is reduced to an interpolation operator. In
practice, conversion functions from model variables to observed parameters are also part
of H, especially if data from remote sensing platforms is used, which is usually indirect.

2.2.3 Control Space

In practice there are often technical reasons not to solve the analysis problem in the model
space. It is often convenient to solve the problem in a so-called control variable space. The
analysis problem is to find the optimal correction δx (analysis increment) so that

xa = xb + δx (2.3)

1The values H(x) are also called model equivalents of the observations.
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is as close as possible to the true state xt.

2.2.4 Departures

The analysis procedure is driven by the discrepancies between the state and the observation
vector which is given by2

δxinov= y−H(x) , (2.4)

with δxinov, the innovation vector. Evaluating equation (2.4) with the background xb gives
the innovations with the analysis xa the so called analysis residuals.

2.3 Modelling of Errors

One of the most important aspects of data assimilation is to take the uncertainties of
background and observations into account in a correct way. The standard approach to
this problem is the usage of pdf’s (probability density functions) to represent each kind
of error. Assuming a background field xb before the analysis there is only one vector,
containing the errors, which separates the background xb from the true state xt.

εb = xb − xt
If it would be possible to repeat the analysis under exactly the same conditions

a large number of times, with different realizations of errors εb generated by unknown
causes, it would be possible to calculate statistics of εb. In the limit of a very large
number of realizations the error statistics should converge to values which only depend
on the physical processes responsible for the errors. For an other equivalent analysis we
would not know the error εb, but we would know its statistics. The probability density
function of εb gives the best information about the distribution of εb and is given by the
limit of the histogram when the classes are infinitely small, which is a scalar function of
integral one. It is possible to derive all statistics from this function, a standard model of
a scalar pdf is the Gaussian function, which can be generalized to a multivariate pdf.

2.3.1 Error Variables

Background Errors

The background errors are defined as

εb = xb − xt , (2.5)

with the average
εb , (2.6)

and with the covariance
B =(εb − εb)(εb − εb)T . (2.7)

These errors do not include the discretization errors caused by the discrete representation
of reality, they describe only the difference between the background state and the true
state.

2Linearized observation operator H, cf. Section 2.17.
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Observation Errors

The observation errors are defined as

εo = y−H(xt) , (2.8)

with the average
εo , (2.9)

and with the covariance
R =(εo − εo)(εo − εo)T . (2.10)

These errors contain the observation errors themselves, processing errors, representative-
ness errors and errors in the design of H itself.

Analysis Errors

The analysis errors are defined as

εa = xa − xt , (2.11)

with the average:
εa . (2.12)

The trace of the analysis error covariance matrix A gives a measure kεa − εak of these
errors

Tr(A) = kεa − εak2 . (2.13)

These are the estimation errors of the analysis state, which we want to minimize. The
averages of errors are called biases which are a sign of systematic problems, either with
the model or the observations. Before using any kind of observation in an assimilation
scheme it must be assured that the observations are bias free, otherwise a bias correction
must be applied.

2.3.2 Error Covariances

If you assume a scalar system the background error covariance is the variance, i.e. the
root-mean-square (r.m.s.) average of departures from the mean

B =σ2(εb) = (εb − εb)2 . (2.14)

If the system is multidimensional the covariances are square symmetric matrices of the
dimension n corresponding to a model state vector of the dimension n. The diagonal
contains the variances, the off-diagonal elements are the cross-covariances between each
pair of variables. A covariance matrix can be decomposed into a vector of the dimension n
containing the variances and a correlation matrix of the dimension n×n. Error covariance
matrices are positive definite. An example for a three dimensional model state is

B =

 σ2(ε1, ε1) cov(ε1, ε2) cov(ε1, ε3)
cov(ε1, ε2) σ2(ε2, ε2) cov(ε2, ε3)
cov(ε1, ε3) cov(ε2, ε3) σ2(ε3, ε3)

 . (2.15)
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Assuming non zero variances, the off-diagonal terms can be transformed into error corre-
lations:

corr(εi, εj) =
cov(εi, εj)p
σ2(εi)σ2(εj)

. (2.16)

Linear transforms can only be applied to covariances as full matrix transforms. If a linear
transformation by a matrix P is defined (i.e. a matrix whose rows are the coordinates of
the new basis vectors in terms of the old ones, so that the new coordinates of the transform
of x are Px), then the covariance matrix in terms of the new variables is PBP T . The
notation used to describe the error covariances is related to the background error, but is
equally valid for the observation error.

2.3.3 Practical Estimation of Error Statistics

The error statistics describing biases and covariances are functions of physical processes
and the observations, and also depend on our a priori knowledge of the errors. The error
variances reflect the uncertainty in features of the background and the observations. To
be able to estimate statistics, the assumption of ergodicity has to be made, which means
that they are stationary over a period of time and uniform over a domain. So taking a
number of error realizations to make empirical statistics is possible. Error statistics can
also be specified by taking them to be a fraction of the climatological statistics of the
fields themselves. Approximations are unavoidable because in practice there is no data
available to calibrate the statistics, the estimation errors cannot be observed directly. As a
practical example the NMC method uses forecast differences to derive short-range forecast
errors [Parrish and Derber (1992)]. There are also the Hollingsworth and Lönnberg method
[Hollingsworth and Lönnberg (1986)], which looks at the spacial covariance of differences
between observations and background, and the analysis ensemble method, which estimates
background error statistics by running an ensemble of independent analysis experiments.

2.4 Least-Squares Estimation

Several hypotheses have to be stated:

• Linearized observation operator
H(x)−H(xb) ≈H(x− xb) . (2.17)

Equation 2.17 assumes that the variation of the observation operator in the vicinity
of the background state is linear for any x close enough to xb, where H is a linear
operator. H is called the first derivative, differential or tangent linear function of H.

• Non trivial errors, which means that B and R are positive definite matrices.

• The errors must be unbiased, what means that the expectation of the background
and observation errors are zero

xb − xt = 0 (2.18)

y−H(x) = 0 .



2.4. Least-Squares Estimation 29

• Observations and background are mutually uncorrelated

(xb − xt) (y−H(yt))T = 0 . (2.19)

• The analysis we are looking for is defined to corrections of the background which
depend linearly on background observation departures.

• The analysis should be as close as possible to the true state in the sense of a minimum
variance estimate.

2.4.1 The Least-Squares Analysis Equations

The optimal least-squares estimator, which is also called BLUE analysis (Best Linear
Unbiased Estimator), is defined by the following interpolation equation

xa − xb +K (y−H(xb)) . (2.20)

The linear operator K is called gain, or weight matrix, of the analysis

K = BHT (HBHT +R)−1 . (2.21)

The analysis error covariance matrix is given for any K by

A = (I−KH)B(I−KH)T +KRKT . (2.22)

If K is the optimal least-squares gain, the expression becomes

A = (I−KH)B . (2.23)

The BLUE analysis is obtained as solution of the equivalent variational optimization prob-
lem:

xa = Arg min J . (2.24)

Where J is defined as:

J(x) =Jb(x)+Jo(x) , (2.25)

or in detail:

J(x) = (x− xb)T B−1 (x− xb) + (y−H(x))T R−1 (y−H(x)) , (2.26)

with its gradient:

∇xJ(x) = 2B−1(x− xb)− 2HTR−1(y−H(x)) . (2.27)

J is called the cost or penalty function of the analysis, which consists of the background
term Jb and the observation term Jo. The calculated analysis xa is optimal, which means
it is closest in a r.m.s. sense to the true state xt. In case of Gaussian background error
pdf’s xa is the maximum likelihood estimator of xt.
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Necessary Assumptions

The assumption that there is no correlation between background and observation errors
is usually justified, because the causes of the errors are supposed to be completely in-
dependent. However, one must be careful about observation preprocessing, like retrieval
procedures, which use background information. These procedures can cause a bias of the
observations towards the background. If observations, containing background information
are used in an assimilation procedure, we are confronted with the so-called incest problem.
The analysis is drawn closer to the background, which is caused by observations already
containing background information, reducing the apparent background departures. If ad-
ditional information is necessary in the observation preprocessing procedure, one should
carefully decide, which background will not influence the analysis result. The analysis is
only optimal if the assumption of bias-free errors holds. In practice background and obser-
vations are often significantly biased. If the biases are known, they can be subtracted from
the background and observations, which is in practice a delicate problem. Bias monitoring
and removal are subjects of ongoing improvement and research. Finally the hypothesis of
linearized observation operators is needed to derive the analysis equations for an optimal
K in an algebraic rigorous way.

2.4.2 A Simple Example of Least Squares Estimation

To determine the temperature Tt, two observations T1 and T2 with known accuracy σ1
and σ2 are available. These observations are assumed to be unbiased. T1 and T2 can be
combined to provide an analysis Ta which provides a better estimate of Tt than any of the
observations alone. A linear weighted average of T1 and T2:

Ta = kT1 + (1− k)T2 , (2.28)

which can be rewritten as
Ta = T2 + k(T1 − T2) . (2.29)

Under the assumption that T1 denotes the observation and T2 denotes the background
within an assimilation framework, Eq. 2.29 is a correction of the background which is a
linear function of the difference between the observation and the background. The error
variance of the estimate is given as

σ2a = (1− k)2σ22 + k2σ21 , (2.30)

with the assumption that T1 and T2 respectively observation and background are uncor-
related. The optimal value of k minimizes the analysis error variance

k =
σ22

σ21 + σ22
, (2.31)

which is equivalent to minimize

J(T ) = J2(T ) + J1(T ) (2.32)

=
(T − T2)2

σ22
+
(T − T1)2

σ21
.
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The consequences are:

• In the first limiting case of very low quality measurements (σ1 À σ2) =⇒ k = 0 and
the analysis remains equal to the background.

• In the second limiting case of very high quality measurements (σ1 ¿ σ2) =⇒ k = 1
and the analysis is equal to the observation.

• If both T1 and T2 have the same accuracy (σ1 = σ2) =⇒ k = 1
2 the analysis is the

average of T1 and T2.

• In the other cases 0 ≤ k ≤ 1 the analysis is a weighted background of T1 and T2.

The analysis error for the optimal k is given as

1

σ2a
=
1

σ21
+
1

σ22
, (2.33)

σ2a =
σ21

1 + (σ1σ2 )
2

(2.34)

=
σ22

1 + (σ2σ1 )
2

(2.35)

= (1− k)σ22 . (2.36)

It follows that the analysis error variance σ2a is always smaller than both the background
and observation error variances respectively σ22 and σ21 as shown in equation 2.36.

2.5 Optimal Interpolation

The optimal interpolation (OI) analysis scheme is an algebraic simplification of the cal-
culation of the weight matrix K in the analysis Eq. 2.20 and 2.21. In fact one assumes
that only a few observations are important to determine the analysis increment for each
background variable. Suitable selection criteria for the influencing observations surround-
ing each background variable have to be found. In this approach, only sub-matrices of
the background and observation covariance matrices have to be inverted, which saves con-
siderable computing time. It is only necessary to define B locally, which can also be a
drawback if it is difficult to describe B as a model, which can easily be applied to pairs of
background and observed variables.

2.6 3D-VAR

3D-Var avoids the computation of the gain matrixK in Eq. 2.21 completely by finding the
analysis as an approximate solution to the equivalent minimization problem given by the
cost function J given in Eq. 2.26. The solution can be computed iteratively by performing
several evaluations of the cost function cf. Eq. 2.26 and its gradient cf. Eq. 2.27 in order
to approach the minimum using a suitable minimization algorithm. The final solution
is only an approximation, because of the fact, that only a limited number of iterations
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is performed. A standard procedure is to chose as initial point of the minimization, the
so-called first guess, or the background xb. The first guess just initiates the minimization
procedure and is not necessary equal to the background (Principal program flow chart of
a 3D-Var system see Appendix E).

The solution of the minimization problem can be performed either in terms of full-
fields J(xa) or the analysis of increments J(x0a) = J(x0a = xa − xb) [F. Bouttier (1999)].
The latter solution method provides optimal analysis increments, which are added to the
unmodified background field. This procedure has a number of advantages like the use
of linearized control variable transforms which allow the straightforward use of adjoints
to calculate the gradient of the cost function. Another advantage is that any imbalance
introduced through the analysis procedure is limited to the small increments which are
added to the balanced first guess.

2.7 FGAT

FGAT means First Guess at Appropriate Time for use of observations, which is an in-
termediate approach. It means that, even if the correction does not depend on time, the
observations are taken into account at their time and are compared with the first guess at
the appropriate time.

2.8 4D-VAR

4D-Var is a generalization of the 3D-Var scheme, which takes into account the distribution
of measurements in time. The analysis equations are the same as in 3D-Var, but the
observation operators includes a forecast model, that allows to compare the observations
with the model state at the appropriate time. That allows that NWP systems, using
4D-Var techniques, can utilize more observations, due to the fact that the assimilation
window is broad in the time dimension. The 4D-Var problem is solved by minimization
of the following cost function (i denotes the time intervals of the observations):

J(x) = (x− xb)T B−1 (x− xb) +
nX
i=0

(yi −Hi(xi))T R−1i (yi −Hi(xi)) . (2.37)

2.9 Other Methods

Other developments of the least square analysis scheme are the Kalman Filter and the
Extended Kalman Filter. It can be shown that a 4D-Var analysis at the end of the analysis
time interval is equivalent to a Kalman Filter analysis at the same time. The formulation
of the Linear Extended Kalman Filter is equivalent to the least squares formulation, where
each background is provided by a forecast that starts from the previous analysis.
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2.10 Numerical Cost

One of the main design drivers for a data assimilation system is the numerical cost. The

covariance matrices B and R have to be specified, which contain n2

2 respectively p2

2 co-
efficients. Alternatively, covariance matrices can be approximated by the use of filters,
which reduce the numerical costs significantly. To determine K, matrices of the size p× p
have to be inverted, which has an asymptotic complexity of the order of p2 log(n). In the
variational form of the least squares framework the inverse of the matrices B and R is
needed. By the use of transformations and reformulations, especially of B, the numeri-
cal cost can be dramatically reduced. Finally the exact minimization of J would require
n+ 1 evaluations of the cost function and its gradient, assuming that J is quadratic and
there are no numerical errors. That means that beside a suitable minimization algorithm,
practically feasible abort criteria for the iteration have to be defined [F. Bouttier (1999)],
[Kozo (1997)], [ECMWF (2004b)], [Kalnay (2003)].
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3
Data Base for Radio Occultation Data
Assimilation

3.1 Background Data

In general, background data provided by ECMWF, is used, due to its high standards,
accuracy and availability. The ECMWF, spectral model (IFS) runs currently with a
T511L60 resolution, which is foreseen to be upgraded to T511L90 during 2004. After
increasing the vertical resolution from 60 to 90 model levels, the next scheduled step is an
upgrade of the horizontal resolution to T711 [ECMWF (2004a)].

3.1.1 ECMWF Analysis Fields

As background for the assimilation procedure are used, ECMWF T42L60 analysis fields,
corresponding to a Gaussian grid composed of 128×64 geographic areas, and 60 standard
model levels up to a height of ∼ 64 km. The resolution of the vertical grid is highest in
the planetary boundary layer and lowest in the stratosphere and lower mesosphere. These
vertical levels are realized as hybrid levels, which means they are composed as
σ - levels which follow the Earth’s surface in the lower and mid tropospere, but are surfaces
of constant pressure (pressure levels) in the upper stratosphere and mesosphere with a
smooth transition between these types of levels. ECMWF uses two different numerical
representations for the horizontal grid. A spectral method, based on a spherical harmonic
expansion, truncated at total wavenumber 511, for the representation of upper air fields
and the computation of the horizontal derivatives. Apart from the T511L60 operational
model a T255L40 model is run for ensemble prediction, a T159L40 model for the 4D-
Var assimilation and a T63L31 model for seasonal forecast. In addition there is a grid
point representation used for computing dynamic tendencies and the diabatic physical
parametrization. This so called Gaussian grid, is regular in longitude and almost regular
in latitude. Due to the convergence of the longitudes towards the poles, the east-west
distance between the grid points decreases polewards. To avoid some numerical problems
around the poles and most importantly, to save computing time, a reduced Gaussian grid



36 3. Data Base for Radio Occultation Data Assimilation

was introduced by reducing the number of grid points along the shorter latitude lines
near the poles, so as to keep the east-west separation between points on different latitudes
almost constant. With the current resolution the grid is identical to a regular Gaussian
grid between 24◦N and 24◦S. The model surface is logically divided into sea and land
points, by using a land-sea-mask. The representation of the orography uses the mean
orography and is significantly smoother than reality (Fig. 3.1).

Figure 3.1: Model orography for the T42 resolution.

At ECMWF four global analyses per day are produced at 00, 06, 12 and 18 UTC.
These are obtained by two 4D-Var minimization cycles running from 03 to 15 UTC and
from 15 to 03 UTC. The analysis is performed by comparing the observations directly
with a very short forecast, using exactly the same model as the operational medium-range
forecast. The differences between the observed values and the equivalent values predicted
by the short-range forecast are used to make a correction to the first guess field in order
to produce the atmospheric analysis.

For our climatological application the T42L60 resolution of the analyses was chosen
due to computational constraints and some unique advantages. As discussed below the
spatial characteristics of Radio Occultation data (moderate horizontal, high vertical reso-
lution) fits quite well to this background grid spacing. ECMWF offers a broad spectrum
of analysis products, for our application global temperature, specific humidity, and surface
pressure fields are used [Person (2003)], [Gobiet and Kirchengast (2004a)].

3.1.2 Accuracy of ECMWF Analysis Fields

For climatological applications the knowledge of error bounds is crucial. For the opera-
tional daily analyses, information about the standard deviations and correlations of the



3.2. Radio Occultation Data 37

atmospheric parameters are available. It is possible to derive them with statistical meth-
ods like the NMC method, where the error characteristics are derived by averaged forecast
differences. The error characteristics of monthly and seasonal means are still unknown and
believed to be bias driven (Mike Fisher ECMWF Reading, U.K., pers. communication
2003). The error characteristics of the used background fields are discussed in detail in
Section 4.7.

3.2 Radio Occultation Data

With the successful launch of the CHAMP satellite in summer 2000 and the start of its
GPS Radio Occultation experiment in February 2001, the number of available RO-based
atmospheric profiles increased in a way that long term climatological studies become feasi-
ble. In addition to CHAMP, also the RO experiments on the Argentinean SAC-C satellite
contributes data (SAC-C data is fragmentary and limited to certain periods, at the mo-
ment further data from SAC-C is questionable), and the GRACE mission is expected to
constitute data in 2004. The first successful processed GRACE RO profiles were published
by JPL on 29 of July 2004. Furthermore, a RO receiver (GRAS) [EUMETSAT (2003)]
is part of the payload of the METOP series of polar-orbiting, operational meteorological
satellites currently prepared by EUMETSAT and ESA. Other RO missions are sched-
uled like COSMIC (US-Taiwan) and ACE+ (ESA) whose further implementation was
unfortunately stopped recently. The global coverage, all-weather capability, high vertical
resolution, accuracy and long term stability of RO data makes them an ideal candidate
to build global climatologies of fundamental variables such as temperature, geopotential
height and water vapor [Kirchengast et al. (2004)], [Gobiet and Kirchengast (2004a)].

3.2.1 The RO Technique

Radio Occultation (RO) is a novel active limb sounding technique to derive atmospheric
key parameters. The measurement setup comprises a receiver mounted on a low Earth
orbit (LEO) satellite, which tracks the signal of a global navigation system (GPS) satellite
positioned in a medium Earth orbit (MEO), in an occultation geometry. The challenges
from a technical point of view imply the necessity of an extremely high frequency stability
in the signal and the positions and velocities of transmitter and receiver must be known
to very high accuracy. The concept was successfully proven on-board the Micro Lab 1
satellite (GPS/MET experiment) [Kursinski et al. (1996)] and is now quasi operationally
implemented as part of the CHAMP mission. Fig. 3.2 illustrates the concept of the
RO technique, which is the interaction of electromagnetic waves (GPS signals) and the
(in our application) terrestial atmosphere. An electromagnetic ray passing through the
atmosphere is bent and retarded due to the ionosphere and the Earth’s refractivity field.
In our application the signal must be corrected for the influence of the ionosphere which
is accomplished by a differential approach. For other applications this part of the signal is
used to derive maps of the ionosphere and the total electron content (TEC). The effect of
the atmosphere onto the electromagnetic waves can be characterized by a total bending
angle (α) as a function of the impact parameter (a). The impact parameter is defined,
assuming spherical symmetry, as the perpendicular distance between the center of local
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curvature at the perigee of the occultation ray and the ray asymtote at the GPS or LEO
satellite.

�

Referencing GPS

Occulting GPS

CHAMP

Fiducial Network
(JPL/GFZ)

Bending Angel

Geometry of GPS limb sounding with CHAMP

a
a

Tangent Point

r0

Figure 3.2: Principal geometry of an radio occultation measurement including LEO satellite
(CHAMP), GPS satellites and fiducial network.

Unique Advantages for Monitoring of Atmospheric Key Parameters

Due to the measurement principle, Radio Occultation features some preferable character-
istics which makes it an ideal technique for a long term monitoring of atmospheric key
parameters. Its long term stability and selfcalibrating concept makes it an ideal candidate
for climate studies.

• The atmospheric profiles are not derived from absolute intensities or phase delays.

• The profiles are derived from transmissions (normalized intensities) and the Doppler
shift (phase change) profiles (intrinsic self-calibration).

• Only short-term stability is nescessary during the occultation event.
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Characteristic Horizontal and Vertical Resolution of RO Measurements

One of the characteristics of RO measurement is its high vertical (∆z) and moderate to
low horizontal (∆L) spatial resolution. The following relation is valid

∆L = 2 ·
√
2 ·R ·∆z , (3.1)

where ∆L denotes the chord, which is defined by the tangent of the inner of two concentric
circles with radii which differ about ∆z. R is the radius of the inner circle, which is in
fact the atmospheric radius at the tangent point of the ray path. If geometric optics is
applied, the vertical resolution is limited by the diameter of the first Fresnel Zone dF . For
occultation geometry, this can be calculated by negligible atmosphere (stratosphere) as
follows

dF = 2 ·
√
λ ·D ,

where λ denotes the wavelength of the GPS signal and D the distance between the GPS
receiver on-board CHAMP and the tangent point. With λ = 19 cm and D = 2.600 km
(orbit height of 500 km) for the diameter of the first Fresnel Zone follows 1.4 km. Using Eq.
3.1 a horizontal resolution ∆L of ∼ 270 km can be calculated. Caused by the exponential
increase of the refractivity towards the Earth’s surface (troposphere) dF becomes smaller
and reaches close to the Earth’s surface a value of 0.5 km [Kursinski et al. (1997)] which
translates into a horizontal resolution of about ∼ 80 km. It is possible to enhance the
vertical resolution by using methods which take diffraction effects into account
[Gorbunov and Gurvich (1998)], [Wickert (2002)].

3.2.2 Retrieval

General RO Retrieval

As a basic idea the radio signals emitted by the GNSS satellites can be treated as rays,
which means a geometric optics assumption. This is a valid simplification from the mid-
troposphere upwards. However below some 5 km wave optics methods, which can cope
with complex signal structures in the presence of strong refractivity gradients enhance the
retrieval performance significantly [Gorbunov (2002)], [Hocke et al. (1999)], [Sokolovskiy
(2003)]. At the moment the IGAM retrieval for CHAMP data uses only the geometric op-
tics approach. The use of a retrieval procedure which blends geometric optics assumption
from the mid-troposphere upwards with wave optics methods derived data in the lower
regions is foreseen to be used in the near future.

GPS Frequencies L1 = 1575.42 MHz

L2 = 1227.60 MHz

The primary observables are the phase delays of GNSS signals, resulting from the deceler-
ation of the electromagnetic wave’s phase velocity by the atmosphere. The Doppler shifts
and total bending angles α as function of the ray’s impact parameter a can be deduced
from the phase delays [Kursinski et al. (1997)]. The basis to derive α is the Doppler-Shift
equation [Gorbunov et al. (1996)]:

fd = fc

µ
c−−→ν2−→m2n2
c−−→ν1−→m1n1 − 1

¶
, (3.2)
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where −→ν1 and −→ν2 denote the velocity vectors of the occulting GPS and CHAMP satellites,−→m1 and −→m2 are the unit vectors of the wave vector of the transmitted and received signals,
n1 and n2 are the refractivities at the corresponding satellite positions. The Doppler shift
fd corresponds to the measured phase as

fd = −fc
c

dL

dt
, (3.3)

with the carrier frequency fc and the vacuum speed of light c. It is possible to decompose
L as

L = L0 + dAL0 , (3.4)

so it is possible to decompose the Doppler shift

fd = fd0 + fdA . (3.5)

The first term describes the frequency shift without atmospheric influence, caused by the
relative motion of the satellites and can be calculated from precise orbit data. The second
term is the time derivative of calibrated atmospheric induced signal delay of the occultation
link which is composed of an ionospheric part and a part of the neutral atmosphere. The
angle of refraction α can be derived as follows

α = Φ1 +Φ2 +Θ− π . (3.6)

The angles Φ1 and Φ2 are the only unknowns in Eq. 3.6, after solving the scalar product
and the introduction of the measured Doppler shift in Eq. 3.2 [Kursinski et al. (1997)],
and can be derived under the assumption of local spherical symmetry of the refractivity
n = n(r) using Snells law

r1n(r1) sinΦ1 = r2n(r2) sinΦ2 = a . (3.7)

Eqs. 3.2 and Eq. 3.7 are a non linear system which can not be solved analytically, but with
a simple iterative procedure [Gorbunov et al. (1996)]. Eq. 3.7 also provides the impact
parameter a. Furthermore an ellipsoid and an ionosperic correction have to be applied. As
a next step the refractivity index n can be derived via an inverse Abel transform [Fjeldbo
et al. (1971)]

n(a) = exp

 1
π
·
∞Z
a

α(a0)√
a02 − a2 da

0
 . (3.8)

The refractivity as a function of height N(a) is obtained via Eq. 3.8

N(a) = 106 · (n(a)− 1)
z(a) =

a

n(a)
−Rc

where Rc denotes the local radius of curvature of the Earth’s ellipsoid at the occultation
location. Bending angles above ∼ 45 km are dominated by ionospheric effects [Hocke
(1997)]. Since the ionosphere is a dispersive medium and thus causes different L1 and L2
phase delays, it is possible to remove this effects to first order by linear combination of this
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two signals. The method of linear correction of bending angles Eq. 3.9 has been applied
most successfully [Vorobev and Krasnilnikova (1994)] by

αLC(a) =
f21α1(a)− f22α2(a)

f21 − f22
, (3.9)

where αLC denotes the ionosphere corrected bending angle, α1 and α2 the uncorrected
bending angles of the L1 and L2 signals. Still, retrieval results above 20− 30 km are sen-
sitive to residual ionospheric noise (resulting from higher order terms, which are not cor-
rected by Eq. 3.9) and other errors like receiver noise, residual clock errors, local multipath
and orbit uncertainties. Since the upper integration limit of the inverse Able transform
Eq. 3.8 ranges to infinity it needs in practice some kind of high altitude initialization to
avoid downward propagation of errors via the Abel transform itself and subsequently via
the hydrostatic integration Eq. 3.23. To minimize these errors the concept of statistical
optimization is applied [Sokolovskiy and Hunt (1996)]. The best linear unbiased estimator
(BLUE Eq. 2.20) αopt is derived from an observed αO and a background αB bending
angle profile under the assumption of unbiased Gaussian errors. The O and B are the
observation and background error covariance matrices, respectively. The αopt is derived
by

αopt = αB +B · (B+O)−1 · (αO − αB) . (3.10)

Where αopt is a fused bending angle profile dominated by the background in the upper
part and by the observation in the lower part. The IGAM retrieval schemes integrate
background information only at one point of the retrieval (at bending angle level), so that
the results have well defined error characteristics. One has to be careful if background
information is used in a retrieval procedure, if the retrieved data is used in a consecutive
assimilation framework. If the assimilation framework uses the same background data as
the retrieval we end up with a so-called incest problem1. The analysis in the assimilation
procedure is artificially drawn to the background. At IGAM, statistical optimization is
implemented in two ways, both relying on Eq. 3.10, but using different sources of back-
ground information and different ways of preprocessing of this information. IGAM/MSIS
uses bending angle profiles extracted from the MSIS-90 climatology [Hedin (1991)] and ap-
plies best fit profile library search and bias correction procedures [Gobiet et al. (2004)] in
order to diminish known biases in the climatology [Randel et al. (2002)]. IGAM/ECMWF
uses bending angle profiles derived from ECMWF operational analyses. For assimilation
purposes only data derived with the IGAM/MSIS framework was used to avoid the incest
problem.

1cf. Section 2.4.1.
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IGAM/MSIS IGAM/ECMWF

Outlier Rejection and
Smoothing

3σ outlier rejection on phase
delays and smoothing using
regularisation

Like IGAM/MSIS

Ionospheric Correc-
tion

Linear combination of bend-
ing angles. Correction is
applied to low-pass filtered
bending angles (1 km sliding
average), L1 heigh-pass con-
tribution is added after cor-
rection. L2 bending angles <
15 km derived via L1−L2 ex-
trapolation.

Like IGAM/MSIS

Bending Angle Ini-
tialisation

Statistical optimisation of
bending angles 30-120 km.
Vertical correlated back-
ground (corr. lenght L=6
km) and observation (L=1
km) errors. Obs. error esti-
mated from obs. profile > 60
km. Background error:15%.
Background information:
MSIS-90 best fit-profile, bias
corrected.

Like IGAM/MSIS, but
co-located bending an-
gel profile derived from
ECMWF operational
analysis (above ∼60 km:
MSISE-90) as background
information. No further
processing.

Hydrostat. Integral
Init.

At 120 km:
pressure=p(MSISE-90).

Like IGAM/MSIS

Qality Control Refractivity 5-35 km
∆N
N < 10%; Temperature
8-25 km: ∆T

T < 25K; Refer-
ence: ECMWF analysis.

Like IGAM/MSIS

Table 3.1: Overview of IGAM CHAMP-RO retrival schemes (EGOPS/CCR Version 2, March
2004.)

3.2.3 Data Products

From the phase delay measurements a variety of atmospheric parameters can be derived.
In theory, some parameters (e.g. dry temperature) could be derived without any back-
ground information, but in practice, as mentioned above, the retrieval procedure has to be
initialized. For a detailed description of the refractivity formulas (Smith-Weintraub and
Thayer formula) cf. Section 4.5.2.

Refractivity Profiles

Refractivity profiles are derived as described above from the statistical optimized bending
angle α. This is the retrieval product which is used within the assimilation framework. To
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avoid the so called incest problem, which is mentioned in more detail in Chapter 2, only
data processed with the IGAM/MSIS retrieval scheme is used.

Temperature Profiles

The dry temperature TDry can then be derived from Eq. 4.3 or Eq. 4.4 by neglecting the
effect of water vapor (ignoring the wet terms, k1 empirical constant cf. Section 4.5.2)

N = k1 · pA
TDry

, (3.11)

which is valid in the mid- to upper troposphere and stratosphere. If the temperature is
below 250 K, the temperature error caused by a 50% error of the water vapor climatology
is less than 1 K [Kursinski et al. (1996)]. So the assumption of a dry atmosphere can be
expanded down to the ground at high latitudes beginning from the subpolar regions on.
If this assumption does not hold a priori information about the humidity below
∼ 6 km is necessary to solve the ambiguity. Assuming a dry atmosphere, using Eq. 3.11
and introducing the ideal gas law

pA =
ρATDryRDry

mA
, (3.12)

where ρA denotes the dry air density, TDry the dry air temperature, RDry the universal gas
constant for dry air, pA the dry air pressure and mA the mean molar mass of dry air, it
follows with the use of Eq. 3.11

ρA =
mA

k1RDry
·N , (3.13)

what means that the density of air is directly proportional to the refractivity and thus can
be derived directly. If the vertical air density ρ(z) is known the vertical pressure can be
derived using the equation of hydrostatic equilibrium

dpA(z) = −g(z)ρA(z)dz , (3.14)

and integration over z

pA(z) =

Z ∞

z
g(z0)ρA(z0)dz0 .

A second application of Eq. 3.12 allows to derive the vertical profile of the dry temperature
TDry

TDry = k1
pA(z)

N(z)
(3.15)

Humidity Profiles

To derive humidity profiles a priori information about the humidity is necessary to resolve
the ambiguity. An iterative procedure to calculate specific humidity profiles works as
follows:

1. Assumption of dry atmosphere
q(z) = 0. (3.16)
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2. Calculation of the virtual temperature profile

Tv(z) = T (z) · (1 + 0.608 · q(z)) . (3.17)

3. Calculation of the pressure profile as in Eq. 3.23

p(z) =
T (z)2

c2
·
µ
n(z)− 1− c1 · p(z)

T (z)

¶
, (3.18)

4. Calculation of the specific humidity profile

q(z) =
0.622 · pw(z)

(p(z)− 0.378 · p(z)) . (3.19)

With the calculated q(z) the iteration starts again at step 2, the procedure converges
fast. An other approach would be a 1D-Var procedure to determine the most likely
state of the atmosphere taking background information into account [Gorbunov and
Sokolovskiy (1993)].

Geopotential

The geopotential height profile can be computed corresponding to a given geometric height
profile. The (geodetic) latitude dependence of gravitation weighted by

gEqu
g0

is needed and
calculated as factor

gfact =
gEqu
gMean

+
0.00531

gMean
· sin ¡ϕj

¢2
. (3.20)

To calculate the geopotential height the relation

dZ =
g

g0
dz (3.21)

is used. The geopotential height is calculated from the geometric height by integration

Z(z) =

Z zn

z1

Ã
rMean

rMean +
1
2 · h(z0)

!2
· gfact · h(z0)dz0 . (3.22)

Pressure

Eq. 3.23 describes the calculation of dry pressure pA(z) which is equal to the atmospheric
pressure if humidity pW (z) can be neglected, i.e., everywhere above the lower to middle
troposphere

pA(z) =
Md

k1R
·
∞Z
z

g(z0) ·N(z0)dz0 . (3.23)

Total Electron Content

For the ionosphere, phase changes measured with a dual band GPS receiver can be used
to calculate electron density profiles. This specific data product is especially valuable for
Space Weather applications [Jakowski et al. (2004)].
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3.2.4 The CHAMP Satellite

Figure 3.3: Artist view of the CHAMP satellite in orbit (courtesy GFZ Potsdam, NASA picture
archive, 2004)

The CHAMP satellite was launched from the COSMODROM at Plesetzk, ∼ 800
km North of Moscow, at the 15 July 2000, 12:00 UTC on-board a COSMOS-3B launcher.
The initial orbit was nearly circular (ε = 0.004) at a height of 454 km and an inclination
of 87.3◦. Due to the atmospheric drag the orbit height is decreasing approximately 50 to
200 m/day, depending on the solar activity. The TRSR-2 (Black Jack) receiver used for
the RO experiment is a key component of the science payload and serves several purposes
onboard CHAMP [Reigber et al. (1995)], [Wickert et al. (2002)], [Wickert et al. (2001)],
[Reigber et al. (2003)].
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Global Coverage in Space and Time

Global distribution of 24 hours of processed and quality controlled
CHAMP occultations for day 225 of 2003 (142 profiles).

Global distribution of one month of CHAMP occultations for August
2003 (5624 profiles).

Figure 3.4: An example for the daily and monthly measurement distribution of CHAMP.
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3.2.5 Future Perspectives

One of the advantages of the RO technique is the excellent global coverage which is achieved
due to the nearly polar orbit of the satellite. Atmospheric data derived from RO measure-
ments are available from remote and data sparse areas like the Pacific Ocean and the polar
regions. The average number of occultation events recorded by CHAMP lies within 217 to
247 within 24 hours. Given a specific number of GPS satellites, the amount of recordable
occultation events is mainly dependent on the field of view of the occultation antenna. In
practice, the number of useful measurements is reduced, during the data processing chain
for several reasons. At the moment, the in-house processing generates an average number
of 150 profiles within 24 hours (GFZ Potsdam achieves a slightly higher rate per day). Fig.
3.4 upper panel shows the distribution of 142 processed CHAMP profiles from a 24 hour
period during day 225 in 2003, the lower panel shows a typical measurement distribution
during one month (5624 profiles).

GRAS and COSMIC

The GRAS receiver is part of the METOP [Edwards and Pawlak (2000)] payload, which
is scheduled for launch early 2006. The new designed GRAS receiver is expected to have
a significant better performance than the Black Jack receiver used onboard CHAMP.
METOP-1 will be the first of a series of operational satellites providing services well into
the second decade of the 21st century. METOP is the European component of a joint
European/US polar satellite system. EUMETSAT plans to assume responsibility for the
morning (local time) orbit and the US will continue with the afternoon coverage.

Figure 3.5: Artists view of METOP-1 (courtsey EUMETSAT, 2004).

COSMIC is the Constellation Observing System for Meteorology, Ionosphere and
Climate, also known as ROCSAT-3, which is a joint U.S.-Taiwan project. The COSMIC
constellation is currently planned to be launched in the spring of 2005, and is expected to
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last for five years. It consists of a six satellite constellation carrying an improved version of
the Black Jack receiver. Over the first year, the satellites will be gradually boosted from
their initial orbit of 400 km to the final orbit of roughly 800 km. Furthermore the system
comprises a satellite operations control center (SOCC) in Taiwan, the COSMIC Data
Analysis and Archive Center (CDAAC) in Boulder, Colorado, and a global ground fiducial
network (built upon existing NASA and international fiducial networks). This future

Figure 3.6: Artists view of a COSMIC satellite (courtsey UCAR, 2004)

missions will provide a continuos flow of data with excellent global coverage. Especially
the long term METOP program will offer the opportunity to generate a consistent data
set over many years.

Beside METOP, NPOESS/GPSOS is scheduled around 2010 for operational me-
teorology, carrying a GPS occultation sensor. With the European navigational satellite
system GALILEO, which will be operational around 2008, the number of possible occul-
tations using dual receivers will be roughly doubled, providing a dense global distribution
of observations.
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The system is implemented as a 3D-Var scheme using control space transformations and
recursive filters. The dimensions of the background are flexible, but due to the specific
application a GCM compliant Gaussian grid corresponding to T42L60, i.e., 64 latitudes ×
128 longitudes comprising 60 model levels is used (the system was tested with a T21L60,
i.e., 32 latitudes × 64 longitudes setup too). To increase performance the number of used
model levels can be specified for the refractivity assimilation framework independent of
the grid.

4.1 Coordinate System

As mentioned above a GCM compliant Gaussian grid corresponding to T42L60, i.e. 64
latitude × 128 longitude, comprising 60 model levels is used. The vertical coordinate
system is derived from the surface pressure and the A and B vectors provided by ECMWF.
This vertical grid comprises 60 hybrid levels. From this basic vertical coordinate system
grids of geopotential height and geometric height (over reference ellipsoid) can be derived.
The assimilation scheme can be used either with geometric height or geopotential height.
The necessary operators are discussed later within this Chapter.

4.2 N and TQPsurf Analysis

The whole system can be run in two different modes. The first one performs a refractivity
analysis, what means refractivity observations are assimilated into a refractivity back-
ground. This background field is derived from ECMWF temperatures, specific humidity,
and surface pressure fields using basically the same operators which are used in the TQP-
surface version of the assimilation scheme. This operation is performed at the beginning of
the procedure, during the assimilation itself only the interpolation operators are used. The
TQPsurface version of the assimilation scheme directly updates the temperature, specific
humidity, and surface pressure input fields, what means that all fields are interpolated
separately. At each iteration the new pressure field has to be derived from the updated
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surface pressure field and the refractivity has to be calculated at the location of the obser-
vation. After comparison of background refractivity (also denoted as model observation)
and observation the gradients of the input fields and observations are calculated and a
suitable correction is applied. The next Sections of this Chapter applies for both versions
of the scheme it is just necessary to keep the different use of the observation operators in
mind.

4.3 Incremental 3D-VAR

The solution of the minimization problem can be performed either in terms of full-fields
J(xa) or the analysis of increments J(xa) = J(x0a = xa − xb) [F. Bouttier (1999)]. The
latter solution method provides optimal analysis increments, which are added to the un-
modified background field. This procedure has a number of advantages like the use of
linearized control variable transforms which allow the straightforward use of adjoints to
calculate the gradient of the cost function. Another advantage is that any imbalance intro-
duced through the analysis procedure is limited to the small increments which are added
to the balanced first guess.

4.4 Implementation Technique

4.4.1 Control Variables

The control variables used in the analysis are temperature, specific humidity and surface
pressure, or refractivity transformed to LOG space, to get a better posed problem, within
the refractivity only assimilation framework. To avoid negative specific humidities in the
analysis and to get a better posed problem, the specific humidity is transformed to LOG
space before any other transformation is applied. The cross correlations between the
control variables are assumed to be small enough to be neglected. This assumption serves
to effectively block-diagonalize the background error covariance matrix. For each control
variable there still remains both, horizontal and vertical correlations. Those are assumed
to be separable, which is a widely used assumption.

4.4.2 Minimization

The cost function is minimized by using an iterative descent algorithm, which is in our
case the L-BFGS-B routine. The cost of the analysis is proportional to the number of cost
function and its gradient evaluations, denoted as simulations. If a new state x is found,
an iteration is performed, which means that to find a new x, several simulations may be
required (cf. Section 4.10).

4.4.3 Preconditioning

A preconditioning of the problem is performed as part of the control space transformations
(cf. Section 4.8).
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4.4.4 The Adjoint Technique

The adjoint technique allows to calculate the gradients, needed for the minimization pro-
cedure, at reasonable numerical cost (cf. Acknowledgments) [INRIA (2002)].

4.5 Observation Operators

4.5.1 Interpolation Operator

To calculate the background values at the spatial location of the measurements two bilinear
horizontal and one logarithmic vertical interpolation are performed for each observation.
A cubic spline version for the vertical interpolation is also available for performance tests.

Horizontal Interpolation

The bilinear interpolation consists of a weighted average of the four surrounding grid
points to determine their interpolated value. Two linear interpolations on opposite sites
are performed followed by a consecutive interpolation of these intermediate results. This
horizontal interpolation is performed for the atmospheric layer above and below the ob-
servation

f(x, y) = (1− u)(1− v)fi,j + u(1− v)fi+1,j + (1− u)vfi,j + uvfi+1,j+1 , (4.1a)

u =
(x− xi)
(xi+1 − xi) , (4.1b)

v =
(y − yj)
(yj+1 − yj) , (4.1c)

where xi < x < xi+1 and yj < y < yj+1.

Vertical Interpolation

Due to the fact of a globally non uniform vertical grid, the heights of the horizontal inter-
polated values are also calculated by bilinear interpolation from the vertical background
grid.

Linear Interpolation in LOG Space Given the background value above and below the
spatial location of the observation a logarithmic interpolation is performed to get the final
value of the background at the location of the observation.

Interpolated Value = e(log(Z1)∗Weight1) · e(log(Z2)∗Weight2) (4.2)

where Z1 and Z2 denote the horizontal interpolated values of the layers above and
below the observation which are weighted with Weight1 and Weight2, calculated from the
vertical distance between observation and Z1, Z2.
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Cubic Spline Interpolation in LOG Space As second option a cubic spline interpolation
was implemented, using three vertical points above and below the vertical measurement
location to interpolate the background. Experiments proved that the chosen number of
background points is sufficient to obtain accurate results [Press et al. (1987)].

4.5.2 Refractivity Operator

To calculate the refractivity at a given point, it is necessary to know the atmospheric
variables absolute temperature, specific humidity and pressure. There are two standard
formulas used, which are the Thayer and the Smith-Weintraub formula. The Thayer
Formula is the more accurate one, the Smith-Weintraub formula is basically the same, but
assumes an ideal gas.

Thayer Formula

N = k1 · pA
T
· 1
zA
+ k2 · e

T
· 1
zW

+ k3 · e
T 2
· 1
zW

(4.3)

Smith-Weintraub Formula

N = k1 · pA
T
+ k2 · e

T
+ k3 · e

T 2
(4.4)

N = Refractivity [ ]

T = Absolute Temperature [K]

e = Partial pressure of water vapor [hPa]

pA = Partial pressure of ”dry Air” [hPa]

zA = Compressibility factor of ”dry Air” [ ]

zW = Compressibility factor of water vapor [ ]

k1 = Empirical constant Thayer Formula [K/hPa]

k2 = Empirical constant Thayer Formula [K/hPa]

k3 = Empirical constant Thayer Formula [K2/hPa]

Table 4.1: Parameter and Variables used in Thayer & Smith-Weintraub formula.

Further explanations of parameters cf. Appendix A.1

Calculation of Refractivity Fields from ECMWF Analyses

Given the fields of temperature, surface pressure and specific humidity (in our case analy-
sis fields of ECMWF), we can calculate the field of refractivity using either the Thayer
or Smith Weintraub- formula. A comparison of the two formulas shows no significant dif-
ferences, but because of negligible additional computing cost, the more accurate Thayer
formula was chosen to calculate the background in the case of pure refractivity assimila-
tion, and as forward operator, to calculate refractivity from temperature, humidity, and
surface pressure analysis fields. To derive the error characteristics in case of the pure
refractivity assimilation scheme the Smith-Weintraub formula was used.
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Figure 4.1: Mean global refractivity profile calculated from T42L60 ECMWF analysis fields.

Fig. 4.2 shows the negligible difference of the mean global refractivity profile cal-
culated with the Thayer and the Smith Weintraub formula using an ECMWF T42L60
analysis field (Date: 2003.01.03; 12 UTC). First we have to do some general calculations.
We need the amount of water vapor MmW and and dry air MmA in [mol]. Given the
specific humidity q the molar mass of water vapor mW and the molar mass of dry air mA
we can calculate

MmW =
q

mA
and MmA =

1.0− q
mA

. (4.5)

Further we need the partial pressure of water vapor e which is given by

e = RW · ρW · T , (4.6)

using the formulas q = ρW
ρ and ρW = q · ρ we can derive

e = RW · ρW · T , (4.7a)

e = RW · q · ρ · T , (4.7b)

e = RW · q · 1

RA · T ·
p³

1 + RW−RA
RA

· q
´ · T , (4.7c)

where ρW is given by



54 4. Specific Implementation

Figure 4.2: Difference in global mean refractivity calculated with Smith-Weintraub and Thayer
Formula.

pi
p
=
M∗
i

M∗ , (4.8)

pW
p
=
M∗
W

M∗ , (4.9)

M∗
W =

MW

m∗
, (4.10)

q =
MW

M
, (4.11)

pW = p · 1
M∗ ·

MW

m∗W
. (4.12)

Deviations from the ideal gas law (Van-Der-Waals-Formula) are negligible within
meteorological applications so q can be expressed as

q = 0.622 · e

p− 0.378 · e . (4.13)

It is reasonable to neglect 0.378 · e in Eq. 4.13 which leads as expression for e as

e =
q · p
0.622

. (4.14)

Finally we need

pA = p− e (4.15)

to be able to solve the Thayer equation.
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4.5.3 Vertical Coordinate Operator

As can be seen in Eq. 4.3 and Eq. 4.4 the pressure at the location of the observation is
needed to calculate the refractivity. ECMWF provides temperature, specific humidity, and
surface pressure fields. The background pressure field is derived by a series of operators.
This operators are also used to set up the vertical coordinate system of the assimilation
scheme either as a vertical grid of geopotential heights or a vertical grid of geometric
heights. Since the pressure field is also derived, pressure coordinates are possible but not
implemented at the moment. The values of Ti,j,z and specific humidity qi,j,z, are given for
the Gaussian grid of the latitudes ϕj and the homogenous grid of the longitudes λi, and
an irregular spaced height grid zi,j,z. For the T42L60 grid the index ranges are i =1...64,
j = 1...128, and z = 1...60 for full level quantities and z =0...60 for half level quantities.
Here and in other parts of this thesis z simply denotes the height coordinate wether if
it is geometrical height or geopotential height, but further on in this Section z denotes
geometrical height and φ geopotential height. The vertical index of all quantities is always
denoted as z. Coordinates are geocentric except denoted otherwise.

The pressure corresponding to the zth half and full levels are calculated by the
means of formulas,e.g., [Roeckner et al. (2003)]

Pi,j,z+ 1
2
= Az+ 1

2
+Bz+ 1

2
· PSurfi,j , (4.16)

Pi,j,z =
1

2

³
Pi,j,z+ 1

2
+ Pi,j,z− 1

2

´
, (4.17)

where Psurfi,j denotes the surface pressure at the ith longitude and the jth latitude. The
Az+ 1

2
and Bz+1

2
are the vertical coordinate parameters provided by ECMWF. The calcu-

lation of the geopotential heights is based on the hydrostatic equation and on an interpo-
lation between the half and the full levels [Gorbunov and Kornblueh (2003)]

φ
i,j,z+1

2

− φ
i,j,z− 12

= RDryTv,i,j,z · Ln
Ã
Pi,j,z+ 1

2

Pi,j,z− 1
2

!
, (4.18)

φ
i,j,zmax+

1
2

= φi,j,zSurf , (4.19)

φi,j,z = φ
i,j,z+1

2

+ αi,j,z ·RDryTv,i,j,z , (4.20)

αi,j,z = Ln(2) for z = 1 , (4.21)

αi,j,z = 1−
Pi,j,z−1

2

Pi,j,z+1
2
− Pi,j,z− 1

2

· Ln
Ã
Pi,j,z+ 1

2

Pi,j,z− 1
2

!
for z > 1 , (4.22)

where Tv denotes the virtual temperature as defined in Eq. 4.34 and φSurf is the surface
geopotential which is equal the orography. The geometrical heights over reference ellipsoid
were calculated from the geopotential heights by the approximate formula from the US
Standard Atmosphere:

R0 =
2 · 10−3 · gSurfi,j

3.085462 · 10−6 + 2.27 · 10−9 · cos(2ϕj)− 2 · 10−12 · cos(4ϕj) , (4.23)

zi,j,z = R0 · φi,j,z · (gMean − φi,j,z)

gSurfi,j ·R0 , (4.24)
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where R0 denotes the effective Earth’s radius, gMean the mean gravity acceleration and
gSurfi,j the local gravity acceleration on the surface. gSurfi,j itself is calculated by the
International gravity formula plus standard z dependence:

gEquator = 9.7803 m/s
2 (4.25)

gSurfi,j = gEquator ·
³
1 + 0.00531 · sin ¡ϕGeodeticj¢2´ . (4.26)

finally the standard height dependency of gSurfi,j is calculated

RMean = 6371.0 km , (4.27)

fgz =

µ
RMean

RMean + z

¶2
, (4.28)

gSurfi,j ,z = gSurfi,j · fgz , (4.29)

gEquator is the gravity acceleration at the equator and RMean the mean Earth’s radius.

4.6 Observation Error Covariance

The observation covariance takes only vertical correlations into account. Due to the sep-
aration in space and time between the different RO events this simplification is justified.

4.6.1 Formulation of the Observation Error Covariance Matrix

A simple error covariance matrix formulation was deduced from the empirical estimated
matrices [Steiner (2004)]. A least square method was used to fit analytical functions
to the relative standard deviation which shows a different behavior below and above the
tropopause height. The empirical relative standard deviation can be approximated with an
exponential increase above the tropopause height (4.30) and with a decrease proportional
1

Height below the tropopause height (cf. Eq. 4.31). The tropopause height is defined
globally at 15 km. To be able to scale the error magnitude, which is receiver dependent,
the standard deviation at tropopause height (sTropo) can be tuned. Eq. 4.30 gives the
exponential function for the relative standard deviation y above the tropopause height
zTropo with the parameter HStrato which is the scale height of the error increase over the
stratosphere. The best fit value for HStrato is 11.9 km for the error scale height z, denotes
the height [Steiner and Kirchengast (2004)]

sz>Tropo = sTropo · exp
·
z − zTropo
HStrato

¸
. (4.30)

Eq. 4.31 gives the analytical function for the relative standard deviation below the
tropopause height with the parameter b = 4.461

sz<Tropo = sTropo + b · (z−1 − z−1Tropo) . (4.31)

This formulation of the observation error covariance also accounts for the error of rep-
resentativeness, so there is no additional specification within the assimilation framework
necessary.
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4.7 Background Error Covariance

The used background fields of temperature, specific humidity, and surface pressure, are
provided by ECMWF. So the basis of our considerations concerning the errors and corre-
lations are based on ECMWF recommendations1.

4.7.1 Temperature, Specific Humidity, and Surface Pressure

Standard deviations for temperature, specific humidity and surface pressure are provided
by ECMWF as global means. The same applies to the vertical and horizontal correlations.

1Data provided by Mike Fisher, ECMWF, Reading U.K., 2003.
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Standard Deviation Temperature

ECMWF global mean temperature standard deviation absolut values.

ECMWF global mean temperature standard deviation relative values.

Figure 4.3: Global mean standard deviation of ECMWF temperature fields.
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Vertical and Horizontal ECMWF Temperature Error Correlations

ECMWF vertical temperature error correlation, L60.

ECMWF horizontal temperature error correlation.

Figure 4.4: Global mean vertical and horizontal error correlations of ECMWF temperature fields.
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Standard Deviation Specific Humidity

ECMWF global mean specific humidity standard deviation absolut
values.

ECMWF global mean specific humidity standard deviation relatve values.

Figure 4.5: Global mean standard deviation of ECMWF specific humidity fields.
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Vertical and Horizontal ECMWF Error Correlation Specific Humidity

ECMWF vertical error correlation of specific humidity, L60.

ECMWF horizontal error correlation of specific humidity.

Figure 4.6: Global mean vertical and horizontal error correlations of ECMWFspecific humidity
fields.
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Standard Deviation Surface Pressure

The global mean standard deviation of surface pressure provided by ECMWF is 250 Pa.

Horizontal ECMWF Error Correlation Surface Pressure

Figure 4.7: Global mean ECMWF horizontal error correlation of surface pressure.

4.7.2 Derivation of the Refractivity Error Covariance

To calculate the refractivity standard deviation error propagation techniques were used,
assuming that the Smith-Weintraub formula is accurate enough for this purpose. The
ECMWF provided temperature standard deviation was taken times two to achieve realistic
error characteristics. The vertical correlation was derived by a weighted combination of
temperature and specific humidity correlations.
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Standard Deviation

The Smith-Weintraub formula was used to derive the global mean standard deviation σN
of refractivity background fields

N = k1 · pA
T
+ k2 · e

T
+ k3 · e

T 2
.

e can be related to given values as shown in Eq. 4.14, and pA can be related to given
values as shown in Eq. 4.15

N = k1 ·
p− q·p

0.622

T
+ k2 ·

q·p
0.622

T
+ k3 ·

q·p
0.622

T 2
. (4.32)

Applying standard error propagation techniques (Gaussian error propagation) a formula
for σN can be derived by calculating the partial derivatives of all variables (T, q, p) afflicted
with errors (k1, k2 and k3 are assumed to be error free). Since only the error of the surface
pressure is known, the error of p has to be derived first. To derive a formula for σp the
following equation is used

p2 − p1 = e−
φ2−φ1
RLTv , (4.33)

where Tv denotes the virtual temperature which is defined by

Tv =

1 + Rw −RDryRDry| {z }
0.608

· q

 · T . (4.34)

This expression can be simplified with

e = 0.608 ,

thus leading to

Tv = T · (1 + e · q) . (4.35)

The virtual temperature takes implicitly the humidity into account. The σTv can be
calculated the following way (Gaussian error propagation) assuming T and q are afflicted
with errors

1 + e · q = ∂

∂T
T · (1 + e · q) , (4.36a)

T · e = ∂

∂q
T · (1 + e · q) , (4.36b)

σp =

q
(1 + e · q)2 ·∆T 2 + (T · e)2 ·∆q2 . (4.36c)
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Now σp can be calculated the same way assuming Tv and pSurf are afflicted with errors

e
−φ2−φ1

RLTv =
∂

∂p0
p0 · e−

φ2−φ1
RLTv , (4.37a)

p0 · (φ2 − φ1) e
−φ2−φ1

RLTv

RLT 2v
=

∂

∂Tv
p0 · e−

φ2−φ1
RLTv , (4.37b)

σp =

vuuutµe−φ2−φ1
RLTv

¶2
·∆p20 +

p0 · (φ2 − φ1) e
−φ2−φ1

RLTv

RLT 2v

2 ·∆T 2v .
(4.37c)

Finally σN can be derived

∂

∂T

µ
k1 ·

p− q·p
0.622

T
+ k2 ·

q·p
0.622

T
+ k3 ·

q·p
0.622

T 2

¶
(4.38a)

=
k1 · p− q·p

0.622

T 2
− k2 · q · p
0.622 · T 2 +

2 · k3 · q · p
0.622 · T 3 (4.38b)

=
p · (−k1 · p · 0.622 + k1 · T · q − k2 · T · q − 2 · k3 · q)

0.622 · T 3 , (4.38c)

∂

∂q

µ
k1 ·

p− q·p
0.622

T
+ k2 ·

q·p
0.622

T
+ k3 ·

q·p
0.622

T 2

¶
(4.39a)

=
k1 · p

0.622 · T −
k2 · p

0.622 · T +
k3 · p

0.622 · T 2 (4.39b)

=
p · (k1T − k2 · T − ·k3)

0.622 · T 2 , (4.39c)

∂

∂p

µ
k1 ·

p− q·p
0.622

T
+ k2 ·

q·p
0.622

T
+ k3 ·

q·p
0.622

T 2

¶
(4.40a)

=
k1 ·

¡
1− q

0.622

¢
T

+
k2 · q

0.622 · T +
k3 · q

0.622 · T 2 (4.40b)

=
−k1T · 0.622 + k1 · T · q − k2 · T · q − k3 · q

0.622 · T 2 . (4.40c)

As already done before to calculate σTv and σp, ∂T, ∂q and ∂p can be assumed to be equal
the errors ∆T,∆q and ∆p

σ2N =

µ
p · (−k1 · p · 0.622 + k1 · T · q − k2 · T · q − 2 · k3 · q)

0.622 · T 3
¶2
·∆T 2+ (4.41)µ

p · (k1T − k2 · T − ·k3)
0.622 · T 2

¶2
·∆q2+µ−k1T · 0.622 + k1 · T · q − k2 · T · q − k3 · q

0.622 · T 2
¶2
·∆p2 .
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Derived Pressure Standard Deviation

Global mean derived pressure standard deviation in absolute values [Pa].

Global mean derived pressure standard deviation in relative values [%].

Figure 4.8: Global mean derived pressure standard deviation.
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Derived Refractivity Standard Deviation

Global mean derived refractivity standard deviation in N units.

Global mean derived refractivity standard deviation in relative values.

Figure 4.9: Global mean derived refractivity standard deviation.
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Finally σN is given by the square root of the variance

σN =
q
σ2N . (4.42)

The derived refractivity standard deviation (cf. Fig. 4.9) is dominated by the temperature
error over ∼ 18 km due to the the marginal water vapor content of the atmosphere above
the tropopause.

Vertical Error Correlation

The vertical correlation of σN is derived by a weighted average of the ECMWF temperature
(CorrV_Ti,j) and specific humidity (CorrV_qi,j) correlations. To calculate the weighting
factors, the fraction of the combined temperature and surface pressure variance of the total
refractivity variance σ2N and the fraction of the specific humidity variance were calculated
separately. The correlation matrix was calculated by:

CorrV_Ni,j =
σ2T,pi
σ2Ni

· CorrV_Ti,j +
σ2qi
σ2Ni

· CorrV_qi,j (4.43)

Figure 4.10: Derived vertical correlation of background refractivity errors, L60.
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Horizontal Error Correlation

The horizontal correlation of σN is derived the same way as the vertical one by a weighted
average of the ECMWF temperature (CorrH_Ti,j) and specific humidity (CorrH_qi,j)
correlations. To calculate the weighting factors, the fraction of the combined temperature
and surface pressure variance of the total refractivity variance σ2N and the fraction of
the specific humidity variance were calculated separately. The correlation matrix was
calculated by

CorrH_Ni,j =
σ2T,pi
σ2Ni

·CorrH_Ti,j +
σ2qi
σ2Ni

·CorrH_qi,j . (4.44)

Figure 4.11: Derived horizontal correlation of background refractivity errors.

4.8 Control Space Transformations

The principles of 3D-Var are briefly described in Chapter 2. For a model state x with n
degrees of freedom minimization of the cost function requires O(n2) calculations [F. Bout-
tier (1999)], thus becomes prohibitively expensive for usual ns. One practical solution to
this problem is to perform the minimization in a control variable space v given by

x =Uv .

The transform U has to be chosen in a way that

B =UUT , (4.45)
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is approximately satisfied. In the control space v the number of required minimization
calculations is reduced from O(n2) to O(n). Furthermore by using the transform Eq. 4.45,
the background error covariance matrix becomes Bv = I, hence effectively preconditioning
the problem. I denotes the identity matrix, Bv the vertical background covariance matrix.
In terms of increments the control variable transform can be written as

x0=Uv .

The transformation

v =U−1x0

can be specified in different ways. The definition must provide a way to break down the
atmospheric state x into uncorrelated but physically realistic error modes which can be
penalized in Jb according to their estimated error magnitude.

4.8.1 Vertical Control Variable Transform

The vertical transform serves to project control variables from model levels onto the
weighted eigenvectors of the vertical component of the background error covariance matrix

Bv = �v�Tv . (4.46)

Eq. 4.46 considers the vertical transformation of v at a single horizontal location. For
practical reasons approximations must be made like the use of climatological eigenvectors
and eigenvalues and the averaging over a geographical domain of these structures. At the
moment global means are used, derived from error characteristics provided by ECMWF.

General Formulation of Uv

The vertical covariance matrix Bv is given as K ×K positive-definite symmetric matrix
whereK is equal the number of vertical levels. These are properties which allow to perform
an eigendecomposition

Bv = P
−1EΛETP−1 , (4.47)

= P bBvP−1 .
The inner product P defines a weighted error b�v = P �v which may be used to allow for
variable model level thickness or introduce synoptic dependencies. In the current version
this option is not used. The columns of the matrix E are the K eigenvectors e(m) of bBv
which obey the orthogonality relationship

EET = I .

The diagonal matrix Λ contains the K eigenvalues λ(m). With this standard theory it
is possible to define a transform Uv between variables v(k) on model levels k and their
projection v(m) onto vertical modes m defined by

Bv=UvU
T
v . (4.48)
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If one compares Eq. 4.47 and Eq. 4.48 it is possible to derive

v=Uvvv (4.49)

= P−1EΛ
1
2vv .

If Eq. 4.49 is inserted into the control variable space form of the background error cost
function

Jb =
1

2
vTvB

−1
v v ,

which gives

Jb =
1

2
vTv vv (4.50)

=
1

2

X
m

vv(m)
2 ,

and for the gradient

5vJb = vv. (4.51)

As can be seen easily there are several effects of the U v transform.

• The projection onto uncorrelated eigenvectors of Bv leads to very significant CPU
savings as can be seen via Eq. 4.50 in the calculation of the background cost function
and in its adjoint (gradient) calculations.

• The scaling by the square root of the eigenvalues λ 1
2 (m) serves as a preconditioner.

• The eigenvectors are ordered by the size of their respective eigenvalues what means
λ(1) is the dominant structure and λ(k) essentially contains low amplitude noise.
This ordering can be used to filter vertical grid scale noise which reduces CPU still
further by neglecting small-scale eigenvalue structures, which contribute little to the
total error.

Approximated Eigenstructures

Assuming a single column model, with knowledge of the background covariance matrix and
hence the eigenvectors and eigenvalues the Uv transform Eq. 4.49 is an efficient means of
reducing CPU without any loss of information. In reality the background covariance matrix
is not exactly known, so approximations have to be made. Furthermore our application is
3D-Var were averaging is necessary compared to the 1D-Var case. At the moment global
mean error structures are used, resulting from the global mean error structures provided
by ECMWF. Absolute temperature standard deviations are converted to relative values
by the use of a global mean temperature profile calculated from the background. The
specific humidity is transformed to LOG space before any other transformation, what
means that the minimization takes place in a transformed LOG space (the same applies
for the refractivity only scheme). The fractional errors applied in the calculation of the
covariance matrix are the global means provided by ECMWF.
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4.8.2 Horizontal Control Variable Transform

A recursive filter (RF) is used to represent the horizontal component of the background
error covariance matrix. The implementation is based on the description of RFs in [Lorenc
(1992)].

4.8.3 Recursive Filters

RF Basic Algorithm

The basic algorithm for a recursive filter is quite simple. The RF is presented with an
initial function Aj at gridpoints j where 1 ≤ j ≤ J . A single pass of the of the RF consists
of an initial smoothing from left to right

Bj = αBj−1 + (1− α)Aj for j = 1...J , (4.52)

followed by another pass from right to left

Cj = αCj+1 + (1− α)Bj for j = J...1 . (4.53)

The application of the RF in each direction is performed to ensure zero phase change. So
a 1-pass filter is defined as a single application of Eq. 4.52 and Eq. 4.53. A N-pass RF is
defined by N sequential applications.

RF Boundary Conditions

Eq. 4.52 and Eq. 4.53 are used to compute recursively the RF response at all points
j = 2 : J − 1 interior to the boundary. Explicit boundary conditions are required to
specify the response at points j = 1 and J . If there is a limited area and thus a real
boundary a method of Hayden & Purser [Hayden and Lorenc (1995)] can be used to
specify boundary conditions which assume a given decay-tail outside the domain. This
technique assures that the response to observations near the boundary is equivalent to
the response within the center of the domain. The boundary conditions for B1 and CJ+1
depend on the particular number of passes p of the filter in opposite directions. Assuming
no previous pass of the left moving filter (p = 0) we have

B1 = (1− α)A1 . (4.54)

Following one pass of the filter in the opposite direction the p = 1 boundary condition is

(CJ , B1) =
1− α

(1− α2)2
£
(BJ , A1)− α3(BJ−1, A2)

¤
. (4.55)

Hayden & Purser [Hayden and Lorenc (1995)] suggest to use the p = 2 boundary condition
also for p > 2. In our application there is no real boundary but the boundary conditions
for B1 and CJ+1 still have to be defined

B1 = αAJ + (1− α)A1 , (4.56)

and
CJ = αB1 + (1− α)BJ . (4.57)
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Matching of RF Output and Analytical Functions

The smoothing operations performed by the RF algorithm are related to certain analyt-
ical functions. In particular, for N = 2, the RF output approximates a second order
autoregressive (SOAR) function

µs(r) =
³
1 +

r

s

´
e−

r
s . (4.58)

In the limit N →∞ it can be shown that the RF output tends to a Gaussian function

µg(r) = exp

·
−1
2

³ r
2s

´2¸
(4.59)

where r is distance and s is a characteristic length scale. The α is calculated as

α

(1− α)2
=

1

2E
, (4.60)

where

E =
N(4x)2
4s2

. (4.61)

The definition of E is in this particular case the same for the SOAR and the Gaussian
function. This arises from the particular scaling of the Gaussian function given by equation
4.59. 4x denotes the grid spacing, N and s are also known parameters, thus E can be
calculated from Eq. 4.61. α can be calculated as follows

α = 1 +E −
p
E(E + 2) . (4.62)

This approach is matching the large-scale response of the RF that of a SOAR for N = 2
and approaches that of a Gaussian for increasing N . The matching of the large scale
response to analytical SOAR and Gaussian functions serves the definition of α via Eq.
4.62. It is also required that the RF conserves the background error variance, for the zero
distance case. The calculation of this scaling factor S is realized as the inverse of the zero
distance response of a 1D N - pass RF to a delta function. A two dimensional N - pass RF
is realized by performing N applications of multiple 1D RF’s in one direction followed by
the multiple application of 1D RF’s in the orthogonal direction. α and E are calculated
in the same way as in the 1 dimensional case, however the RF output has to be scaled by
S2 instead of S which is defined as in the one dimensional case.

Transform To Non Dimensional Space

Due to the fact that4x is not uniform over the grid domain, the two dimensional field must
be transformed to a non dimensional space prior to the filter procedure. This transform
is realized as an inner product which is defined as

Increment in Control Space√
Grid Box Area

. (4.63)



4.9. Horizontal Background Error Covariances 73

The grid box area is calculated by subtraction of fractions of ellipsoid areas between the
equator and the pole and subsequent division by the number of longitudes. The ellipsoid
(WGS84) areas are calculated by

Ellipsoid Area = 2π (rEquator + z)
2 · (0.996647190 · sin(Lat)− 0.001116660 (4.64)

sin(3.0 · Lat) + 1.68880838−6 · sin(5.0 · Lat)− 2.70005436−9
sin(7.0 · Lat) + 4.41731436−12 · sin(9.0 · Lat)) ,

where z denotes the height over the reverence ellipsoid [Lauf (1983)].

RF Representation of Background Error Covariances

The control variable transform uses the identity

B = UUT , (4.65)

to define a transform x0 = Uv which relates preconditioned control variables v to analysis
increments in x0 in model space. The horizontal component Uh defined by

Bh = UhU
T
h , (4.66)

is realized by scaled recursive filters. The RF has to be applied in a non dimensional space

bv = P 1
2
x v ,

where the scaling factor Px contains the grid box area as described above. The relation
between model and non dimensional space background error covariance matrix bB is given
as

B = P
− 1
2

x
bBP− 1

2
x . (4.67)

The comparison between Eq. 4.65 and Eq. 4.67 indicates that the horizontal component
of the control variable transform Uh relating model space control variables v to model
space analysis variables x via x = Uhv can be represented by using a recursive filter bR in
non dimensional space as

x0 = σbP
−1
2

x
bRP−1

2
x v . (4.68)

When the two dimensional recursive filter bR is applied only N
2 passes are performed,

as indicated in Eq. 4.66 the other N2 passes are performed by the adjoint transform [Barker
(1999)].

4.9 Horizontal Background Error Covariances

As recursive filters approximate analytical functions it naturally occurs to be difficult to
match them with statistically derived correlation function. Nevertheless it is possible to
archive a quite good agreement with the ECMWF provided horizontal correlations.
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4.9.1 Horizontal Refractivity Error Correlation

In the case of refractivity the horizontal correlation is derived as shown in Eq. 4.44. The
representation as a function of the type Eq. 4.59 is reasonable accurate as you can see
comparing the Fig. 4.11 and Fig. 4.12. To achieve this match of correlation functions
some experiments to find the optimal characteristic length scale for each model level are
necessary. At this point it is possible to calculate the optimal filter coefficients. As shown
in Fig. 4.11 and Fig. 4.12, the filter reproduces the analytical correlation function well,
the slightly expanded horizontal correlation is intentional.

4.9.2 Horizontal Temperature Error Correlation

The horizontal temperature correlation (cf. Fig. 4.13) realized as an analytical function of
the type Eq. 4.59 reproduces the ECMWF provided correlation (Fig. 4.4) with sufficient
accuracy, the slightly expanded correlation is as in the case of refractivity intentional. The
filter (cf. Fig. 4.13) approximates the correlation function well.

4.9.3 Horizontal Specific Humidity Error Correlation

The horizontal specific humidity correlation (cf. Fig. 4.14) realized as an analytical
function of the type Eq. 4.59 reproduces the ECMWF provided correlation (cf. Fig. 4.6)
accurate enough, but is smother over the vertical dimension. The broader correlation is
intentional and is slightly expanded in the filter realization of the correlation function (cf.
Fig. 4.14).

4.9.4 Horizontal Surface Pressure Error Correlation

Due to the steep descent of the original ECMWF provided surface pressure correlation
(cf. Fig. 4.7) and the short correlation length, it is impossible to realize a similar smooth
correlation function, due to the limited number of grid points, either with an analytical
function of the type 4.59 (cf. Fig. 4.15) nor with the filter approximation (cf. Fig.
4.15). Concerning the limited influence of the highly accurate surface pressure fields this
realization of the correlation function is precise enough.
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Horizontal Refractivity Error Correlation Realized as Function and Filter

Derived horizontal correlation of background refractivity errors realized
as function.

Derived horizontal correlation of background refractivity errors realized
as filter.

Figure 4.12: Horizontal correlations of refractivity errors realized as function and filter.
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Horizontal Temperature Error Correlation Realized as Function and Filter

Horizontal correlation of background temperature errors realized as
function.

Horizontal correlation of background temperature errors realized as filter.

Figure 4.13: Horizontal correlations of temperature errors realized as function and filter.
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Horizontal Specific Humidity Error Correlation Realized as Function and Filter

Horizontal correlation of background specific humidity errors realized as
function.

Horizontal correlation of background specific humidity errors realized as
filter.

Figure 4.14: Horizontal correlations of specific humidity errors realized as function and filter.
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Horizontal Surface Pressure Error Correlation Realized as Function and Filter

Horizontal correlation of background surface pressure errors realized as
function.

Horizontal correlation of background surface pressure errors realized as
filter.

Figure 4.15: Horizontal correlations of surface pressure errors realized as function and filter.
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4.10 The Minimization Algorithm

The L-BFGS-B algorithm is a limited memory algorithm (L) for solving large nonlinear
optimization problems subject to simple bounds on the variables. It is based on the
Broyden-Fletcher-Goldfarb-Shanno Method (BFGS), which is from the class of Quasi-
Newton methods, the most common. BFGS uses the following basic update for Ai

Ai+1 = Ai +
sis

T
i

sTi vi
+
Aiviv

T
i

vTi Aivi
+
¡
vTi Aivi

¢ · uiuTi , (4.69)

with

ui =
si
sTi
− Aivi
vTi Aivi

, (4.70)

where si = xi+1 and vi =5 fi+1−5 fi. For a symmetric positive definite matrix Ai
the matrix Ai+1 is also symmetric positive definite, and thus the Quasi-Newton condition
is fulfilled.

This version was chosen to be able to apply simple bounds within the assimilation
framework (denoted by the B). This option is currently not used. It is intended for
problems in which information on the Hessian matrix is difficult to obtain or for large
dense problems. L-BFGS-B can also be used for unconstrained problems, as currently in
our application, and in this case performs similarly to its predecessor algorithm L-BFGS
(Harwell routine VA15). The algorithm is implemented in Fortran 77 [Byrd et al. (1994)],
[Dong and Nocedal (1989)].
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5
Verification by Assimilation of Simu-
lated Data

5.1 Assimilation of Derived Measurement Profiles

5.1.1 Test Bed Setup

Out of the ECMWF analysis background fields profiles are calculated with the observation
operators of the assimilation system. This profiles are perturbed by the error patterns
method. In total 800 profiles consisting of 38400 single refractivity observations (48 per
profile) are used.

Error Patterns

To generate a test setup it is assumed that the vertical covariance matrices of the obser-
vations Ov and the background Bv are known. The formulation of B is the same as used
in the assimilation scheme and takes here only vertical correlations into account [Rodgers
(2000)]. The basic principle is shown by way of example Bv. Any covariance matrix Bv
can be decomposed as

Bv=
X
j

eje
T
j , (5.1)

where
ej =

p
λjIj , (5.2)

these ej are denoted as error patterns which can be regarded as eigenvectors lj scaled
by the eigenvalues λj of Bv. The random error of the background state vector xB can be
expressed as

�x =
X
j

ajej , (5.3)

where the aj are normally distributed random deviates with unit variance. To
generate a disturbed background field consistent with Bv we simply have to add �x to the
true state vector xB.
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Validation of Error Patterns

Away to verify the implementation of this error patterns method itself is the reconstruction
of the original covariance matrices by

Bvr=
1

n

X
i

�xi�
T
xi , (5.4)

where n denotes the number of individual vertical profiles and Bvr the reconstructed
vertical covariance matrix. In our case of a T42L60 grid 8192 vertical profiles were used.
As can be seen in lower panel Fig. 5.2 the original vertical covariance matrix (upper panel
Fig. 5.2) is very accurately reconstructed.

Figure 5.1: Geolocation of 800 synthetic profiles interpolated from the refractivity background.

5.1.2 Validation of the Refractivity Background Assimilation Scheme

To perform assimilation experiments 800 global evenly distributed (see Fig. 5.1) mea-
surements profiles out of 8192 synthetic profiles were used. To derive this test sample
the assimilation operators were used, which makes the system intrinsically consistent. As
atmospheric input data ECMWF analysis fields were used (12 UTC analysis, 2003.01.03).
One has to be aware that bugs in the implementation of the operators can not be found
within this kind of test. The emphasis is placed on the vertical covariance matrices, be-
cause within the assimilation framework the control space transformations depend on the
vertical background covariance matrices. On the other hand it is difficult to apply this
method within a recursive filter framework, like the realization of the horizontal back-
ground covariance matrices.
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Validation Vertical Refractivity Background Error Covariance Matrix

Derived vertical refractivity error covariance matrix in Log space, L60.

Derived vertical refractivity error covariance matrix in Log space
reconstructed from error patterns, L60.

Figure 5.2: Validation of error patterns implementation by reconstructing the vertical refractivity
error covariance matrix.
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Validation Refractivity Background Standard Deviation and Bias

Refractivity bias of disturbed background, measurements and analysis.

Comparison refractivity standard deviation and refractivity standard
deviation reconstructed from error patterns.

Figure 5.3: Validation of error patterns implementation by reconstructing the refractivity standard
deviation and calculating the bias.
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As can be seen in Fig. 5.2, it is possible to reconstruct the original vertical refractiv-
ity covariance matrix using Eq. 5.4. Secondly, the disturbed background (denoted as first
guess) is virtually bias free (upper panel Fig. 5.3), and it is possible to reconstruct the
refractivity standard deviation accurately. The refractivity standard deviations and the
vertical correlation matrix used for this check are equivalent to the error characteristics
described at Section 4.7.2.

Validation of Observation Standard Deviation

The same procedure as for the background was applied to the measurement profiles. To
reconstruct the vertical covariance matrix 8192 profiles were used. As can be seen in the
lower panes Fig. 5.3 the disturbed measurement profiles are bias free. For the relative
standard deviation at the tropopause height y a value of 0.2% was chosen (cf. Section 4.6).
Like for the background standard deviation, the measurement standard deviation can be
reconstructed very accurately (Fig. 5.4). The validation of the vertical error covariance
matrix (miscellaneous measurement profiles are assumes to be horizontally uncorrelated)
can be seen in Fig. 5.5. The inaccuracy within the reconstruction is due to noise caused
by small numbers (exponential drop off), nevertheless the diagonal and main off diagonal
elements are reconstructed exactly.

These checks ensure a correct implementation, resulting in a background and mea-
surement profiles, which are disturbed in a way matching the error covariance matrices
within the assimilation framework.

Figure 5.4: Comparison of standard deviation of the observations and of the reconstructed stan-
dard deviation.
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Validation Vertical Refractivity Observation Error Covariance Matrix

Vertical observation error covariance matrix.

Vertical observation error covariance matrix reconstructed from error
patterns.

Figure 5.5: Validation of the error patterns implementation by reconstructing the vertical obser-
vation error covariance matrix.
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5.1.3 Assimilation Experiments Using a Refractivity Background

The assimilation experiments showed the expected improvement of the first guess. Due
to the excellent posed problem (in fact the correct covariance matrices are known) the
convergence behavior of the cost function was excellent (cf. Section 5.4.1). The outcome of
the assimilation itself is shown in Fig. 5.6. The analysis standard deviation at observation
location is systematically better than the standard deviation of the first guess, which is
plotted once calculated at the grid point location and once at the observation location
(where the standard deviation is significantly smaller due to the averaging nature of the
interpolation procedure). Fig. 5.3, upper panel shows that no bias is introduced in the
analysis through the assimilation process.

Figure 5.6: Comparison of standard deviation of refractivity first guess, analysis, and first guess
interpolated at observation location.

5.1.4 Validation of Temperature, Specific Humidity, and Surface Pressure
Background Assimilation Scheme

In principal, the same procedure as in the refractivity only case was applied. Within the
error patterns framework a linear approximation concerning the errors is used, which is,
in the specific humidity case (relative standard deviations up to ∼ 50%, see Fig. 4.5), not
longer valid. Tests proofed that the use of the error patters method concerning specific
humidity is futile, without restrictions, making the whole procedure unfit for specific hu-
midity. Nevertheless the same tests as for refractivity were applied for temperature. The
original correlation matrix is reconstructed closely (Fig. 5.7), and the reconstructed stan-
dard deviation is basically the same as the original input. The used error characteristics
for the background temperature are described in Section 4.7.
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Validation Vertical Temperature and Specific Humidity Background Error Covariance
Matrices

Vertical background temperature error covariance matrix, L60.

Vertical background temperature error covariance matrix temperature
reconstructed from error patterns, L60.

Figure 5.7: Validation of the vertical temperature background error covariance matrix.
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Validation Temperature Background Standard Deviation

Figure 5.8: Comparison of temperature standard deviation and temperature standard deviation
from error patterns reconstructed.

Full assimilation experiments using the error patterns method are not applicable
within the temperature, specific humidity and surface pressure 3D-Var framework due to
the specific problems concerning the standard deviation of specific humidity (cf. Section
5.3.1).

5.2 Assimilation of Raytraced Measurement Profiles

5.2.1 Test Bed Setup

To generate a realistic test sample of RO measurements, within a controlled environment,
the GNSS End To End Simulator EGOPS [Kirchengsat et al. (2002)] was used. As time-
frame for the simulation the 03.01.2003 was chosen. An original CHAMP TLE from this
day was used as input to calculate the CHAMP like LEO satellite orbits, starting from
00:00 UTC the simulation was lasting for 24 hours. To simulate the GNSS satellite con-
stellation appropriate GPS TLE’s for this timeframe were used. Assuming a GRASS like
receiver on-board the CHAMP like LEO satellite, the 24 hour simulation period translates
into 245 occultation events. Out of this 24 hour data set occultations within a +3/ − 3
hour time window around 12:00 UTC were used for the validation runs.

Validation Occultations

In practice some of the simulated events are rejected (e.g. they are too short) during
the further processing. After the retrieval procedure 242 occultations were left for the
24 hour period. From these simulated events, 61 were compatible with the assimilation
time window. The number of single observations within a profile is about 300 - 400
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which exceeds the number of vertical levels (60) of the background by far. During a
preprocessing step the number of observations within one profile is reduced. To find the
optimal number of measurements between 2.5 and 35 km and to determine the best suited
averaging procedure some separate experiments were performed.

Level n+1

Level n

Level n+1 Level n+1

Level n Level n

Singel Observation Super Observation

Figure 5.9: Interpolated measurement distributions 1, 2 and 4 measurements.

During the preprocessing the number of measurements is reduced by averaging,
taking the background grid into account. To find an optimal setup three distributions of
so called super observations as shown in Fig. 5.9, were tested, using 61 raytraced profiles
corresponding to the +3/− 3 hour time window around 12:00 UTC. The linear averaging
procedure takes the spacing of the background levels into account which is derived from
the mean global vertical grid, and is performed in measurement and in LOG space.

Figure 5.10: Distribution of the 61 raytraced measurement profiles within the 6 hour assimilation
window around 12:00 UTC 03.01.2003.
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Bias of Measurements, First Guess and Analysis, Measurements Linear Interpolated,
Linear Observation Interpolation Operator in LOG Space

Measurement distribution 1.

Measurement distribution 2.

Measurement distribution 4.

Figure 5.11: Bias of measurements, first guess and analysis, linear interpolation operator.



92 5. Verification by Assimilation of Simulated Data

Bias of Measurements, First Guess and Analysis, Measurements Linear Interpolated
in LOG Space, Linear Observation Interpolation Operator in LOG Space

Measurement distribution 1.

Measurement distribution 2.

Measurement distribution 4.

Figure 5.12: Bias of measurements, first guess and analysis, linear interpolation operator in LOG
space.
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Bias of Measurements, First Guess and Analysis, Measurements Linear Interpolated
in LOG Space, Cubic Spline Interpolation Operator

Measurement distribution 1.

Measurement distribution 2.

Measurement distribution 4.

Figure 5.13: Bias of measurements, first guess and analysis, measurements linear interpolated,
cubic spline interpolation operator.
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Bias of Measurements, First Guess and Analysis, Measurements Linear Interpolated
in LOG Space, Cubic Spline Observation Interpolation Operator in LOG Space

Measurement distribution 1.

Measurement distribution 2.

Measurement distribution 4.

Figure 5.14: Bias of measurements, first guess and analysis, measurements linear interpolated in
LOG space, cubic spline interpolation operator in LOG space.
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Due to accuracy considerations strictly only observations between 2.5 km and 35
km are chosen to enter the assimilation procedure. Fore more details concerning the error
characteristics of RO measurements cf. [Steiner and Kirchengast (2004)]. As can be seen
in Fig. 5.11 linear interpolation is not appropriate, it introduces a significant bias. Fig.
5.12 shows the improvement of applying the averaging procedure in LOG space. Further-
more the Fig. 5.13 and 5.14 show that concerning the bias, the linear vertical observation
operator and the cubic spline vertical interpolation operators, both in LOG space, are
equivalent within the assimilation system. The comparisons of different measurement dis-
tributions suggest to use two measurements between two vertical background levels linear
interpolated in LOG space. Nevertheless one observation per vertical interval would be
desirable to cut down computing time, but introduces within this observation preprocess-
ing setup an unacceptable bias. This problem could be solved by using more sophisticated
interpolation algorithms, taking the non equidistant nature of the vertical grid better into
account. Further on measurement distribution 2 was used for the simulated measurements
as well as for the real CHAMP data.

Validation Background

As background for the assimilation procedure, the corresponding ECMWF T42L60 12:00
UTC 48 hour forecast was selected. Calculations showed that the 48 hour forecast -
corresponding analysis differences agrees not perfect, but acceptable with the error char-
acteristics provided by ECMWF. To validate the results the valid 12:00 UTC ECMWF
analysis was compared with the assimilation output. The temperature standard deviation
used to calculate the temperature background covariance matrix and to derive the refrac-
tivity error characteristics was taken times two to achieve realistic errors, otherwise the
error characteristics are conform to the formulations in Chapter 4.

5.2.2 Refractivity Assimilation

The following plots are showing standard deviations of first guess, measurements and
resulting analysis of the assimilation experiments. Two different vertical interpolation
operators were used (as in the bias calculations before), which are described in detail in
Section 4.5.3. Spikes in the measurement standard deviation as in Fig. 5.15 can be at-
tributed to outliers within the raytraced measurements (compare with Fig. 5.16). These
outliers were not removed by a quality control on purpose to study their impact within the
assimilation procedure. The Fig. 5.15 shows a significant improvement of the standard
deviation due to the assimilation procedure. A smoothing effect is also clearly visible if
you compare the analysis standard deviation with first guess and measurement standard
deviation, furthermore the system is somewhat robust against outliers. Comparing the
results of the assimilation procedures using the linear and cubic spline interpolation op-
erators in LOG space (cf. Fig. 5.15) are showing no significant advantage of a certain
vertical interpolation operator. Comparing the results shown in Fig. 5.16 also shows no
special benefit concerning the accuracy of one or the other observation operator. The
assimilation procedure itself improves the first guess significant, as can be seen in the Fig.
5.15 and Fig. 5.16.
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Standard Deviation for Refractivity Assimilation Experiments Linear and Cubic Spline
Vertical Observation Interpolation Operator in LOG Space

Standard deviations of the analysis using the linear interpolation
operator in LOG space.

Standard deviations of the analysis using the cubic spline
interpolation operator in LOG space.

Figure 5.15: Standard deviation for refractivity assimilation experiments linear vertical and cubic
spline interpolation operator in LOG space.
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Scatter Plots for Refractivity Assimilation Experiments Linear and Cubic Spline Vertical
Observation Interpolation Operator in LOG Space

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 5.16: Comparison assimilation results using linear interpolation operator and cubic spline
interpolation operator in LOG space.
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5.2.3 Temperature, Specific Humidity, and Surface Pressure Assimilation

Temperature, Specific Humidity, and Surface Pressure Assimilation at Refractivity
Level

Comparing Fig. 5.17 with Fig. 5.15 shows the equivalence of both assimilation schemes
at refractivity level. That means that at the chosen background resolution the difference
introduced by calculating the refractivity at the background grid points and interpolating
a refractivity field at the location of the observation, or interpolating background temper-
ature, specific humidity and pressure at the observation location and then calculating the
resulting refractivity, doesn’t introduce significant deviations. This is true for the present
setup, but one has to be aware of its dependents on grid resolution and interpolation
strategy.

Basically both experiments (refractivity assimilation and temperature specific hu-
midity and surface pressure assimilation at refractivity level) show very similar results,
proving a certain robustness of the implementation, and the interpolation operators. There
is also a limited capability to cope with outliers (cf. Fig. 5.17 and Fig. 5.18, for exam-
ple outlier around ∼ 24 km) which is true at refractivity level, and there is no visible
advantage of one or the other vertical interpolation scheme. The assimilation results are
comparable to the refractivity only assimilation scheme, improving the first guess as can
be seen in the Fig. 5.19 and 5.20.

Temperature, Specific Humidity, and Surface Pressure Assimilation

Temperature One of the stand out features of Fig. 5.19 is the sharp spike of the tem-
perature analysis standard deviation around ∼ 24 km, which is caused by two observation
outliers which are clearly visible in Fig. 5.20. Other than in the refractivity cases, where
the effects of these outliers were somewhat damped, the influence on the temperature
analysis are substantial. This difference stems from the different background error covari-
ances. Which accentuates the importance of rigorous quality control of the observations,
used within the assimilation framework. As in the refractivity case, the first guess is im-
proved significantly by the assimilation procedure, as can be seen in the Fig. 5.17 and
5.18.

Specific Humidity If you take a look at Fig. 5.22 the most striking feature is the tremen-
dous scatter of the specific humidity (X-axis ±100%) which results in a standard devia-
tion up to ∼ 85% (cf. Fig. 5.21). The other feature is the sharp decrease of variation
around ∼ 18 km due to the strong decline of water vapor content above the tropopause,
which means that at higher altitude the refractivity is dominated by the temperature.
Even though the uncertainties concerning the specific humidity are huge, the assimilation
framework deals quite successfully with this matter, it is possible to reduce the peaks of
the standard deviation considerable as can be seen in Fig. 5.21. The analysis standard
deviation follows closely the principal features of the standard deviation of the first guess,
but at lower magnitude up to an altitude of ∼ 15 km, where both quantities become
nearly equal. The reason is as mentioned before the marginal water vapor content of the
atmosphere above the tropopause.
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Standard Deviation for TQP Assimilation Experiments at Refractivity Level Linear and
Cubic Spline Vertical Observation Interpolation Operator in LOG Space

Standard deviations of the analysis using the linear interpolation
operator in LOG space.

Standard deviations of the analysis using the cubic spline
interpolation operator in LOG space.

Figure 5.17: Standard deviation for TQP assimilation experiments linear vertical and cubic spline
interpolation operator in LOG space.
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Scatter Plots for TQP Assimilation Experiments at Refractivity Level Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 5.18: Scatter plots for TQP assimilation experiments at refractivity level linear vertical
and cubic spline interpolation operator in LOG space.
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Standard Deviation for TQP Assimilation Experiments for Temperature Linear and
Cubic Spline Vertical Observation Interpolation Operator in LOG Space

Standard deviations for assimilation using the linear interpolation
operator in LOG space.

Standard deviations for assimilation using the cubic spline
interpolation operator in LOG space.

Figure 5.19: Standard deviation for TQP assimilation experiments for temperature linear vertical
and cubic spline interpolation operator in LOG space.



102 5. Verification by Assimilation of Simulated Data

Scatter Plots for TQP Assimilation Experiments for Temperature Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 5.20: Scatter plots for TQP assimilation experiments for temperature linear vertical and
cubic spline interpolation operator in LOG space.

Surface Pressure In general the surface pressure is assumed to be well known and a global
mean standard deviation of 250 Pa translates assuming the standard surface pressure of
1013.25 hPa into a relative standard deviation of roughly ∼ 0.25%. The surface pressure is
coupled via the vertical coordinate operator with the vertical pressure grid (Section 4.5.3).
In the Fig. 5.23 and 5.24, the mean tangent points of the occultations are depicted as
crosses. The result is somewhat undetermined, showing alterations of the surface pressure
around ∼ 0.20%. On the other hand there are several vertical levels between the surface
and the observation cutoff height of 2.5 km, which are still influenced by the vertical
background error covariance matrices.
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Standard Deviation for TQP Assimilation Experiments for Specific Humidity Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space

Standard deviations for assimilation using the linear interpolation
operator in LOG space.

Standard deviations of the analysis using the cubic spline
interpolation operator in LOG space.

Figure 5.21: Standard deviation for TQP assimilation experiments for specific humidity linear
vertical and cubic spline interpolation operator in LOG space.
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Scatter Plots for TQP Assimilation Specific Humidity Linear and Cubic Spline Vertical
Observation Interpolation Operator in LOG Space

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 5.22: Scatter plots for TQP assimilation experiments for specific humidity linear vertical
and cubic spline interpolation operator in LOG space.

Recursive Filter Impact

The horizontal background covariance matrices are realized as recursive filters (described
in detail in Section 4.8.2). This horizontal slices are showing the spreading of information,
introduced into the system via observations for refractivity, temperature and specific hu-
midity. For surface pressure no special plots are shown, but the plots on the next pages,
depicting the increments, are giving an idea of the horizontal spread of information. Model
level 21 roughly corresponds to a height of 5 km, level 31 to a height of roughly 12 km.
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Plots for TQP Assimilation Surface Pressure Linear Vertical Observation Interpolation
Operator in LOG Space

Linear interpolation in LOG space.

Linear interpolation in LOG space.

Figure 5.23: Surface pressure plots for TQP assimilation experiments linear vertical interpolation
operator in LOG space.
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Plots for TQP Assimilation Surface Pressure Cubic Spline Vertical Observation Inter-
polation Operator in LOG Space

Cubic spline interpolation in LOG space.

Cubic spline interpolation in LOG space.

Figure 5.24: Surface pressure plots for TQP assimilation experiments cubic spline interpolation
operator in LOG space.
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Figure 5.25: Analysis increment to show the influence of the horizontal correlation realized as
recursive filter for refractivity, model level 31 corresponds to ∼ 12 km.

As to be expected the effects are limited to the observation location. Comparing
Fig. 5.25 with upper plot Fig. 5.26 shows the anti correlation between temperature
and refractivity. Both slices are collocated, depicting the same observations. Increase in
refractivity is mirrored by a decrease in temperature and vice versa.

5.3 Summary Verification

5.3.1 Summary Error Patterns

The test runs concerning the assimilation experiments using the error patterns method
delivered the anticipated results. The convergence behavior will be discussed in the next
Section of this Chapter. The correct application of errors onto the background and observa-
tions was validated. Full assimilation runs were conducted using only vertical correlations
within the refractivity framework. Within the temperature, specific humidity and surface
pressure framework, limited experiments were run owing to the specific humidity error
characteristics. Nevertheless are these experiments suggesting a certain independence of
separate atmospheric parameters, indicating a particular robustness which stems from
isolated flaws within specific parameters.

5.3.2 Summary Raytraced Measurements

The assimilation of the quite realistic raytraced profiles, also shows some promising results,
in improving consistently the first guess.
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Recursive Filter Impact for Temperature and Specific Humidity

Analysis increment to show the influence of the horizontal correlation
realized as recursive filter for temperature, model level 31, ∼ 12 km.

Analysis increment to show the influence of the horizontal correlation
realized as recursive filter for specific humidity, level 21, ∼ 5 km.

Figure 5.26: Horizontal spreading of information for temperature and specific humidity by RF
filters.
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The experiments were run twice, using once the linear vertical observation interpola-
tion operator and once the cubic spline version, both in LOG space. As can be seen in all
the figures there is no significant advantage of one or the other version neither concerning
the overall accuracy nor the bias of the interpolation in a statistical way.

5.4 Convergence Behavior

The assimilation procedure is an iterative process, were suitable aboard or convergence
condition have to be defined. The used minimization algorithm (Section 4.10) offers a
broad variety of options to define a convergence condition. The criteria to stop the iteration
has also to take computing time into account, so at least the process should be able to
deliver results in real time. It is also vital to distinguish between an iteration which
means a new atmospheric state is found and a so called simulation which just means an
evaluation of cost function and gradient. To find a new state several simulations may be
necessary. The better posed the problem is, the easier is it to find a new state.

5.4.1 Assimilation experiments using error patterns

Figure 5.27: Convergence bahavior during refractivity assimilation experiment using error pat-
terns.

As to be expected, the refractivity assimilation experiment based on error pattern
(cf. Section 5.1.2) is a well posed problem. The excellent convergence behavior is shown in
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Fig. 5.27. 22 cost function and gradient evaluations are necessary to get 19 new iterates.
It is clearly visible, that the most significant reduction of the cost function only requires
6 iterations. Another minor step is achieved after 9 iterations, from iteration 9 to 19 the
change of the cost function is from 18970 to 18930, which is completely negligible for the
accuracy of the analysis. This result is purely theoretical but it suggests that within a
more realistic setup an abort condition for the minimization cycle has to be defined.

5.4.2 Assimilation Experiments using Raytraced Measurements

Refractivity Assimilation

Using more realistic assumptions concerning measurement and background data, namely
using raytraced profiles and realistic error characteristics, the convergence behavior differs.
The first iterations are showing again the most significant reduction of the cost function,
but there is a second significant step after 17 iterations (which translates into 29 cost
function and gradient evaluations). The problem is less well posed as can be easily seen if
you compare new iterates versus cost function and gradient evaluations (32 new iterates
require 77 evaluations of cost function and gradient). Nevertheless it seems appropriate
to cut down the number of iterates to reduce computing time. A reasonable value would
be 35 cost function and gradient evaluations, the gain of accuracy within the analysis
due to further minimization cycles is marginal. Till iteration 20 the behavior of the two
different observation operators conducting the vertical interpolation is negligible, further
on the cubic spline version finds more solutions ending up with 32 iterations after 77 cost
function and gradient evaluations compared to 21 iterations after 56 cost function and
gradient evaluations. This difference occurs at a stage of the minimization at which no
advantage for one or the other method concerning the overall accuracy is apparent (cf.
Fig. 5.28).

Temperature, Specific Humidity and Surface Pressure Assimilation

Finally using the full version of the assimilation framework, updating temperature, spe-
cific humidity and surface pressure fields directly, the convergence behavior is somewhat
smoother than in the refractivity case. The development of the total cost function still
shows a sharp bend around evaluation 30, but it is significant smoother than in the re-
fractivity only case. The results also suggest that a reasonable aboard condition for the
minimization cycles might be 30-35 cost function and gradient evaluations. Which would
be the best trade off between accuracy and computing time with a certain safety margin.
Within this assimilation framework, the two different vertical interpolation observation
operators perform equivalent (cf. Fig. 5.29).

5.4.3 Conclusion Concerning the Vertical Interpolation Operator

From this trial run no advantage of the cubic spline interpolation scheme can be conducted
(cf. also Section 5.3.1). It is suggested to use the simple linear interpolation scheme in
LOG space to increase the overall system performance concerning computing time.
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Refractivity Assimilation Convergence Behavior

Convergence bahavior linear observation interpolation operator in
LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 5.28: Convergence bahavior of refractivity assimilation experiments using ray traced pro-
files.
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Temperature, Specific Humidity, and Surface Pressure Assimilation Convergence Be-
havior

Convergence bahavior linear observation interpolation operator in
LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 5.29: Convergence bahavior of temperature, specific humidity, and surface pressure assim-
ilarion experiments using ray traced profiles.
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Experiments Using CHAMP Data

To perform the first experiments assimilating CHAMP data the summer season 2003 was
chosen. Day 225 was selected to perform the first assimilation of 24 hours of CHAMP
occultations. For the global distribution of this 142 RO profiles cf. Fig. 3.4. The first
experiments where conducted with the ±3 hour assimilation time window around 12 UTC.
The global measurement distribution for this six hour period is shown in Fig. 6.1.

Figure 6.1: Global distribution of 38 RO profiles from the six hour assimilation window around
12 UTC from day 225 of 2003.

For the relative observation standard deviation a value of 0.4% [Steiner (2004)] was
chosen within this assimilation runs (cf. Fig. 4.6). The number of cost function and gradi-
ent evaluations was limited to 101. For this test case again both assimilation schemes using
the two vertical interpolation operators where used. The corresponding ECMWF analysis
fields served as first guess. As with the raytraced profiles only observations between 2.5
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km and 35 km were used. Prior to the assimilation procedure a data thinning step is
applied to reduce the number of observations within one profile to a configuration denoted
as measurement distribution 2 (cf. Subsection 5.2.1). Within this preprocessing step, data
flagged as suspicious is also rejected, so only already quality controlled observations can
enter the assimilation process. Due to the fact that compared to the validation runs, the
true is not known, and thus a standard deviation can not be derived, the terms mean
statistical deviation and mean bias are used, for the real data error statistics (comparison
against ECMWF).

6.1 Experiments ±3 Hour Assimilation Window Around 12 UTC
Day 225 Year 2003

This CHAMP measurement sample was chosen, to conduct the first assimilation runs with
real data. It consists of 38 profiles, containing 2278 single observations. As to expect from
such a limited sample the distribution is not global even. About one third of the profiles
are between a latitude of -45◦ and -90◦ which can be seen in Fig. 6.1. This generates an
interesting effect, which will be explained in the next sections.

Figure 6.2: August mean increment 2003 RO derived dry temperature - ECMWF seasonal mean
analysis (courtesy M. Borsche, IGAM/UniGraz).
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6.1.1 Refractivity Assimilation

The Figs. 6.3 are showing a significant 0.4% systematic deviation of the CHAMP mea-
surements, which is only slightly propagated into the analysis, a fact which is also clearly
visible. This effect stems from the different statistical weights of observations and back-
ground. The effect of the observations onto the first guess at the observation location
is about ∼ 0.25% which can be seen in the Figs. 6.4. This first results suggest to ap-
ply a correction of the observation prior to assimilation. The Figs. 6.19 indicate some
wave like vertical structure, which can be probably explained by the numerical represen-
tation of the polar vortex within the ECMWF model. A comparison of a seasonal mean
dry temperature map derived from CHAMP data with the corresponding seasonal mean
of ECMWF shows some interesting features, which indicates that the wave like vertical
structure stems from the background, as can be seen in Fig. 6.2. At the southern high
latitudes the wave like structures are clearly apparent at temperature level, which trans-
lates above the tropopause (with pressure) quite directly into refractivity. An assumption
which is confirmed in Subsection 6.9.2 (cf. Fig. 6.57).

6.1.2 Temperature, Specific Humidity, and Surface Pressure Assimilation

Temperature, Specific Humidity, and Surface Pressure Assimilation at Refractivity
Level

The same procedure as in the refractivity only case was applied. The tests are showing
equivalent results like in Subsection 5.2.3. At refractivity level both assimilation schemes
show very similar results. The same applies for the two realizations of the vertical inter-
polation operator, which behave the same at refractivity level, concerning the systematic
deviation (cf. Fig. 6.17) and mean deviation from the first guess after the assimilation (cf.
Fig. 6.18). In general the real CHAMPmeasurements behave similar to the simulated data
(cf. Subsection 5.2.1, except the standard deviation, and surprisingly a smoother conver-
gence behavior see Section 6.3), so also the systematic deviation of 0.4% is present. This
proofs the realistic setup of the EGOPS system concerning the raytraced measurements.

Temperature, Specific Humidity, and Surface Pressure Assimilation

Temperature Fig. 6.9 shows the mean deviation of temperature between first guess and
analysis. Within this two plots a difference between the two interpolation operators can be
seen. The features of the mean deviations are nearly identical, but the magnitude depends
on the used vertical interpolation operator. The cubic spline version applies a somewhat
bigger correction to the first guess (cf. Fig. 6.10), an effect which is more pronounced with
altitude. In Fig. 6.10 the wave like vertical structure is even more pronounced than in Fig.
6.19, which indicates, that this effect is temperature driven. This features are also visible
within the zonal mean temperature analysis of August 2003 (cf. Fig. 6.56, upper panel),
but at a much smaller level (the assimilation result depicts temperature compared to dry
temperature in Fig. 6.58). Within the TQP assimilation scheme the information content
of the refractivity observations is somewhat diluted by being segmented into temperature,
specific humidity, and surface pressure, via local pressure. So the increments of each
separate variable are quite small, visible in the temperature (cf. Fig. 6.56 upper panel).
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Mean Bias of Refractivity Assimilation Experiments Linear and Cubic Spline Vertical
Observation Interpolation Operator in LOG Space Using CHAMP Data

Mean bias of refractivity analysis and observations using the linear
interpolation operator in LOG space.

Mean bias of refractivity analysis and observations using the cubic
spline interpolation operator in LOG space.

Figure 6.3: Mean bias of refractivity assimilation experiments linear vertical and cubic spline
interpolation operator in LOG space using CHAMP data.
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Mean Statistical Deviation from First Guess for Refractivity Assimilation Experiments
Linear and Cubic Spline Vertical Observation Interpolation Operator in LOG Space
Using CHAMP Data

Mean statistical deviations for the refractivity analysis and
observations using the linear interpolation operator in LOG space.

Mean statistical deviations for the refractivity analysis and
observations using the cubic spline interpolation operator in LOG

space.

Figure 6.4: Mean statistical deviation from first guess for refractivity assimilation experiments
linear vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Scatter Plots for Refractivity Assimilation Experiments Linear and Cubic Spline Vertical
Observation Interpolation Operator in LOG Space Using CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.5: Scatter plots for refractivity assimilation experiments for linear vertical and cubic
spline interpolation operator in LOG space using CHAMP data.

Specific Humidity

The mean deviation of the specific humidity analysis compared with the first guess (Fig.
6.11), shows a deviation of ∼ 7% for the linear interpolation operator and ∼ 9.5% for the
cubic spline version, showing the same general features, but again slightly more impact of
the cubic spline interpolation scheme onto the analysis is apparent (an effect which is also
visible in Fig. 6.12). No wave like vertical structures are immediate apparent, proving the
temperature dependence of this phenomenon.
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Mean Bias of TQP Assimilation Experiments at Refractivity Level Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Mean bias of refractivity analysis and observations using the linear
interpolation operator in LOG space.

Mean bias of refractivity analysis and observations using the cubic
spline interpolation operator in LOG space.

Figure 6.6: Mean bias of TQP assimilation experiments at refractivity level linear vertical and
cubic spline interpolation operator in LOG space using CHAMP data.
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Mean Statistical Deviation from First Guess for TQP Assimilation Experiments at
Refractivity Level Linear and Cubic Spline Vertical Observation Interpolation Operator
in LOG Space Using CHAMP Data

Mean statistical deviations for refractivity and observations using
the linear interpolation operator in LOG space.

Mean Statistical deviations for refractivity and observations using
the cubic spline interpolation operator in LOG space.

Figure 6.7: Mean statistical deviation from first guess for TQP assimilation experiments at re-
fractivity level linear vertical and cubic spline interpolation operator in LOG space using CHAMP
data.
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Scatter Plots for TQP Assimilation Experiments at Refractivity Level Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.8: Scatter plots for TQP assimilation experiments at refractivity level for linear vertical
and cubic spline interpolation operator in LOG space using CHAMP data.

Surface Pressure

As you can see in Fig. 6.13, the surface pressure increment is marginal, which basically
mirrors that the surface pressure is assumed to be known to a high degree of accuracy. It is
interesting to mention that the corrections of the first guess are predominantly negative (as
the whole analysis introduces a slightly negative correction to large areas). Furthermore
it is clearly visible that the corrections to the first guess are somewhat larger if the cubic
spline interpolation operator is used (lower panel Fig. 6.13), but the overall tendency to
a negative correction of the first guess is again apparent.



122 6. Experiments Using CHAMP Data

Mean Statistical Deviation for TQP Assimilation Experiments for Temperature Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space Using
CHAMP Data

Mean statistical deviations for the temperature analysis using the
linear interpolation operator in LOG space.

Mean statistical deviations for the temperature analysis using the
cubic spline interpolation operator in LOG space.

Figure 6.9: Mean statistical deviation for TQP assimilation experiments for temperature linear
vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Scatter Plots for TQP Assimilation Experiments for Temperature Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.10: Scatter plots for TQP assimilation experiments for temperature linear vertical and
cubic spline interpolation operator in LOG space using CHAMP data.

Summary

At the moment CHAMP profiles provided as they are, are showing a significant systematic
deviation of ∼ 0.4%. This deviation occurs consistently within the refractivity only assim-
ilation and the TQP scheme and is not introduced by the data preprocessing procedures
(data thinning cf. Section 5.2.1). Within a further preprocessing step, the observations
have to be corrected for this deviation, prior to assimilation. On the other hand you have
to be aware that a real true is not existing (the observations are compared with ECMWF
analysis fields, which might be biased themselves). Still, due to accuracy considerations,
this refractivity bias of radio occultation measurements against ECMWF analysis, stems
most likely from the retrieval procedure, which is consistently approved by independent
analyses [Gobiet and Kirchengast (2004b)], [Ao et al. (2003)], as will be seen later (see
conclusions), this problem has to be tackled at retrieval level. To correct for this devia-
tion is a justified measure, and has to be seen only as a first step, which is done for the
further experiments. A new version of the retrieval algorithm should solve this problem,
and introduce also other enhancements (cf. Section 6.10.5). The wave like structures stem
from the background which was already mentioned, and their origin is most likely in the
ECMWF model representation of the polar vortex.
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Mean Statistical Deviation for TQP Assimilation Experiments for Specific Humidity
Linear and Cubic Spline Vertical Observation Interpolation Operator in LOG Space
Using CHAMP Data

Mean statistical deviation for the specific humidity analysis using
the linear interpolation operator in LOG space.

Mean statistical deviation for the specific humidity analysis using
the cubic spline interpolation operator in LOG space.

Figure 6.11: Mean statistical deviations for TQP assimilation experiments for specific humidity
linear vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Scatter Plots for TQP Assimilation Experiments for Specific Humidity Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.12: Scatter plots for TQP assimilation experiments for specific humidity linear vertical
and cubic spline interpolation operator in LOG space using CHAMP data.
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Plots for TQP Assimilation Surface Pressure Linear Vertical Observation Interpolation
Operator in LOG Space

Linear interpolation in LOG space.

Cubic spline interpolation in LOG space.

Figure 6.13: Surface pressure plots for TQP assimilation experiments linear and cubic spline
vertical interpolation operator in LOG space.
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6.2 Corrected Runs ±3 Hour Assimilation Window Around 12
UTC Day 225 Year 2003

The same assimilation runs as in Section 6.1 were conducted, except that a 0.4% correction
for the systematic deviation was applied to the observations prior to the assimilation.

6.2.1 Corrected Refractivity Assimilation

The result of the applied correction can be seen in Fig. 6.14, where the measurement
deviation is even a little bit over estimated for this observation sample, and the analysis
is virtually bias free now. This is also reflected in the slightly reduced mean deviation of
the measurements, but leaving the mean analysis deviation nearly unchanged (Fig. 6.15).
Within the scatter plots a significant change of the analysis increments occurs for the
linear interpolation operator in LOG space. Comparing Figs. 6.16 and Figs. 6.19 it is
immediate apparent, that especially below 5 km the increment is observably reduced in
the bias corrected run.

6.2.2 Corrected Temperature, Specific Humidity, and Surface Pressure As-
similation

Corrected Temperature, Specific Humidity, and Surface Pressure Assimilation at Re-
fractivity Level

The results are equivalent to the refractivity only assimilation runs and the same conclu-
sions can be drawn (cf. Figs. 6.17, 6.18 and 6.19).

Corrected Temperature, Specific Humidity, and Surface Pressure Assimilation

Temperature There is no significant impact of the bias correction onto the temperature
increments (compare Fig. 6.9, and Fig. 6.20), also the scatter plots are quasi identical (cf.
Fig. 6.10, and Fig. 6.21)

Specific Humidity The comparison of Fig. 6.11 and Fig. 6.22 shows a slight reduction
of the specific humidity increment below 5 km and a slight increase of the increment up
to an altitude of 23 km within the bias corrected assimilation results. A tendency which
is also visible in Fig. 6.12 and Fig. 6.21.

Surface Pressure The increment of the bias corrected analysis (Fig. 6.24) compared to
the non corrected one (Fig. 6.13) is even smaller. Larger areas are not altered by the
assimilation procedure at all.



128 6. Experiments Using CHAMP Data

Mean Bias of Corrected Refractivity Assimilation Experiments Linear and Cubic Spline
Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Mean bias of refractivity analysis and observations using the linear
interpolation operator in LOG space.

Mean bias of refractivity analysis and observations using the cubic
spline interpolation operator in LOG space.

Figure 6.14: Mean bias of bias corrected refractivity assimilation experiments linear vertical and
cubic spline interpolation operator in LOG space using CHAMP data.
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Mean Statistical Deviation from First Guess for Corrected Refractivity Assimilation
Experiments Linear and Cubic Spline Vertical Observation Interpolation Operator in
LOG Space Using CHAMP Data

Mean Statistical deviations for the refractivity analysis and
observations using the linear interpolation operator in LOG space.

Mean statistical deviations for the refractivity analysis and
observations using the cubic spline interpolation operator in LOG

space.

Figure 6.15: Mean statistical deviations from first guess for bias corrected refractivity assimilation
experiments linear vertical and cubic spline interpolation operator in LOG space using CHAMP
data.
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Scatter Plots for Corrected Refractivity Assimilation Experiments Linear and Cubic
Spline Vertical Observation Interpolation Operator in LOG Space Using CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.16: Scatter plots for bias corrected refractivity assimilation experiments for linear vertical
and cubic spline interpolation operator in LOG space using CHAMP data.

Summary As to be expected, the systematic measurement deviation is removed by the
correction, which leaves the analysis virtually bias free. But a general correction of 0.4%
is just a first step, but not appropriate for all observation samples (see for example Fig.
6.33, plots A and C). This problem has to be solved at retrieval level. The mean deviation
of the measurements is slightly reduced, which has no significant impact onto the analysis
increments at refractivity level. It is interesting, that the bias correction has nearly no
impact onto the temperature analysis increments, but there is a slight increase of the
increment within the specific humidity analyses and a slight decrease of the surface pressure
increment (which is in general at a very low level).
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Mean Bias of Corrected TQP Assimilation Experiments at Refractivity Level Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space Using
CHAMP Data

Mean bias of the refractivity and observations using the linear
interpolation operator in LOG space.

Mean bias of the refractivity and observations using the cubic
spline interpolation operator in LOG space.

Figure 6.17: Mean bias of for for TQP assimilation experiments at refractivity level linear vertical
and cubic spline interpolation operator in LOG space using CHAMP data.
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Mean Statistical Deviation from First Guess for Corrected TQP Assimilation Experi-
ments at Refractivity Level Linear and Cubic Spline Vertical Observation Interpolation
Operator in LOG Space Using CHAMP Data

Mean statistical deviations for the refractivity and observations
using the linear interpolation operator in LOG space.

Mean statistical deviations for the refractivity and observations
using the cubic spline interpolation operator in LOG space.

Figure 6.18: Mean statistical deviation from first guess for TQP assimilation experiments at
refractivity level linear vertical and cubic spline interpolation operator in LOG space using CHAMP
data.
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Scatter Plots for Corrected TQP Assimilation Experiments at Refractivity Level Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space Using
CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.19: Scatter plots for TQP assimilation experiments at refractivity level for linear vertical
and cubic spline interpolation operator in LOG space using CHAMP data.
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Mean Statistical Deviation for Corrected TQP Assimilation Experiments for Temper-
ature Linear and Cubic Spline Vertical Observation Interpolation Operator in LOG
Space Using CHAMP Data

Mean statistical deviations for the temperature analysis using
the linear interpolation operator in LOG space.

Mean statistical deviations for the temperature analysis using
the cubic spline interpolation operator in LOG space.

Figure 6.20: Mean statistical deviation for TQP bias corrected assimilation experiments for tem-
perature linear vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Scatter Plots for Corrected TQP Assimilation Experiments for Temperature Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space Using
CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.21: Scatter plots for TQP bias corrected assimilation experiments for temperature linear
vertical and cubic spline interpolation operator in LOG space using CHAMP data.



136 6. Experiments Using CHAMP Data

Mean Statistical Deviation for Corrected TQP Assimilation Experiments for Specific
Humidity Linear and Cubic Spline Vertical Observation Interpolation Operator in LOG
Space Using CHAMP Data

Mean statistical deviations for the specific humidity analysis using
the linear interpolation operator in LOG space.

Mean statistical deviations for the specific humidity analysis using
the cubic spline interpolation operator in LOG space.

Figure 6.22: Mean statistical deviation for TQP bias corrected assimilation experiments for specific
humidity linear vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Scatter Plots for Corrected Assimilation TQP Experiments for Specific Humidity Linear
and Cubic Spline Vertical Observation Interpolation Operator in LOG Space Using
CHAMP Data

Linear interpolation in LOG space. Cubic spline interpolation in LOG space.

Figure 6.23: Scatter plots for TQP bias corrected assimilation experiments for specific humidity
linear vertical and cubic spline interpolation operator in LOG space using CHAMP data.
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Plots for Corrected TQP Assimilation Surface Pressure Linear Vertical Observation
Interpolation Operator in LOG Space

Linear interpolation in LOG space.

Cubic spline interpolation in LOG space.

Figure 6.24: Surface pressure plots for TQP bias corrected assimilation experiments linear and
cubic spline vertical interpolation operator in LOG space.
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6.3 Convergence Behavior of Real CHAMP Data

The convergence behavior of real CHAMP data is analyzed to derive some appropriate
abort conditions during the minimization cycles, to enhance the computational feasibility.
Compared to the raytraced observations (cf. Subsection 5.4.2), the real data seems to
converge faster, which significantly reduces computational time. The conclusions drawn
in Subsection 5.4.2 concerning the abort conditions have to be reconsidered.

6.3.1 Convergence Behavior of the Refractivity Assimilation Scheme

The convergence behavior for the refractivity assimilation is slightly different for the two
interpolation operators (cf. Fig. 6.25). The scheme using cubic spline interpolation in the
vertical dimension finds more new solutions, but at a level of very small increments, which
is in general comparable to the results using raytraced observations (cf. Subsection 5.4.2).
Performance considerations would suggest to stop the iteration cycle after 15 cost function
and gradient evaluations, taking a conservative safety margin of 5 additional cost function
and gradient evaluations into account we end up with a maximum of 20 simulations. This
abort condition would apply for either interpolation schemes.

6.3.2 Convergence Behavior of the Temperature, Specific Humidity, and Sur-
face Pressure Assimilation Scheme

In principle the same as was said in the refractivity only assimilation case applies. The
number of new iterates is even bigger for the framework using the cubic spline interpolation
operator, again like in the simulated case (cf. Subsection 5.4.2), but at a level of very
small increments (cf. Fig. 6.26). A reasonable abort condition would be again to stop the
iteration cycle after 15 cost function and gradient evaluations plus a safety margin of 5
simulations, which translates into approximately 5 to 6 new iterates.

6.4 Convergence Behavior of Corrected CHAMP Data

The convergence behavior is not influenced significantly by the correction. This applies
for both, the refractivity only and the temperature, specific humidity, and surface pressure
assimilation schemes for either interpolation operators (cf. Fig. 6.27 and Fig. 6.28). The
same recommendation concerning the abort conditions as in Section 6.3 should be used.
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Refractivity Assimilation Convergence Behavior for CHAMP Data (as is)

Convergence bahavior linear observation interpolation
operator in LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 6.25: Convergence bahavior of refractivity assimilation experiment using real CHAMP
data (no corrections).
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Temperature, Specific Humidity, and Surface Pressure Assimilation Convergence Be-
havior for CHAMP data (as is)

Convergence bahavior linear observation interpolation
operator in LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 6.26: Convergence bahavior of temperature, specific humidity and surface pressure assim-
ilation experiment using real CHAMP data (no corrections).
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Refractivity Assimilation Convergence Behavior for CHAMP Data (corrected)

Convergence bahavior linear observation interpolation
operator in LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 6.27: Convergence bahavior of refractivity assimilation experiment using real CHAMP
data (bias corrected).
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Temperature, Specific Humidity, and Surface Pressure Assimilation Convergence Be-
havior for CHAMP data (corrected)

Convergence bahavior linear observation interpolation
operator in LOG space.

Convergence bahavior cubic spline observation interpolation
operator in LOG space.

Figure 6.28: Convergence bahavior of temperature, specific humidity and surface pressure assim-
ilarton experiment using real CHAMP dat (bias corrected).
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6.5 Experiments Around 00, 06, 18, 00 UTC Day 225 and 226
Year 2003

For the following experiments corrected observations were used. Furthermore only the
linear interpolation operator in LOG space was considered. Used error characteristics
where the same as in Section 6.1. This setup could be considered as a first quasi operational
version of the assimilation scheme.

6.5.1 Experiments ±3 Hour Assimilation Window Around 00 UTC Day 225
Year 2003

A B

Figure 6.29: Plot A depicts the global distribution of RO profiles, plot B the analysis increments
of the surface pressure.

• Plot A Fig. 6.30: Refractivity assimilation N mean bias analysis (red), observations
(blue); Fig. 6.31: Refractivity assimilation observations - first guess N

• Plot B Fig. 6.30: Refractivity assimilation N mean statistical deviation; Fig. 6.31:
Refractivity assimilation analysis - first guess N

• Plot C Fig. 6.30: TQP assimilation N mean bias analysis (red), observations (blue);
Fig. 6.31: TQP assimilation observation - first guess N

• Plot D Fig. 6.30: TQP assimilation N mean statistical deviation; Fig. 6.31: TQP
assimilation analysis - first guess N

• Plot E Fig. 6.30: TQP assimilation T mean statistical deviation analysis; Fig. 6.31:
TQP assimilation analysis - first guess T

• Plot F Fig. 6.30: TQP assimilation Q mean statistical deviation analysis; Fig. 6.31:
TQP assimilation analysis - first guess Q
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A B

C D

E F

Figure 6.30: Mean bias and mean statistical deviation plots, day 225 00 UTC 2003.
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A B

D C

E F

Figure 6.31: Scatter plots for N and TQP assimilation schemes, day 225 00 UTC 2003.
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6.5.2 Experiments ±3 Hour Assimilation Window Around 06 UTC Day 225
Year 2003

A B

Figure 6.32: Plot A depicts the global distribution of RO profiles, plot B the analysis increments
of the surface pressure.

• Plot A Fig. 6.33: Refractivity assimilation N mean bias analysis (red), observations
(blue); Fig. 6.34: Refractivity assimilation observations - first guess N

• Plot B Fig. 6.33: Refractivity assimilation N mean statistical deviation; Fig. 6.34:
Refractivity assimilation analysis - first guess N

• Plot C Fig. 6.33: TQP assimilation N mean bias analysis (red), observations (blue);
Fig. 6.34: TQP assimilation observation - first guess N

• Plot D Fig. 6.33: TQP assimilation N mean statistical deviation; Fig. 6.34: TQP
assimilation analysis - first guess N

• Plot E Fig. 6.33: TQP assimilation T mean statistical deviation analysis; Fig. 6.34:
TQP assimilation analysis - first guess T

• Plot F Fig. 6.33: TQP assimilation Q mean statistical deviation analysis; Fig. 6.34:
TQP assimilation analysis - first guess Q
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A B

C D

E F

Figure 6.33: Mean bias and mean statistical deviation plots, day 225 06 UTC 2003.
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A C

C D

E F

Figure 6.34: Scatter plots for N and TQP assimilation schemes, day 225 06 UTC 2003.
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6.5.3 Experiments ±3 Hour Assimilation Window Around 18 UTC Day 225
Year 2003

A B

Figure 6.35: Plot A depicts the global distribution of RO profiles, plot B the analysis increments
of the surface pressure.

• Plot A Fig. 6.36: Refractivity assimilation N mean bias analysis (red), observations
(blue); Fig. 6.37: Refractivity assimilation observations - first guess N

• Plot B Fig. 6.36: Refractivity assimilation N mean statistical deviation; Fig. 6.37:
Refractivity assimilation analysis - first guess N

• Plot C Fig. 6.36: TQP assimilation N mean bias analysis (red), observations (blue);
Fig. 6.37: TQP assimilation observation - first guess N

• Plot D Fig. 6.36: TQP assimilation N mean statistical deviation; Fig. 6.37: TQP
assimilation analysis - first guess N

• Plot E Fig. 6.36: TQP assimilation T mean statistical deviation analysis; Fig. 6.37:
TQP assimilation analysis - first guess T

• Plot F Fig. 6.36: TQP assimilation Q mean statistical deviation analysis; Fig. 6.37:
TQP assimilation analysis - first guess Q
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A B

C D

E F

Figure 6.36: Mean bias and mean statistical deviation plots, day 225 18 UTC 2003.
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A B

C D

E F

Figure 6.37: Scatter plots for N and TQP assimilation schemes, day 225 18 UTC 2003.



6.5. Experiments Around 00, 06, 18, 00 UTC Day 225 and 226 Year 2003 153

6.5.4 Experiments ±3 Hour Assimilation Window Around 00 UTC Day 226
Year 2003

A B

Figure 6.38: Plot A depicts the global distribution of RO profiles, plot B the analysis increments
of the surface pressure.

• Plot A Fig. 6.39: Refractivity assimilation N mean bias analysis (red), observations
(blue); Fig. 6.40: Refractivity assimilation observations - first guess N

• Plot B Fig. 6.39: Refractivity assimilation N mean statistical deviation; Fig. 6.40:
Refractivity assimilation analysis - first guess N

• Plot C Fig. 6.39: TQP assimilation N mean bias analysis (red), observations (blue);
Fig. 6.40: TQP assimilation observation - first guess N

• Plot D Fig. 6.39: TQP assimilation N mean statistical deviation; Fig. 6.40: TQP
assimilation analysis - first guess N

• Plot E Fig. 6.39: TQP assimilation T mean statistical deviation analysis; Fig. 6.40:
TQP assimilation analysis - first guess T

• Plot F Fig. 6.39: TQP assimilation Q mean statistical deviation analysis; Fig. 6.40:
TQP assimilation analysis - first guess Q
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A B

C D

E F

Figure 6.39: Mean bias and mean statistical deviation plots, day 226 00 UTC 2003.
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A B

C D

E F

Figure 6.40: Scatter plots for N and TQP assimilation schemes, day 226 00 UTC 2003.
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6.6 Observation Statistics

UTC Profiles Observations Profiles Assim. Observations Assim.

00 40 18157 33 2011
06 38 16958 31 1807
12 44 21591 38 2278
18 55 24523 48 2939
00 54 23421 43 2503

Table 6.1: Observation statistics for the 24 hour test case day 225 year 2003.

Tab. 6.1 shows the number of observations in detail. The test cases were effectively five 6
hour time windows around the ECMWF analysis times 00, 06, 12, 18 and 00 UTC. This
means that the first six hour window already starts on day 224 at 21:00 (for the 00 UTC
time layer) and the last six hour window ends on day 226 03:00 (for the consecutive 00 UTC
time layer of day 226). The difference between profiles and profiles assimilated stems from
the rejection of profiles flagged as suspicious (different codes indicate the possible problem
during the retrieval). Observations assimilated indicates the number of single observations
entering the analysis after the rejection of suspicious data and the data thinning procedure
(cf. Section 5.2.1) and possible rejection due to problems with the orography. In total 193
profiles containing 11538 single observations were processed.

6.7 Convergence Statistics

Assimilation Window Mode Iterations Simulations Abort Criteria

Day 225 00 UTC N 6 50 5
TQP 14 97 5

Day 225 06 UTC N 14 94 4
TQP 15 96 5

Day 225 12 UTC N 6 53 5
TQP 6 50 5

Day 225 18 UTC N 14 94 4
TQP 12 100 5

Day 226 00 UTC N 14 101 4
TQP 9 71 5

Table 6.2: Convergence bahavior of test assimilation windows.

In Tab. 6.2 the convergence behavior of all runs (corrected, linear interpolation operator
in LOG space) is shown, were in the column aboard criteria the number of iteration
after 15 cost function and gradient evaluations are shown. The general abort criteria
was 101 cost function and gradient evaluations. This criteria was only once reached, the
minimization cycle was mostly aborted by an intrinsic condition, which stops the iteration
after 20 cost function and gradient evaluations without finding a new iterate. This can be
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caused by errors in cost function or gradient evaluation, or if rounding errors dominate
the computation. A close look at the cost function reductions confirms the assumption of
Section 6.3. These results are somewhat dependent on the dimensions of the background
grid and the number of observations, the conclusions concerning the convergence behavior,
drawn here are only valid for similar assimilation setups.

6.8 Assimilation Results for August 2003

Figure 6.41: Geolocation of 4482 occultation profiles used within the assimilation experiment
covering August 2003.

For this quasi operational run, every day of August 2003, divided into four assimila-
tion windows of 6 hours was processed. This translates in total into 31 independent time
slices, around 00, 06 12 and 18 UTC, delivering 124 analyses. The global distribution of
the 4482 CHAMP RO profiles is depicted in Fig. 6.41, which translate in 245220 single
observations. As lower cut off height 5 km was chosen as the previous results suggest.
The data quality degrades below 5 km rapidly which can be seen in many plots of the
previous Section. The problem has to be solved at retrieval level (wave optics methods,
see conclusions), to be able to effectively use observations below 5 km. The analysis fields
were averaged separately for every time layer and in addition a total monthly mean was
derived by averaging the time layer means. These averaged fields were compared with
the corresponding monthly mean analysis of ECMWF. This procedure was applied for
the refractivity and the temperature, specific humidity, and surface pressure assimilation
schemes. The minimization process was stopped after 20 cost function and gradient eval-
uation, leaving some safety margin (cf. Section 6.7), which means that about 5 to 6
successful iterations were conducted for every assimilation time window.
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6.8.1 Refractivity Assimilation Results for August 2003

For this quasi operational assimilation run the refractivity only assimilation scheme was
used on a beowulf cluster, processing 12 time layers in parallel.

Refractivity Assimilation Increments for August 2003 Model Level 21

Figure 6.42: Increments of the refractivity assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 21, which
corresponds to a height of approximatly 5 km.

Refractivity In Fig. 6.42 the refractivity increments for model level 21 corresponding to
a height of ∼ 5 km are depicted. The increments are generally at a quite low level, but the
most significant feature is the negative increment over the southern hemisphere at high
latitudes and a slightly positive increment in the northern hemisphere around a latitude
of 45◦, apparent within all time layers. This feature is also clearly apparent at model
level 31 (cf. Fig. 6.43), which corresponds roughly to a height of ∼ 12 km. Within this
layer an additional negative refractivity increment over the northern hemisphere at high
latitudes appears, similar to the southern hemisphere. The appearance of the increments
is consistent within all time layers. At model level 40 (cf. Fig. 6.44), corresponding
to a height of ∼ 20 km, the features over the northern hemisphere vanish, the negative
increment over the southern high latitudes are even more pronounced. The refractivity
increments at the upper model levels are smoother,
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Refractivity Assimilation Increments for August 2003 Model Level 31

Figure 6.43: Increments of the refractivity assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 31, which
corresponds to a height of approximatly 12 km.

due to the fact of the extremely low water vapor content, which induces lower refrac-
tivity gradients. This reduces significantly the local variability of the refractivity gradient.
One has to be aware of the different scaling of the plots. At model level 40 the most sig-
nificant impact (∼ 0.3%) of RO data onto the refractivity field derived from the ECMWF
monthly mean temperature, specific humidity, and surface pressure fields can be seen.
Taking the total monthly mean of August 2003 (which means an average over all time
layers) for the model levels 21, 31 and 40 shows no surprising results (cf. Fig. 6.45).
The results are consistent with the increments of the single time layers, the features are
smoother and more pronounced. The most prominent feature is the negative refractivity
increment over the high latitudes of the southern hemisphere. A result which is some-
what mirrored in the RO-only climatologies (cf. Subsection 1.2.3). The magnitude of
the increment increases systematically with altitude. Over the southern high latitudes
the strongest signal appears, within all levels, getting more significant with altitude. An
interesting feature is that the impact around the equator is quite low even at model level
21, which is clearly visible within the separate time layers, and even more clearly in the
total global mean.
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Refractivity Assimilation Increments for August 2003 Model Level 40

Figure 6.44: Increments of the refractivity assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 40, which
corresponds to a height of approximatly 20 km.

If the overall impact is compared with the geolocation of the measurements, a consis-
tent picture is shown were increments only appear at locations with a systematic deviation
of the measurements from the background. Non persistent deviations are vanishing within
the monthly mean fields, delivering a neutral result. As the RO observations are an inde-
pendent source of information, this results indicate a systematic deviation within certain
regions of the ECMWF analysis fields. The error structure of monthly and seasonal mean
analysis fields is believed to be bias driven1. A bias within the RO data themselves (cf.
Subsection 6.1.1) cannot be excluded from the considerations, and improved retrieval al-
gorithms are expected soon, but the applied correction prior to assimilation, seems to be
appropriate as a first step. A systematic deviation introduced by the observations would
be expected to be globally evenly distributed (cf. geolocation of observations Fig. 6.41).
This not being the case, strengthens the suspicion of a systematic deviation within certain
regions of the ECMWF background data. This result is roughly consistent with the in-
tercomparison of the seasonal mean RO-only based climatologies of dry temperature with
the corresponding ECMWF fields (cf. Fig. 6.2).

1Eric Anderson, ECMWF Reading, U.K., pers. communication, 2003.
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Total Refractivity Assimilation Increments for August 2003

Figure 6.45: Increment of the total refractivity assimilation (mean of all time layers) August 2003
for the model levels 21 (∼ 5 km), 31 (∼ 12 km) and 40 (∼ 20 km), different scaling of plot contours
(Level 31/40 three/five times the contour spacing of Level 21).
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6.8.2 Temperature, Specific Humidity, and Surface Pressure Assimilation Re-
sults for August 2003

For this quasi operational assimilation run the temperature, specific humidity, and surface
pressure assimilation scheme was used on a beowulf cluster, processing 12 time layers in
parallel.

Temperature Assimilation Increments for August 2003 Model Level 21

Figure 6.46: Increments of the temperature assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 21, which
corresponds to a height of approximatly 5 km.

Temperature In Fig. 6.46 the temperature increments for model level 21 corresponding
to a height of ∼ 5 km are shown. The monthly mean increments are quite marginal
at temperature level, for every time layer, showing no significant features. This effect
stems from the spread of observational information into temperature, specific humidity,
and surface pressure increments. The situation is similar for model level 31 (∼ 12 km, cf.
Fig. 6.47), but increments seem to be cumulated over the continents, and model level 40
(∼ 20 km cf. Fig. 6.48), where increments appear especially at southern high latitudes.
The increments are at a low level and show at level 31 and level 40 some isolated patterns.
Like in the refractivity case, some interesting features are visible within the zonal mean of
the temperature analysis, which will be shown later (cf. Fig. 6.57). The same applies for
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the total mean temperature increment (cf. Fig. 6.49), which is for every model level at a
very low magnitude, but shows at southern high latitudes at level 40 a significant negative
deviation (order of 0.1 K).

Temperature Assimilation Increments for August 2003 Model Level 31

Figure 6.47: Increment of the temperature assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 31, which
corresponds to a height of approximatly 12 km.

Specific Humidity The specific humidity is showing quite substantial increments at
model level 21 ( ∼ 5 km, cf. Fig. 6.50), without any specific global pattern. Looking
at model level 31 (∼ 12 km, cf. Fig. 6.51), the similar picture appears, at a lower level
of increments, but showing a significant signal, consistent within all time layers over the
Mediterranean sea, which also appears consistently in Fig. 6.52 middle panel. For the
total global mean the increment is slightly reduced (cf. Fig. 6.52) due to the averaging
process, which indicates the low stability of the atmospheric specific humidity. For the
total mean, also model level 40 (∼ 20 km) is depicted, showing virtually no increment,
as against model level 21 and 31, highlighting the absence of humidity at atmospheric
layers exceeding the tropopause. As in the temperature case, a zonal monthly mean will
be shown later, which will highlight the low increment around the equator.
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Temperature Assimilation Increments for August 2003 Model Level 40

Figure 6.48: Increment of the temperature assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 40, which
corresponds to a height of approximatly 20 km.

Surface Pressure The surface pressure analysis again shows small increments, as to be
expected (assumed relative global surface pressure standard deviation ∼ 0.25%), which are
consistent within all time layers. The total mean surface pressure of August also shows no
unexpected increments . The overall increment is slightly negative with a pattern around
the mid latitudes with unaltered surface pressure. The most significant pattern appears
at the southern high latitudes, this is also true for the total monthly mean of the surface
pressure, showing no significant deviations from the increments of the single time slices.
This increment at the southern high latitudes agrees especially well with the refractivity
increments as can be seen in Fig. 6.45. A significant portion of the observation increment
is attributed to the local pressure and propagated via the adjoint operators down to the
surface pressure grid.

Compared to the refractivity only assimilation scheme, the impact of the tempera-
ture, specific humidity, and surface pressure assimilation is somewhat limited. Especially
at the upper model levels like model level 40 one would expect a more significant impact
concerning the temperature background, due to the absence of humidity,
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Total Temperature Assimilation Increments for August 2003

Figure 6.49: Increment of the total temperature assimilation (mean of all time layers) August
2003 for the model levels 21 (∼ 5 km), 31 (∼ 12 km) and 40 (∼ 20 km).
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Specific Humidity Assimilation Increments for August 2003 Model Level 21

Figure 6.50: Increment of the specific humidity assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 21, which
corresponds to a height of approximatly 5 km.

the correction should be applied mainly to the temperature background and the
pressure field, which is subsequently propagated down to the surface pressure. The sig-
nificant features apparent in the refractivity analysis at the southern high latitudes, are
apparent in the temperature analysis only at a marginal level. As mentioned above a sig-
nificant part of the introduced information seems to be attributed to the pressure grid and
is subsequently propagated to the surface pressure. Nevertheless the temperature incre-
ment pattern is consistent with the refractivity only analysis increment, which can be seen
at zonal mean level. The temperature increment at zonal mean level perfectly agrees with
the increment of the from temperature, specific humidity, and surface pressure analyses
recalculated refractivity field.
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Specific Humidity Assimilation Increments for August 2003 Model Level 31

Figure 6.51: Increment of the specific humidity assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC at model level 31, which
corresponds to a height of approximatly 12 km.
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Specific Humidity Assimilation Increments for August 2003

Figure 6.52: Increment of the total specific humidity assimilation (mean of all time layers) August
2003 for the model levels 21 (∼ 5 km), 31 (∼ 12 km) and 40 (∼ 20 km), different scaling of Level
40 plot (10 times less spacing than Level 21 and Level 31 plots, respectively).
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Surface Pressure Assimilation Increments for August 2003

Figure 6.53: Increment of the surface pressure assimilation of August 2003 between analysis and
ECMWF monthly mean for the time layers 00, 06, 12, and 18 UTC.

Figure 6.54: Increment of the total surface pressure assimilation (mean of all time layers) August
2003.
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6.9 Zonal Means

From the total monthly analyses of August 2003, zonal means were calculated.

6.9.1 Zonal Mean Refractivity

Figure 6.55: Zonal mean increment refractivity calculated from the total mean analysis of August
2003 and the corresponding ECMWF analysis.

Finally the zonal mean from the total monthly mean analysis of the refractivity was
calculated. The zonal mean Fig. 6.55 shows a very significant feature between model level
50 and 60 where in fact no direct observations can cause an impact (cut off height is 35 km
due to accuracy considerations), but of course these levels are coupled with the lower parts
of the atmosphere via the vertical error covariance matrices (cf. Fig. 4.10). The features
around level 40 are clearly visible within the horizontal slice in Fig. 6.45, there is also a
slight hint of the negative increment at the northern high latitudes around model level 31,
also clearly visible in Fig. 6.45. Except from the significant increment between model level
50 and 60 the refractivity field calculated from the temperature, specific humidity, and
surface pressure analyses (cf. Fig. 6.57) is showing similar features, at different magnitude.
Wave like structures are also apparent over the southern hemisphere at high latitudes. An
other feature is the strong negative increment at norther heigh latitudes around 10 km,
which is mirrored in Fig. 6.57 upper panel to a minor degree. The increment in the
refractivity only case is stronger pronounced and less smooth, especially below some 10
km due to the water vapor content within the troposphere.
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6.9.2 Zonal Mean Temperature and Specific Humidity

Zonal Mean Temperature and Specific Humidity

Figure 6.56: Zonal mean increment of total temperature (lower panel) and specific humidity (upper
panel) assimilation to ECMWF August 2003.
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Zonal Mean Temperature and Refractivity Increment

Figure 6.57: Zonal mean increment of temperature assimilation (lower panel) and from temper-
ature, specific humidity and surface pressure analyses derived refractivity (upper panel) to the
corresponding ECMWF fields, August 2003.
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Zonal Mean Temperature Analysis and RO only Dry Temperature Climatology

Figure 6.58: Zonal mean temperature analysis and RO only dry temperature climatology, August
2003, lower plot (courtesy M. Borsche, IGAM/UniGraz).
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The zonal mean temperature increment shows a consistent pattern compared to the
increment of the CHAMP RO only climatologies (cf. Fig. 6.2) compared to ECMWF (cf.
Fig. 6.56, upper panel). The specific humidity shows some interesting patterns around
the equator shifted to the northern hemisphere, and around the tropopause height. The
most interesting feature is shown in Fig. 6.57, which depicts the relative refractivity
increment (upper plot) and the relative temperature increment (lower plot), showing their
close agreement, spatially and concerning the magnitude, and sign.

6.10 Conclusion

The standard deviation at the observation locations is lesser than at the background grid
points, due to the averaging nature of the interpolation processes. For the observation
error characteristics a conservative approach was chosen. As the observations are averaged
during the preprocessing step, their standard deviation should be reduced compared to
the original observations within the profiles. The error characteristics currently used
within the assimilation framework is more conservative that of the unprocessed original
observations.

6.10.1 Systematic Deviation

Plots A and C of Fig. 6.30 indicate a problem concerning the correction of the systematic
deviation of the input data. As can be seen the deviation correction seems to be over-
estimated by ∼ 0.15% for this set of observations. The same applies even more significant
for plots A and C of Fig. 6.33, and less pronounced for plots A and C of Fig. 6.36. For the
other time slices the correction seems to be appropriate. An improved retrieval algorithm
is foreseen, which should solve this problem.

6.10.2 Refractivity Analysis

The increment is calculated at observation locations, compared to the monthly mean
studies, where the whole field increments are analyzed. The overall increment at refrac-
tivity level seems to be consistently ∼ 0.25% for all assimilation time windows for the
refractivity-only system. The results of all five time windows are quite comparable, there
are no significant patterns within single time slices.

6.10.3 Temperature, Specific Humidity, and Surface Pressure Analysis

The overall increment at refractivity level seems to be consistently ∼ 0.25% for all assim-
ilation time windows for the temperature, specific humidity, and surface pressure scheme,
which is comparable to the refractivity-only system. The temperature increments are
∼ 0.10% in the troposphere, increasing to ∼ 0.2% at higher altitudes (cf. Figs. 6.30, 6.33,
6.36, 6.39 panels E). As in the refractivity case the increment is calculated at observation
location. Like in the refractivity case the results of all five assimilation time windows are
quite comparable, there are no significant patterns within single time slices.
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6.10.4 Monthly Mean

The monthly mean analysis allows to compare the full average field increments, the number
of observations (in our case 245220) and their global coverage are sufficient. As a future
perspective seasonal means will introduce roughly three times as many observations, fur-
ther increasing the impact onto the background. Additional RO data from GRACE and
GRAS on METOP as well as COSMIC will soon vastly increase impacts.

Monthly Mean Refractivity Analysis

The refractivity analysis shows some significant patterns, especially at the high latitudes of
the souther hemisphere. A similar feature appears around model level 31 (∼ 12 km) over
the northern high latitudes, the features are in general showing an increasing magnitude
with height.

The refractivity analysis shows a significant increment between the monthly mean
analysis and the corresponding ECMWF fields at refractivity level, consistent at all time
layers and within the total monthly mean. The most striking feature is the negative
increment at the southern high latitudes. The zonal mean of the total monthly mean
analysis also offers interesting insights into the vertical structure of the increments.

Monthly Mean Temperature, Specific Humidity, and Surface Pressure Analysis

The clearly visible increment between monthly mean analysis and the corresponding
ECMWF fields at refractivity level, are not that significantly apparent within the in-
crements of the temperature, specific humidity, and surface pressure fields. Nevertheless
they are present, at a smaller magnitude, as clearly visible within the zonal mean plots.

The monthly zonal mean increment between analysis and ECMWF shows quite sig-
nificant patterns over the southern hemisphere at high latitudes (cf. Fig. 6.56, upper
plot), which agree very well with the increments of RO-only climatologies and ECMWF
(cf. Fig. 6.2). This result is also mirrored in the well reconstructed increment pattern
of the zonal mean refractivity field calculated from temperature, specific humidity, and
surface pressure slices and compared to the corresponding refractivity field derived from
the monthly mean ECMWF fields (cf. Fig. 6.57). The plot shows the excellent agreement
between the temperature and refractivity increments, depicting that an increase of tem-
perature brings forth a decrease in refractivity and vice versa, as should be the case. The
plot also shows that the refractivity is dominated by the temperature above the tropopause
due to the marginal water vapor content at high altitudes. Within the troposphere, the
strong temperature signature of the refractivity is diluted by the influence of water vapor
(compare Fig. 6.57), where part of the negative increment below model level 40 should
also be attributed to the surface pressure increment. The absolute temperature analysis
of the total zonal monthly mean and the corresponding RO-only climatology are shown in
Fig. 6.58, showing both the same principal features.

The specific humidity increments are showing a decline in magnitude with increase
of the altitude, an effect which is clearly to be expected. At model level 40 (∼ 20 km),
far above the tropopause the increment oscillates around zero which can be contributed
to numerical noise (cf. Fig. 6.52). Again a more significant pattern can be seen within
the plots of the zonal mean (cf. Fig. 6.56, lower panel).
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The total monthly mean of the surface pressure shows only at the southern high
latitudes a significant signal, the overall correction is slightly negative with some unaltered
regions mainly at mid latitudes. These surface pressure increments is specially consistent
compared to the spatial location of the refractivity and temperature increments (cf. Figs.
6.54, 6.45 and 6.49).

6.10.5 Alternative Background Data

As an alternative approach concerning the choice of the first guess, short range forecasts
and the corresponding error characteristics should be taken into consideration. This could
be a better choice of first guess data for climate monitoring applications and impact studies
should be conducted in future.



Conclusions

Overview

During the development of the 3D-Var system introduced in this study, several technical
and principal problems occurred. Addressing the technical issues, most of them could be
solved in a convenient way. Concerning computational feasibility, for example it turned out
that a severe reduction of cost function and gradient evaluations is not spoiling the analysis
results (cf. Section 6.3), cutting down computation time tremendously. By processing
the whole set of CHAMP observations from August 2003 the computational feasibility,
on a small Linux cluster was proven. Using the described setup, the average six hour
assimilation time window takes about one hour to be processed using the refractivity
analysis setup and about three hours using the full temperature, specific humidity, and
surface pressure formulation. Using a Linux cluster with six nodes, every node equipped
with 2 processors (i.g. 1.8 GHz CPUs), the 31 days of August where processed within
about 45 hour computational time.

Due to the quite accurate first guess, the corrections, applied through the observa-
tions to the background fields are fairly small. This is to be expected, so increments of
the mean data fields as a whole should be studied at a monthly or seasonal mean basis.
This also serves the foreseen application of the system, which is to conduct studies of long
term variability and climate change. Using only CHAMP data, at least one month of
observations should be used, to achieve enough global coverage and data density.

As a derivation of the error characteristics of the RO-only based global climatologies
is on-going currently, it is difficult to specify error characteristics of the mean analysis fields
of ECMWF. It is assumed that these errors are bias driven, but they are not sufficiently
characterized yet. On the other hand we believe that apart from the small systematic
deviation in our current CHAMP data, the error characteristics of RO data have a sound
foundation to serve as unbiased observations between 5 and 35 km, and the assumptions
made within this work are quite conservative.

Concerning CHAMP data improved retrieval algorithms are expected soon (with
the perspective of a removal of the systematic deviation), for now the applied correction
is sufficient, however for the geolocation, instead of a mean tangent point of the profile
the mean real position of the single observations would be preferable due to the smearing
characteristics of the RO profiles, an improvement which is currently under development.
The system is ready for geopotential as alternative vertical coordinate, which is probably
the better choice and should be tested in future.

Assimilation creating full monthly or seasonal mean climatologies would give valu-
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able insight into the increments of ECMWF mean analysis fields, and would allow valuable
insights into possible bias characteristics. As mentioned above, the error characteristics
of the mean analysis fields of ECMWF are not sufficiently characterized yet, but the
derivation of the monthly mean test analysis of August 2003 proved that the approach
of processing every single time layer of one month using the appropriate observations to
derive the total monthly mean analysis adequate. As can be seen in the analysis of the
real CHAMP data, observations below ∼ 5 km are problematic. As a first approach it
was found better to use this limit as cut off height for the observations, which was done
in the processing of the August 2003 analysis. Advanced retrieval techniques like wave
optics are able to cope with the problems occurring in the lower troposphere and hence are
superior to geometric optics below about 5 km [Gorbunov (2002)], [Hocke et al. (1999)],
[Sokolovskiy (2003)], [Jensen et al. (2003)], [Beyerle et al. (2003)]. Future RO data
products will take advantage of the improved retrieval techniques and thus deliver high
quality observations down into the lower troposphere at least to the top of the planetary
boundary layer.

Outlook

A short term outlook was already given in the previous section concerning mainly im-
provements of retrieval algorithms [Gobiet and Kirchengast (2004a)]. Here a longer term
outlook will be given concerning new instruments and background data. Furthermore,
direct improvements of the assimilation scheme itself will be discussed at the end of this
section.

Better error characteristics of new generation receivers like GRAS (0.2% compared
to 0.4%, see Subsection 3.2.5) will increase the increments and lead to climatologies of even
better accuracy. With the new missions en route the global coverage will be better within
24 hours leading to more impact on the data fields as a whole (see COSMIC subsection
3.2.5). Independent validation against for example collocated RAOB data will be easier
due to the increased number of observations and intervalidation of the different systems
will allow to even better specify the error characteristics of RO observations. With the
availability of GRAS data, the first checks concerning the change of increments due to
the expected data quality of GRAS occultations could be conducted. In this context, the
possibility of direct comparison of collocated CHAMP and GRAS profiles to compare the
receiver performance will be very useful.

Within the control space transformation framework (cf. Section 4.8) it is possible
to filter vertical grid-scale, low amplitude noise from the system by neglecting small-scale
structures which contribute little to the total error (this step would also reduce computing
time). The inner product P , which defines a weighted error (see Eq. 4.47) could be
also used to introduce further dependencies into the vertical transform. The foreseen
upgrade to L90 of ECMWF will enhance the resolution of vertical atmospheric structures,
especially around the tropopause height and can be handled without problems (except a
linear increase of computing time). The system itself is fit for any horizontal or vertical
resolution (tested for T21L60 and T42L60), the limit is mainly the available computing
power. As mentioned in Subsection 3.1.1, the T42L60, or in future the T42L90 resolution,
fits best on the one hand the spatial characteristics of RO observations (cf. Section 3.2),
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and on the other hand the climatological applications. Another interesting option will be
the use of forecasts (with adopted error characteristics) as first guess to conduct impact
studies (cf. 6.10.5).

Since the observations are preprocessed, and a kind of super observations is used
within the assimilation framework, the assumptions used for the observational error within
the assimilation experiments are currently very conservative. The standard deviation of
the observations should be reconsidered and partially reduced in the future, which will
affect directly the analysis increments.

Using global mean background covariance matrices as a first step was acceptable, but
the use of geographically dependent error characteristics will be clearly more appropriate
in the future Furthermore as the plots in Chapter 6 clearly indicate (and in more detail
the work of Andreas Gobiet), there are some deficiencies in the background temperature
fields at high latitudes during the winter in the southern hemisphere. This indicates that
also introduction of a seasonal dependency will be valuable in order to get a more realistic
representation of the background errors2. Overall, it is satisfactory to see that the basis
laid with the developments of this work finds many promising opportunities for future
advancements and climatological applications.

2Andreas Gobiet IGAM/UniGraz, AUT, pers. communications 2004
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Constants
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k1 = 77.60 [K/hPa] Empirical Constant
Thayer Formula &
Smith Weintraub

k2 = 70.40 [K/hPa] Empirical Constant
Thayer Formula &
Smith Weintraub

k3 = 373900.00 [K2/hPa] Empirical Constant
Thayer Formula &
Smith Weintraub

A = 6.02214× 1023 [mol−1] Avogadro Number
R = 8.3145 [Pa·m3/K·mol] Universal Gas Constant
RDry = 287.06 [J/K·Kg] Dry Air Gas Constant
RWatV ap = 461.52 [J/K·Kg] Water Vapor Gas Con-

stant
mA = 28.964 [kg/kmol] Molar Mass of Dry Air
mW = 18.015 [kg/kmol] Molar Mass of Water

Vapor
gMean = 9.80665 [m·s−1] Mean Acceleration of

Gravity
rMean = 6371.0 [Km] Mear Radius of Earth
rPol = 6356.752314 [Km] Polar Radius of Earth
rEqu = 6378.137 [Km] Equatorial Radius of

Earth
M∗ = 6.022140× 1026 [Kmol−1] Kilo Mol
Earth_Flattening =

rEqu
rPol
− rEqu [km] Earth Flattening

J2 = 1.08263× 10−3 GRS-80 zonal coeffi-
cient

gEqu = 9.7803 [m·s−1] Acceleration of Gravity
at Equator

Table A.1: Relevant constants
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Notation
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xt : True State of the Atmosphere Dimension n
xb : Background Model State Dimension n
xa : Analysis Model State Dimension n
y : Observation Vector Dimension p
H : Observation Operator Dimension n→ p
H : Linear Observation Operator Dimension n→ p
B : Background Covariance Matrix Dimension n× n
R : Observation Covariance Matrix Dimension p× p
A : Analysis Covariance Matrix Dimension n× n
K : Gain Matrix Dimension n× n
I : Identity Matrix
Jb : Background Cost Function
Jo : Observation Cost Function
J : Total Cost Function
v : Background State Vector in Control Space Dimension n
E : Matrix Containing Eigenvectors (Columns) Dimension n× n
U : Control Space Transformation Operator
λ : Eigenvalues
P : Inner Product
z : Geometric Height
φ : Geopotential Height
ϕ : Latitude
λ : Longitude
σ : Standard Deviation

Table B.1: Notation-Major symbols



C
List of Acronyms

ECMWF : European Center for Medium Range Weather Forecast
CHAMP : Challanging Mini Satellite Payload
RO : Radio Occultation
LEO : Low Earth Orbit Satellite
MEO : Medium Earth Orbit Satellite
GEO : Geo Stationary Orbit Satellite
TEC : Total Electron Content
GFZ : Geo Forschungszentrum Potsdam
3D-VAR : Three Dimensional Variational Data Assimilation
4D-VAR : Four Dimensional Variational Data Assimilation
pdf : Probability Density Function
BLUE : Best Linear Unbiased Estimator
TL : Tangent Linear
AD : Adjoint
IFS : ECMWF Integrated Forecast System
TLE : Two Line Element
COSMIC : Constellation Observing System for Meteorology, Ionosphere & Climate
CIRA : Cospar International Reference Atmosphere
COSPAR : Comite on Space Research
MSISE : Mass Spectrometry Incoherent Scatter (Extended)
RAOB : Radio (Balloon) Observations
MIPAS : Michelson Interferometer for Passive Atmospheric Sounding
PCA : Principal Component Analysis
ICA : Independent Component Analysis
GFZ : Geo Forschungs Zentrum Potsdam
DMI : Danish Meteorological Institute
ENVISAT : Enviroment Satellite
ERA40 : ECMWF Re-Analysis 40
GRAS : GNSS Receiver for Atmospheric Sounding
GNSS : Global Navigation Satellite System
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WMO : Word Meteorological Organization
WCRP : World Climate Research Program
ECHAM5 : European Center Hamburg Model 5
METOP : Metorological Operational Satellite
EPS : Eumetsat Polar System
SAF : Satellite Application Facility
WRF : Weather Research and Forecasting Model
MM5 : Mesoscale Model 5
GENESIS : GPS Environmental & Earth Science Information System
IPCC : Intergovernmental Panel on Climate Change
GCM : Global Circulation Model
NWP : Numerical Wather Prediction
OI : Optimal Interpolation
RF : Recursive Filter
INRIA : Institut National de Recherche en Informatique et en Automatique
r.m.s. : Root Mean Sqare
NASA : National Aironautics and Space Administration
NOAA : National Ocean and Athmospheric Administration
UCAR : University Cooperation for Atmospheric Research
CDAAC : COSMIC Data Analysis and Archive Center
GPS : Global Positioning System
SOAR : Second Order Autoregressive Function
FGAT : First Guess at Appropriate Time
ESA : European Space Agency
NCEP : National Climate and Environmental Prediction
BFGS : Broyden-Fletcher-Goldfarb-Shanno Methode
NPOESS : National Polar Orbiting Environmental Satellite System
GPSOS : GPS Occultation Sensor



D
Namelist Program

• UTref
Time layer of grib-file to be used, Options: 00, 06, 12, 18

• gribfile
Name of input grib-file

• inputmes
Name of input measurement file

• input_stdev_T
Name of input temperature standard deviation file

• input_stdev_Q
Name of input specific humidity standard deviation file

• input_corr_T
Name of input vertical temperature correlation file

• input_corr_T_H
Name of input horizontal temperature correlation file

• input_corr_Q
Name of input vertical specific humidity correlation file

• input_corr_Q_H
Name of input horizontal specific humidity correlation file

• input_corr_Psur
Name of input horizontal surface pressure correlation file
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• output_path
Absolute path to write output files

• input_grib_path
Absolute path to grib files

• input_obs_path
Absolute path to observation files

• input_errors_path
Absolute path error characteristic files

• Switch_background_error_model
Define used background error model, Options: 1, 2, 3 (Standard choice)

• Switch_background_corr_model
Define used background correlation (vertical) model, Options: 1 Gauss like drop off,
2 correlations from input files (Standard choice)

• Switch_filter_response_test
Trigger filter test output, Options: 0 (Standard choice),1

• Filter_pass
Define number of filter passes, Options: 4, 6 (Standard choice)

• Switch_deltaN_Calculation 0 (Standard choice), 1 (use TLM)
• switch_Interpol_operator_ad_test
Trigger test of adjoint interpolation operator, Options: 0 (Standard choice),1

• switch_operator_tlm_test
Trigger test of tangent linear interpolation operator, Options: 0 (Standard choice),1

• switch_operator_ad_test
Trigger test of adjoint observation operator, Options: 0 (Standard choice),1

• gridX
Longitude dimension of background grid , Options: 64, 128 (Standard choice)

• gridY
Latitude dimension of background grid , Options: 21, 64 (Standard choice)

• gridZ
Number of vertical levels of background grid 60 (Standard choice)

• Stdev_Psur
Surface pressure standard deviation 250 Pa (Standard choice)
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• corr_length_N
Correlation lenght for Switch_background_corr_model = 1, 5.0 (Standard choice)

• rel_error_N
Relative standard deviation for Switch_background_error_model = 1, 3.0 (Stan-
dard choice)

• corr_length_Q
Correlation lenght for Switch_background_corr_model = 1, 3.0 (Standard choice)

• rel_error_Psur
Relative standard deviation for Switch_background_error_model = 1, 3.0 (Stan-
dard choice)

• corr_length_Psur
Correlation lenght for Switch_background_corr_model = 1, 3.0 (Standard choice)

• rel_error_Q
Relative standard deviation for Switch_background_error_model = 1, 22.0 (Stan-
dard choice)

• corr_length_T
Correlation lenght for Switch_background_corr_model = 1, 3.0 (Standard choice)

• rel_error_T
Relative standard deviation for Switch_background_error_model = 1, 1.0 (Stan-
dard choice)

• methode 3 (Standard choice), (1,2 Not Operational)
• Nformula
Define formula to calculate refractivit Obsolet

• switch_calc_BH_BV
Devine used correlations Options: 1 vertical & horizonta (Standard choice), 2 only
, 3 only

• termination_criteria
Define termination criteria for minimisation cycle Options 1 defined by max_iteration
(Standard choice), 2 defined by min_cost_diff, 3 defined by max_grad

• mmax
Parameter for minimisation routine 21 (Standard choice)

• max_iteration
Defines maximal number of cost function and gradient evaluations, 20 (Standard
choice for operational use)
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• min_const_unconst
Constrained or unconstrained minimisation Not Operational

• max_grad
Minimal projected gradient to abord minimisation 1.0−10 (Standard choice)

• min_cost_diff
Minimal cost function difference to abord minimisation 10.0 (Standard choice)

• VInterpolation
Choice of vertical interpolation Not Operational

• Switch_Quality
Activate quality check of observations Options 0, 1 Not Operational

• Switch_H_geopot_P
Define vertical coordinate grid Options 1 geometric height (Standard choice), 2
geopotential height, 3 pressure levels (Not Operational)

• Switch_BV_mean_all
Use global mean vertical standard deviations or every single profile Options 1 mean
(Standard choice) , 2 all profiles

• Assim_mod
Defines used assimilation mode, Options: 1 N to N assimilation, 2 N to TQP assim-
ilation

• Switch_recalculate_Zdim
Update vertical grid after every recalculation of background fields Options 0 no
(Standard choice), 1 yes

• Switch_transforms
Turn on/off control space transformations Options 0 on, 1 off Not Operational

• Switch_obs_corr
Define vertical observation covariance model Options: 1 linear model, 2 realistc
model (Standard choice)

• Convergece_Constant
Used for abort condition 1.0D-5 (Standard choice)

• gridZ_start_N
Define first vertical background level 1 (Standard choice)

• gridZ_start_T
Define first vertical background level 1 (Standard choice) Not Operational
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• gridZ_start_Q
Define first vertical background level 1 (Standard choice) Not Operational

• gridZ_start_P
Define first vertical background level 1 (Standard choice) Not Operational

• gridZ_end_N
Define last vertical background level 60 (Standard choice)

• gridZ_end_T
Define last vertical background level 60 (Standard choice) Not Operational

• gridZ_end_Q
Define last vertical background level 60 (Standard choice) Not Operational

• gridZ_end_P
Define last vertical background level 60 (Standard choice) Not Operational

• gridZ_level_P
Define last vertical background surface pressure level 1 (Standard choice)

• corr_levela
To define simple linear correlation model 15.0 (Standard choice)

• corr_levelb
To define simple linear correlation model 60.0 (Standard choice)

• corr_length_o_levela
To define simple linear correlation model 2.0 (Standard choice)

• corr_length_o_levelb
To define simple linear correlation model 1.0 (Standard choice)

• Y_tropo
Relative standard deviation at tropopause height 0.4 (Standard choice for CHAMP
data)

• X_tropo
Tropopause height 15 km (Standard choice for CHAMP data)

• a2
Parameter for observation error covariance calculations 4.4610 (Standard choice for
CHAMP data)

• a4
Scale height for the error increase over the stratosphere 11.9 (Standard choice for
CHAMP data)
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• LevelA_quality
Not Used

• LevelB_quality
Not Used

• LevelC_quality
Not Used

• LevelD_quality
Not Used

• ErrorlevelA_quality
Not Used

• ErrorlevelB_quality
Not Used

• ErrorlevelC_quality
Not Used

• ErrorlevelD_quality
Not Used

• Errorlevel_constant_quality
Not Used

• quality_parameter_mes
Factor to multiply measurement increment in quality check Not Operational

• quality_parameter_bac
Factor to multiply background increment in quality check Not Operational

• LevelA
Height level for linear observation error model, 0.0 (Standard choice)

• LevelB
Height level for linear observation error model, 10.0 (Standard choice)

• LevelC
Height level for linear observation error model, 35.0 (Standard choice)

• LevelD
Height level for linear observation error model, 60.0 (Standard choice)

• ErrorlevelA
Relative standard deviation for linear observation error model, 3.0 (Standard choice)
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• ErrorlevelB
Relative standard deviation for linear observation error model, 0.20 (Standard choice)

• ErrorlevelC
Relative standard deviation for linear observation error model, 0.20 (Standard choice)

• ErrorlevelD
Relative standard deviation for linear observation error model, 3.50 (Standard choice)

• Errorlevel_constant
Relative standard deviation for linear observation error model, 0.20 (Standard choice)

• LOV
Not Used
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E
Program Flow Chart
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Observation Operator H

Measurements

Misfit
(Cost Function)

Background State
First Guess

Adjoint Observation Operator
H_Ad

Gradient of Cost Function

Optimal State Estimate

Minimization Iteration

Updated State

Convergence Test

State

Figure E.1: Principal program flow chart



F
Useful Links

ESA : www.esa.int
ECMWF : www.ecmwf.int
EUMETSAT : www.eumetsat.int
TAPENADE Ad Compiler : www-sop.inria.fr/tropics/tapenade.html
Adjoint Compiler : www.autodiff.org
DMI : www.dmi.dk
MPI Hamburg : www.mpimet.mpg.de
Lexikon der Fernerkundung : www.fe-lexikon.info
WMO : www.wmo.int
Data Assimilation Research Center : darc.nerc.ac.uk
Weather Research and Forecasting
Model

: wrf-model.org

MM5 Assimilation Homepage : www.mmm.ucar.edu/3dvar/
Geospatial Information : earth-info.nga.mil/
CHAMP Homepage : op.gfz-

potsdam.de/champ/index_CHAMP.html
GENESIS : www-genesis.jpl.nasa.gov
Earth Observation Handbook :
Numerical Recipies : www.nr.com
IPCC : www.ipcc.ch/
Ad Copmpiler : www.fastopt.de
JPL Genessis Page : www-genesis.jps.nasa.gov
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