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Abstract

Fourier Integral Operators (FIOs) are used for constructing asymp-
totic solutions of wave problems and for the generalization of the geo-
metrical optics. Geometric optical rays are described by the canonical
Hamilton system, which can be written in different canonical coordi-
nates in the phase space. The theory of FIOs generalizes the formalism
of canonical transforms for solving wave problems. The FIO associ-
ated with a canonical transform maps the wave field to a different
representation. Mapping to the representation of ray impact param-
eter was used in the formulation of the Canonical Transform (CT)
method for processing radio occultation data. The Full-Spectrum In-
version (FSI) method can also be looked at as an FIO associated with
a canonical transform of a different type.

We discuss the general principles of the theory of FIOs and formu-
late a generalization of the CT and FSI techniques. We derive the
FIO that maps radio occultation data measured along the LEO orbit
without first applying back propagation. This operator is used for the
retrieval of refraction angles and atmospheric absorption. We give a
closed derivation of the exact phase function of the FIO obtained in
the 'phase matching’ approach by Jensen et al. We derive a novel F1IO
algorithm denoted CT2, which is a modification and improvement of
FSI. We discuss the use of FIOs for asymptotic direct modeling of
radio occultation data. This direct model is numerically much faster
then the multiple phase screen technique. This is especially useful for
simulating LEO-LEO occultations at frequencies 10-30 GHz.

The multiple phase screens technique is often used for modeling wave
propagation and radio occultation sounding of the atmosphere. The
last step of this procedure is the propagation from the last phase
screen to the observation orbit of the space-borne receiver. This step
was formerly performed by the computation of multiple diffractive in-
tegrals, which impairs the numerical efficiency of the algorithm. We
introduce an asymptotic method of wave propagation in vacuum from



the last phase screen to a generic observation path. The exact solution
is written in the form of the Zverev Transform, which belongs to the
class of Fourier Integral Operators (FIO). The phase function of such
an operator can be derived from the geometric optical equations. We
construct an approximation for the Zverev Transform, utilizing the
linearization of the equation of the geometric optical ray propagation
in the vicinity of a smooth model of the ray structure. This reduces
the corresponding operator to the composition of nonlinear coordinate
transforms, multiplication with reference signals, and a Fourier trans-
form. This allows for the design of a fast numerical algorithm based
on an FFT.

Numerical simulations are performed based on realistic gridded global
fields of meteorological parameters. The new method based on the
Linearized Zverev Transform is compared with the standard combi-
nation of multiple phase screens and diffractive integrals and with the
asymptotic forward modelling for the propagation of centimeter waves
in the atmosphere on limb paths. The simulations demonstrate a high
accuracy and numerical efficiency of the proposed method.

For modeling wave propagation in a turbulent atmosphere we devel-
oped a turbulence model based on the theoretical and experimental
studies. We adopt an anisotropic turbulence model with a power spec-
trum with the exponent that equal -4 for the 2D model (equivalent
to -5 for 3D model). The internal scale equals 15 m, and the external
scale is 100 m. We use constant anisotropy that takes values from 3
to 50. For numerical simulation we generated realizations of random
field with given power spectrum.
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1 Analysis of wave fields by Fourier Integral
Operators and their application for radio
occultations

1.1 Introduction

In this paper we discuss the application of Fourier Integral Operators (FIOs)
for processing radio occultation data. The FIO is a technique for constructing
short-wave asymptotic solutions of wave problems. The simplest short-wave
asymptotic solution is geometric optics (GO) (Kravtsov and Orlov, 1990).
It has the following limitations of the applicability: (1) It cannot describe
details of wave fields with small characteristic scales below the Fresnel zone
size, (2) it does not work on caustics, where the GO amplitude goes to infin-
ity. A generalization of asymptotic GO solution for quantum mechanics and
theory of waves in inhomogeneous media was introduced in two equivalent
forms: (1) the technique of Maslov operators and (2) FIO (Maslov and Fe-
doriuk, 1981; Mishchenko et al., 1990; Hormander, 1985a,b). This technique
significantly reduces the limitation due to Fresnel diffraction. In particular,
the FIO asymptotic solution in a vacuum coincides with the exact solution.

Processing radio occultation data posed the inverse problem: reconstruc-
tion of the GO rays from measurements of wave fields, especially in multipath
zones. The simplest GO approximation, which can only be applied in single-
ray areas, uses the connection between ray direction and Doppler frequency
(Vorob’ev and Krasil’nikova, 1994). The resolution of this approximation is
limited by the Fresnel zone. Analysis of local spatial spectra is a simple tech-
nique that can separate multiple rays. It was applied for processing planetary
occultations (Lindal et al., 1987), and it was also used for the analysis of GPS
radio occultation data for the Earth’s atmosphere, obtained by Microlab-1
and CHAMP satellites (Pavelyev, 1998; Igarashi et al., 2000; Pavelyev et al.,
2002; Gorbunov, 2002b, e.g.). Another direction took origin from the early
work by Marouf et al. (1986), who suggested the back propagation (BP)
technique for the reconstruction of Saturn rings. This technique reduced the
effects of diffraction at a large propagation distance. A very similar Fres-
nel inversion, based on the thin screen approximation, was introduced by
Melbourne et al. (1994) and applied by Mortensen and Hpeg (1998). And
the combination of BP preprocessing with the standard GO inversion, which
does not use the thin screen model, was suggested by Gorbunov and Gurvich
(1998a,b).

The application of Fourier Integral Operators for processing radio oc-
cultations was suggested by Gorbunov (2002a,b) in the framework of the



Canonical Transform (CT) method. The CT method uses back propaga-
tion as the preprocessing tool, which reduces the radio occultation geometry
to a vertical observation line. The CT method uses the phase space with
coordinate y along the vertical line and conjugated momentum 7 (vertical
projection of ray direction vector). In single-ray areas the momentum is
equal to the derivative of the eikonal (optical path) of the wave field. The
back-propagated complex wave field u as a function of vertical coordinate
y is subjected to the Fourier Integral Operator associated with a canonical
transform from (y,n) to (p, ), where p is the ray impact parameter, and the
momentum, &, conjugated with it is equal to the ray direction angle. Under
the assumption that each value of the impact parameter occurs not more
than once, this transform allows for disentangling multiple rays. The phase
of the transformed wave field can then be differentiated with respect to the
impact parameter p giving the ray direction angle &, which is linked to refrac-
tion (bending) angle by simple geometrical relationships. The CT method
provides high accuracy and resolution in the reconstruction of refraction an-
gle profiles. The FIO used in its formulation allows for a fast numerical
implementation on the basis of FFT. The disadvantage of this CT method is
the necessity of BP, which is the most time-consuming part of the numerical
algorithm. However, a very fast implementation of BP can be designed using
a simple geometric optical approximation (S. Sokolovskiy, private communi-
cation). Also, the best implementations of BP using numerical computation
of diffractive integral are reasonably fast.

The Full Spectrum Inversion (FSI) method was recently introduced by
Jensen et al. (2003). The simplest formulation of this method applies to
a radio occultation with a circular geometry (i.e., spherical satellite orbits
in the same vertical plane, spherical Earth and spherically symmetrical at-
mosphere). The Fourier transform is applied to the complete record of the
complex field u(t) as function of observation time ¢ or another parameteri-
zation of the observation trajectory such as satellite-to-satellite angle. For
circular occultation geometry, the derivative of the phase, or the Doppler
frequency w, of the wave field u(t) is proportional to ray impact parameter p.
We can introduce the (multi-valued) dependence w(t), which is by definition
equal to Doppler frequency (or frequencies) of the ray(s) received at time
moment ¢. In multi-path zones, where the dependence w(t) is multi-valued,
it cannot be found by the differentiation of the phase of the wave field u(t).
Unlike w(t), the inverse dependence t(w) is single-valued, if we assume that
each impact parameter and therefore frequency w occurs not more than once.
Using a stationary phase derivation, it can be easily shown that the deriva-
tive of the phase of the Fourier spectrum @(w) equals —t(w). Then, for each
impact parameter p we can find the time ¢ and therefore the positions of the



GPS satellite and low-Earth orbiter (LEO) for which this impact parameter
occurred. This allows for the computation of the corresponding refraction
angle. The advantage of this method is its numerical simplicity. Its disad-
vantage is that it is formulated for circular radio occultation geometry and its
generalization for realistic radio occultations required some approximation.
Gorbunov and Lauritsen (2002) suggested a synthesis of the CT and FSI
methods. They derived a general formula for the FIO applied directly to
radio occultation data measured along a generic LEO trajectory without the
BP procedure. The phase function of the FIO is described by a differential
equation. The equation was approximately solved for a generic occultation
geometry, to first order in a small parameter measuring the deviation from
a circular orbit. It was shown that for a circular occultation geometry this
operator reduces to a Fourier transform. This method was thus a gener-
alization of the FSI technique for generic observation geometry. Recently,
Jensen et al. (2004) obtained the exact expression for the phase function of
the FIO introduced by Gorbunov and Lauritsen (2002). Jensen et al. (2004)
also considered the amplitude function and below we shall use the synthesis
of the approaches used by Jensen et al. (2004) and by Gorbunov (2002a,b).

1.2 Asymptotic Solutions of Wave Problems
1.2.1 Maslov Operator

The technique of Maslov operators was developed for solving the Schrodinger
equation in quantum mechanics and pseudo-differential or parabolic equation
in the theory of waves in inhomogeneous medium. In quantum mechanics,
a particle with momentum p and energy E is described by the plane wave
(r,t) = exp {% (pr — Et)], where h is Planck’s constant. This dictates
3, E = ihg,
. or ot

and the Schrodinger equation, Ev = H(p,r,t)y, where H is the Hamilton
function, which expresses the energy of a particle as function of momentum
and time-spatial coordinates.

Consider now wave propagation in a 2D plane with Cartesian coordinates
x,y, where the axis x is the preferable direction of wave propagation. If
back scattering can be neglected then the wave problem can be reduced to
a pseudo-differential or parabolic equation, where x plays the role of time.
Plane waves have the following form:

u(z,y) = exp [zk (ny ++v1- n%)] , (1)

the form of operators of momentum and energy, p = —ih



where ( 1— 772,77> is the unity direction vector of the plane wave. This

identifies 7 as the momentum conjugated with coordinate y and the Hamil-
ton function for a vacuum equals H = —+/1 —n?. If we describe waves in
a medium with refractive index n(z,y) = 1+ N(z,y), then the Hamilton
function takes the form H(n,y,z) = —y/n? —n?. In multiple phase screen
modeling (Martin, 1992; Gorbunov and Gurvich, 1998a; Sokolovskiy, 2001),
the following approximations are used: (1) pseudo-differential approxima-
tion, H(n,y,z) = —y/1—n?> — N(x,y), and (2) parabolic approximation,

10
H(n,y,z) = —n(y,z) +n*/2. The momentum operator is then 7 = EREW
ROy
and the pseudo-differential equation is written as follows:
10
—— Z = H(t . 2
= Hiy, ) )

This equation describes direct waves propagating in the nearly-x direction. It
can also be derived by the operator factorization of the Helmholtz equation,
which describes both direct and back scattered waves (Martin, 1992). In or-
der to construct a short-wave asymptotic solution of this equation, the wave
field is represented in the form u(x,y) = A(z,y)exp (ik¥(z,y)) (Kravtsov
and Orlov, 1990). If we substitute this into Eq. (2) and expand it with re-
spect to powers of k71, then the high-order terms (k°) produce the Hamilton—

Jacobi equation
ov ov
- _H[Z=

whose characteristic lines (geometric optical rays) are described by the fol-
lowing canonical Hamilton system:

dy_OH dy_ oM "
de  on’ dx Oy’

The phase along a ray is described by the differential equation d¥ = ndy —
H dx. The geometric optical amplitude A(x,y) along a ray with initial con-
dition yo is equal to p(z,y)/+/J(x,y), where J(x,y) = dy(z,yo)/dyo, and
the function ¢ is described by the transport differential equation integrated
along the ray (Mishchenko et al., 1990). For our approximate Hamilton
functions, ¢ = const along each ray, which means that energy defined as
E(z) = [|u(z,y)’ dy is conserved. The functions ¢ and J are defined on
the ray manifold, and in multipath areas ¢(x,y) and J(x,y) are multi-valued.
On caustics, where J(z,y) = 0, the geometric optical amplitude goes to in-
finity and this solution does not work. Each ray is characterized by the
coordinates (y,n) in the cross-section of the phase space related to some x.

8



Figure 1 shows an example of a ray manifold in the phase space. At point y,
there are three rays, and for each of them J,(y) # 0, therefore the wave field
can be found as a superposition of three wave fields in the GO approximation.
At point y; there is a caustic (y1,7,(y1)), where two rays are degenerated into
one and J(z) = 0, and there is also a ray (y1,75(v1)), where J(x) # 0.

In order to find the form of the asymptotic solution that works on caustics,
we consider the Fourier transform of the wave field (momentum representa-

tion):
w(x,n) = Fy_pu =1/ ;—:f /u(x,y) exp (—ikyn) dy. (5)

We can also represent the transformed wave field in the form u(z,n) =
A'(z,n) exp (ikW'(x,n)). It can be found asymptotically using the stationary
phase method (Born and Wolf, 1964). If ys(x,n) is the stationary phase
point of the Fourier integral, then we have the following relationships:

Ven) = We,ylem) = e+ 5. (6

oV (z,y) -
8y ys(x,m) -7 (7)
oiwm) _ Oulz,m) ( n) o) =~y ), (8

on on
A(x7 yS( A(x7y5(x777

Awn) = Aoy |5
Vi 8y2 ‘

where v = +x/4, and n,(z,y) is the solution of the equation y = y,(x,n).
The term v/k in the eikonal asymptotically vanishes and it will be neglected.
Equation (7) follows from the fact that at a stationary point the derivative
of the phase of the integrand equals zero, and it shows that the stationary
point ys(x,n) belongs to the ray manifold. Equation (8) indicates that if we
use momentum as the new coordinate 3y’ = n and transform the wave field
to the momentum representation, then the conjugated momentum is equal
to n’ = —y. We can also introduce the new Hamilton function H'(1/,y’) =
H(y',—n') and rewrite the canonical Hamilton system for rays in exactly the
same form:

dy’  OH' dnf  OH'
de Oy’ dx Oy
From equation (6) we can also derive the equation for the eikonal d¥’ =
—ydn—H dx =n' dy — H' dz, and therefore we can also write the Hamilton—

Jacobi equation for U’ in the coordinates (y',n") with Hamilton function H'.

9



From equation (9) we infer energy conservation when transforming to the
momentum representation: A2dn = A%dy (this also explains the choice of
the normalizing factor of (—ik/27)'/? in the Fourier transform). Using this
fact and conservation of energy along the rays mentioned above, we can infer
that the wave problem can be formulated in the same way in the momentum
representation, i.e.,

———u=H(#,y, 2)u, (10)

and the asymptotic solution will have the form @(z, n) = exp (ikV'(z,n)) ¢’ (x,n)/\/J' (x,n),
where J'(z,n) = dn(x,ny)/dny and ¢'(x,1) = ¢(z, y(z,n)), where 1y = yj is
the initial momentum (or new coordinate) of the ray.
This results in the following construction of the Maslov operator K (in
Russian literature also referred to as the canonical operator). Given ray
manifold and a normalized amplitude ¢ defined on the ray manifold the
asymptotic solution K¢ is equal to the following expression:

exp (ik¥(z,y)) o(z,y) if J 0
. TR
e JUA G G T,
n—y J'(z,n)

(11)

where Fn__l,y is the inverse Fourier transform.

Consider the ray manifold in Figure 1. At the point y; the solution
will be the sum of two components, which we denote by the points of the
ray manifold: (1) component from (y1,7,(y1)) belongs to a caustic and it
must be computed in the n-representation and Fourier-transformed to the y-
representation; and (2) component from (y1,7,(y1)) can only be computed in
the y-representation, because it belongs to a caustic in the n-representation.
At the point y, there are three components, and the first one (yz, 1, (y2)) must
be computed in the y-representation, while the other two allow for both y

and 7-representations.

1.2.2 Fourier Integral Operators

Fourier Integral Operators arise when the Maslov operator is used for the
derivation of the Green function of a wave propagation problem. The asymp-
totic solution in FIO form is based on the GO ray configuration, which
defines the kernel of the FIO transforming the GO solution to a more ac-
curate asymptotic solution. Given initial condition uy = u(0,y), we will
find the solution wu(x, z), where we introduce another notation z for the ver-
tical coordinate for the propagated wave (a duplicate of the y-coordinate),

10



because in the further consideration it will be necessary to consider z a dif-
ferent coordinate in a different space. We use the plane wave expansion
Vik/2m [ a(0,n)exp(ikyn)dn and for each plane wave the asymptotic solu-
tion can be found in the form [K ] (x, z,7). Then the solution can be written
in the following form:

w2 =\ [ 1] om0 myy (12)

This is the general definition of the FIO (Mishchenko et al., 1990). If the
propagation of each plane wave can be described in coordinate representation,
then the corresponding FIO can be written in the following form:

u(x,z) = dyup = \/%/al(x, z,n) exp(ikSi(x, z,n))a(0,n)dn. (13)

If propagation of each plane wave can be described in momentum represen-
tation then it is convenient to expand the wave field using the plane waves
ik /2w (0, —n) exp(—ikyn). After substituting it into the momentum form
of the Maslov operator and cancelling direct and inverse Fourier transforms,
the corresponding FIO will take the following form:

u(z, z) = Doug = \/ _Q—jf/ag(:v, z,y) exp(ikSz(x, z,y))u(0, y)dy. (14)

Here, a;2 and S; o are termed amplitude and phase functions of the FIOs,
respectively. In the following we will refer to ®; and ®, as to FIOs of type
1 (FIO1) and type 2 (FIO2), respectively. We can introduce momenta 7
and ¢ for ingoing and outgoing waves, respectively. Then equations for geo-
metric optical rays can be written in the form z = z(y,n),¢ = £(y,n). For
the phase functions we can write the following geometric optical equations:
Si(z,z,m) = yn + 1(z, z,m) and Ss(z, z,y) = Xa(x, 2,y), where 3 5 is the
phase path along the ray between the points (0,y) and (z, z), and yn is the
phase of the incident plane wave. Because wave fronts are normal to geomet-
ric optical rays, we can write the differential equation d¥,, = {dz — ndy.
Thus, we have the following differential equations for the phase functions
(note, x is fixed):

dS; = &dz+ydn, (15)
dSy; = &dz—ndy. (16)

The derivation of the amplitude functions a; » uses the energy conservation
in geometric optics. For the first type of FIO (13) we consider the stationary

11



phase approximation:

(x,z,m)A'(0,n) exp [ik (S1(z, z,n) + ¥'(0,n))]

8251 (v,2,m)  9*V'(0,m)
on?

where n(z, z) is the stationary phase point determined by the equation:

951(z, 2, n) ov'(0,n)
on on

Dyup =

n=n(z,z)

~0. (18)

n=n(z,z)

Energy conservation dictates that

|CL1 (.CC, Z, 77)"4,(07 77)|2
_8251(1" Z, 77) . 82\1}1(07 77)
on? on?

dz = |A'(0,n(, 2))* [dn(, z)| . (19)

n=n(z,z)

Here we also used the conservation of energy in the Fourier transform A"2dn =
A%dy, which follows from Eq. (9). This indicates that the amplitude function
must be equal to the following expression:

6231 (ZE, 2 77) o 82\11/(07 77)

dn(z, 2)
on? on? '

dz

|CL1(ZL‘,Z,77)|2: - (20)

n=n(,z)
Differentiating equation (18) with respect to z results in the following equa-
tion:
8281 (l’, <, 77) + 82\11,<07 77)
on? on?

dn<$7 Z) _ _a2sl(xa 2, 77)

dz on oz

n=n(z,z)

(21)
Replacing n with y, we can repeat the same derivation for the second type of
FIO. Finally, we have the following expressions for the amplitude functions:

0251 (x, 2
al('rvzvn> = \/‘ 5287} n ) (22)

0%25,(z, 2
as(z, z,y) = \/‘ 5zay Y) _ (23)

These expressions can also be derived from the requirement that P* = (iD_l,
where ®* is the conjugated operator (Egorov, 1985), which is equivalent to
energy conservation.

n=n(z,z)

12



1.2.3 Canonical Transforms

Now we will discuss the connection between FIOs and canonical transforms.
Consider the phase space with coordinate y and momentum 7 and assume
that the dynamics is described by the Hamilton function H(n,y). We can
parameterize the same phase space by another coordinate z and momentum
¢ and define a new Hamilton function H'(z,§) in such a way that

dS; = &dz+ydnp— (H' — H)dz, (24)
dSy = &dz—ndy— (H — H)dx. (25)

Then the same dynamics can also be described in the new coordinates with
the new Hamilton function. This type of coordinate transform in the phase
space is termed a canonical transform, with S;(z, z,1) and Sy(z, z,y) being
different types of its generating functions (Arnold, 1978). The geometric
optical solution of a wave problem can be written in different canonical co-
ordinates. We can also ask: is it possible to reformulate the wave problem
in the new phase space with the new Hamilton operator? This question was
first studied by Egorov (1985); Egorov et al. (1999), who showed that the
FIO of the first type maps the wave field to the new representation. Be-
low we show that the FIO of the second type can also be used for the same
purpose. We will derive the formula for the commutation of a FIO of the
second type and a pseudo-differential operator P(7),y), which is defined as
follows P(7), y)u = F;1, [P(n,y)u(n)], where P(n,y) is termed the symbol

of the operator. We can write ®,P(7),y) = Q(&, z)®y, where Q(E, 2) is the
representation of operator P(),y) in the new coordinates and £ = —— is

the new momentum operator. First, we compute QDQP(U, y)u as follows:

N R ke )
8Pl =5 [ ax(e. ) explSa(e, 29) %

%//P(n,y) exp(ik(y — §)n)u(y) dj dn dy =

5
= ﬁ/%//la(n,y)exp [ik(y—ﬂ) (n+%—%)] dy dnx

X as(x, z,y) exp(ikSe(z, z,9))u(y) dy =

\/>/ ( i _) az(x, 2, g) exp(ikSs(x, 2, 9))u(y) dy.  (26)

Here we used the asymptotic formula: (k/27) [ [ f(y,n)exp(ikyn) dy dn =
£(0,0) (Egorov, 1985; Egorov et al., 1999), which can be easily derived by

13



Tailor expansion of f(y,n). Next, the operator Q(é, z)<i)2 can be evaluated
as follows:

£, 2)Pou = \/% / Q (%,z) as(x, z,y) exp(ikSa(z, z,y))uly) dy. (27)

From this we obtain that P (—%, y) =Q <%, z) . Our consideration is
Yy z

similar to that given by Egorov (1985), who proved that for FIOs of the first
08 0S8 dSy 08 oS
type: Q(a_zlaz) = P(na 2 2 - .

8_771) Because _8_3/ =M=, 5, =
we see that in both cases it follows that Q(&, z) = P(n(¢, 2), y(&, )) If we
redefine (pseudo-) differential operators in the representation of the new coor-
dinate z and momentum £ (this transform mixes coordinates and conjugated
differential operators), then the wave function in this representation equals
<i>1,gu. The wave equation can then be rewritten in the new coordinates as
follows:

7

p 2 10 ; 0519 ¢ - 10
H'(E, 2, 2)P10u = —E%@mu = - 6;2@1,2U + ®q (__k% ) =
a512

= o7 q)1 2U+q)1 2H (N, y, v)u = —

20y sut-H(n(€, 2),y(E, 2), 2)®1 pu.
(28)

From this we obtain that, in agreement with Eqs. (24)-(25): H' = —0512/0x+
H. Therefore the technique of FIO generalizes the technique of Maslov op-
erators. Maslov operators use a special canonical transform (z =, £ = —y;
m/2-rotation of phase plane), while FIOs are associated with a wide class
of canonical transforms. This has a big advantage, because it may allow for
writing the global solution of a wave problem in a situation where the Maslov
operator would require sewing together local solutions in order to obtain a
global solution. Another important advantage is that FIOs can be used for
solving inverse problem of reconstruction of the ray structure of wave fields.

1.3 Processing Radio Occultations
1.3.1 Canonical Transform without Back Propagation

We will now consider the complex field u(y) = A(y) exp (ik¥(y)) recorded
along the observation trajectory parameterized with some coordinate y, which
can be e.g. time, arc length, or satellite-to-satellite angle 6 (Jensen et al.,

2003). For circular satellite orbits, and choosing y = , we obtain U = ph = p,

14



where p is the ray impact parameter. Here and in the following the dot de-
notes a full derivative with respect to the trajectory parameter y. In the
momentum representation, the wave function is u(p) = A'(p) exp(ik¥'(p)),
and the derivative of its eikonal dV’'(p)/dp is equal to satellite-to-satellite
angle 04(p) of the trajectory point, where the ray with impact parameter p
was observed (Jensen et al., 2003).

For generic, non-circular orbits, Gorbunov and Lauritsen (2002) suggested
processing radio occultation data by a generic Fourier integral operator (14)
of the second type. Below we present the derivation of its amplitude function
as(p,y) and phase function Sy(p,y). The expression for the phase function
was first obtained by Jensen et al. (2004). From Eq. (25) it follows that

8SQ (p7 y)
dy
where 7(p, y) is equal to the derivative of the eikonal of the geometric optical
ray with given impact parameter p observed at the trajectory point y. If
y is chosen to be equal to the time t, then n = —Aw/k, where Aw is the
Doppler frequency shift (we assume the time dependence of the wave field in
the form A(y)exp (kW (y) —iwt)). The function n(p,y) is computed using
the geometrical optics. This equation will be used for the definition of the
phase function Sy (p, y).
The derivative of the eikonal of the transformed wave field é)gu(p) is
evaluated as follows:

ov'(p) _ 05 (p,y)
dp dp

= —n(p,y), (29)

= £(p,ys(p))- (30)
y=ys(p)
Thus, equation (25) has a very simple interpretation: We probe some value of
impact parameter p and integrate the expression exp(ikSs(p,y) + kW (y))).
Because k0Sy/0y equals the Doppler frequency —kn(p,y) for the ray at a
given trajectory point y with given impact parameter p, the oscillating kernel
exp(ikSs(p, y)) locates geometric optical rays, which correspond to stationary
phase points of the integral operator. At a stationary phase point, the term
—k [ ndy in the phase of the kernel is reduced by the term k¥ in the phase
of the wave field. The remaining term & [ £ dp in the phase determines the
derivative £ of the phase of the transformed wave field.

1.3.2 Phase Function

The phase function can be derived using equation (29). We will use the
following expression for the derivative of the phase path:

. . ra Ty,
U =n(p,y) =pd+—\/r& —p*+ —\/1] — P (31)
e rp
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where r¢ and rp, are GPS and LEO (or, generally, transmitter and receiver)
satellite radii. Here and in the following, rg, r1, and 6 are functions of the
trajectory parameter y. The expression for the phase function (Jensen et al.,
2004) can then be found by integrating n(p,y) over y for a fixed value of
impact parameter p:

) TG L
Sapy) = —/(p9+gx/ré—p2+5\/r%—p2> dy =
d d
= —/(pdﬁ—i-ﬁ\/'ré—pQ%—ﬂ\/r%—pQ) =
ra rrL
= —pG—\/ré—p2+parcc08£—\/r%—p2+parccos£(,32)
re rL

where one can add an arbitrary function f(p), which we take to equal 0.
Refraction angle can be expressed as a function of trajectory parameter y,
which defines the satellite positions, and impact parameter p, which defines
the directions of emerging and incident rays:

€(p,y) = 0 — arccos L arccos L. (33)
re L
Then we can express the derivative of the eikonal of the transformed wave
field as follows (Jensen et al., 2004):

&(p,y) = —0 + arccos P arccos £ = —e(p,y). (34)
ra rL

For the reconstruction of the refraction angle profile from the measurements
of the wave field along the orbit we apply the FIO2 operator (14), which
produces a function ®ou(p) = A'(p)exp(ik¥’(p)) of impact parameter p.
The derivative of its eikonal W'(p) with a negative sign is then equal to the
refraction angle € = €(p, ys(p)), where ys(p) is the coordinate of the trajectory
point, where the ray with impact parameter p was observed (ys(p) is the
stationary point of oscillating integral (14)).

For a circular occultation geometry (rg = const, r, = const, # = const)
the phase function reads Ss(p,y) = —p# + F(p), and the FIO is reduced to
the Fourier transform. In the FSI method, the phase function Sy(p,y) is
equal to —pf. The derivative of the phase is then equal to —6, and refraction
angle can be found as function of # and p using equation (33) (e = 6+ F'(p)).

From the consideration of the oscillating kernel exp(ikSs(p,y)), the fol-
lowing relationship can be inferred:

Sa(p.s(p)) = —T(p) + / () dy. (35)

p
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This relationship can also be derived directly by computing phase path
U(p) = [nds, where the integral is taken along the ray with impact pa-
rameter p in a spherically-layered medium with refractive index n(r).

1.3.3 Amplitude Function

The amplitude function as(p, y) of the FIO does not play any role in the com-
putation of refraction angles. For example, we could set as(p,y) = 1. How-
ever, the correct definition of the amplitude of the transformed wave field
is necessary for the retrieval of atmospheric absorption (Gorbunov, 2002a;
Jensen et al., 2004) (also M. S. Lohmann, A. S. Jensen, H.-H. Benzon, A.
S. Nielsen, Computation of atmospheric absorption by the FSI technique,
manuscript in preparation, 2003). Gorbunov (2002a) discussed the possi-
bility of retrieving the atmospheric absorption from the amplitude of the
transformed wave field in the framework of the standard CT method and it
was shown that in the absense of absorption the CT amplitude is very close
to a constant. Indeed, the CT amplitude describes the distribution of energy
with respect to impact parameters. The transmitted energy is homogeneously
distributed over spatial transmission angle. For an immovable transmitter
and 2D case the CT amplitude is proportional to (dv/ dp)l/ 2 where Ve is
the angle between outgoing ray and GPS radius. For GPS-LEO occultations,
where the distance from the transmitter to the planet limb is big, it is a good
approximation to assume a homogeneous distribution of transmitted energy
with respect to impact parameters. For LEO-LEO occultations, the accuracy
of this approximation is worse. Jensen et al. (2004) discussed normalizing
the amplitude to the distribution of the transmitted energy with respect to
impact parameters. Our consideration follows that given by Jensen et al.
(2004) with some generalizations and refinements: we consider both 2D and
3D cases, use more accurate derivation of the amplitude and parameterize
trajectory with coordinate y instead of 6.

For the derivation of the amplitude function as(p,y), we use energy con-
servation. We can write an equation similar to Eq. (19) for the coordinate
y, amplitude A, eikonal ¥, and amplitude function ay. For Cartesian coor-
dinate y, we defined infinitesimal element of energy as |u(z, y)|2 dy. For a
generic coordinate y, we must introduce a measure g and replace dy with
pdy. The measure will be used in the local formulation of energy conserva-
tion and will be understood as a function u(p,y). Using the expression (32)
for the phase function derived above we arrive at the following expression for
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the amplitude function:

. . 1/2
ws(p.y) = N8252(p,y)‘zu hy_Te p T p
| oy SVE P TP
(36)

For the definition of the measure p we consider the energy conserva-
tion in geometrical optics. We consider an infinitesimal ray tube for given
satellite positions. The amplitude A is defined by the requirement that
dEr = A%costdS = dE7, where dER is the energy received in the aper-
ture dS, 1 is the angle between the ray tube and the normal to the aperture,
dE7 is the transmitted energy inside the ray tube. Because the GO amplitude
A only depends on rg, 71, and 6, rather than on satellite velocities, we can
consider any virtual receiving aperture. If it is chosen to be an infinitesimal
element of the sphere (r ¢ = const), then we can write the distribution of
transmitted and received energy, Er and Eg, respectively (Eshleman et al.,
1980; Jensen et al., 2003, 2004) (also S. Leroy, Amplitude of an Occultation
Signal in Three Dimensions, unpublished manuscript, 2001).

P 1 P 1 1 d
dEr = —de{—smdegb} {_pa p } PG 4457
2m 2 3D 3D

_277'1/7"20—})20 2rg dp

1
dEr = AQrLcos¢L{§rLsin0d¢} 00 =
3D

1
= A% /rl —p2 {§TL sin 9dgb} 5—Zdy, (38)

where terms is curly brackets {...};, relate to the 3D case, P is the trans-
mitter power, ¢ is the angle of rotation around the axis from the curvature
center to the transmitter, ¢ ; = arcsin(p/ry) are the angles between the
ray and satellite radii at the transmitter and receiver, pg, = rpgsinyy o
are impact parameters at transmitter and receiver, A is the geometric optical
amplitude of a received ray, and §6 is the virtual variation of the satellite-to-
satellite angle along the sphere (7 ¢ = const). For a spherically symmetrical
atmosphere pg = p, for a non-spherical atmosphere p is computed from
the Doppler frequency shift (Vorob’ev and Krasil’'nikova, 1994), and there-
fore p is a function of pg and py. Because v, is the angle between a ray
and the normal to the virtual circular orbit (rather than the real satellite
orbit) it should be used in combination with the virtual infinitesimal element
of the sphere 06 (cf. the use of df computed along the real trajectory by
Jensen et al. (2003)). This allows for the definition of the measure such that

18



(P/2m)dp = A%udy (under the assumption of spherical symmetry):

TLTG . 00
= \/TL p\/ { st}gD@. (39)

For the definition of the virtual variation d0 we can write:

50 = do— (89) er—<%) dry = dg— e _dn
p p

p
orr, G \TE T \/r%—pf
(40)

where we used equation (33). Finally, we can write the following expression
for the amplitude function:

o= (T {120 })

(9‘ e ﬁ)

1.3.4 Representation of Approximate Impact Parameter

The FIO defined by the phase and amplitude functions (32) and (41), re-
spectively, solves the problem of the extraction of refraction angles from
measurements of the complex field along a satellite trajectory, directly with-
out back propagation. However, this operator cannot be implemented as
a Fourier transform and therefore its numerical implementation, especially
for high frequencies such as 10-30 GHz, is slow. Here we shall describe an
approximation that allows for writing the FIO2 operator in the form of a
Fourier transform.

Consider the measured complex field u(t) = A(t) exp(ikW(t)) and corre-
sponding momentum o = d¥/dt. We use a FIO associated with the canonical
transform from the (¢, o) to the (p, &)-representation. The impact parameter
p is a function of t,0: p = p(t,0). Instead of exact impact parameter we
introduce its approximation p:

B(t0) = molt) + 2 (o~ ou(t)) = £(1) + o,
£ = molt) ~ o), (42)

where 0(t) is a smooth model of Doppler frequency, po(t) = p(oo(t),t), and
Opo/00 = 0p/00|g=0q)- We compute o(t) by differentiation of the eikonal
with a strong smoothing over approximately 2 s time interval. We now pa-
rameterize the trajectory with the coordinate Y = Y'(¢), where we use the
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notation Y in order to distinguish between this specific choice of the trajec-
tory coordinate and the generic coordinate y. For brevity we use the notation
u(Y') instead of u(¢(Y")). For the coordinate Y and the corresponding mo-
mentum 7 we use the following definitions:

y = (%> dt = aadt

Oo (9 'Po
Ipo
= 43
U g (43)
Then, we can write the following linear canonical transform:
p = fY)+n,
{ = Y, (44)

where we use the notation f(Y') instead of f(¢(Y')). The generating function
of this canonical transform is easily computed from the differential equation

dSy = Edp—ndY = ~Y dj — (5 — f(V))dY
So(p,Y) = —pY + /f(Y’) dy’. (45)

Using equation (31) we can find do/0p and therefore dY:
dra  po dr, — po

So we can approximately write 660/dY ~ 1. An accurate expression can be
easily derived using Eq. (40), but we do not use it, because the accuracy of the

above approximation is sufficient. Because |02S,/9pdY| = 1, the amplitude
function (36) equals /i and it can be written as follows:

alp¥) = (yfri = i { P 6})/ (47)

The amplitude function as(p, Y) in the FIO can be replaced with as(p, Ys(p))
and factored out from within the integral. The resulting operator can be
written as the composition of adding a model, ik f f(Y)dY, to the phase,
the Fourier transform, and an amplitude factor:

Dyu(p) = \/;—jf:aQ(ﬁ,Ys(ﬁ))/exp(—ikﬁY) exp zk/f(Y’) dY' | u(Y)dy.

(48)

dY = df — ~ 8. (46)
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The function Y;(p) equals —&, where the momentum ¢ is the derivative of the
eikonal of the integral term in (48). This operator maps the wave field to the
representation of the approximate impact parameter p. Using equation (42),
the exact value of o and therefore impact parameter p(o,t) can be found
from p, as a function p(p). Practically, however, the difference between exact
and approximate impact parameters, p and p, is small and can be neglected.

The introduced FIO2 mapping (48) generalizes the FSI method (Jensen
et al., 2003): FSI uses a composition of a phase model with Fourier transform
with respect to angle . Our definition of the coordinate Y takes into account
the generic occultation geometry (and for circular orbits Y = 6). We also
use a more accurate derivation of the amplitude function a,. We shall refer
to this CT inversion technique based on the FIO of the second type as the
CT2 algorithm.

1.4 Direct Modeling

Fourier integral operators can also be used for asymptotic direct model-
ing (Gorbunov, 2003). The FIOs ®,, with amplitude functions (22) and
(23) can be easily inverted: 6131_5 = @{2 For example, ®;! is a FIO2
with phase function S5(y,p) = —S2(p,y) and amplitude function ai(y,p) =
as(p,y). If the amplitude function equals ay = (p 8252/8]58y)1/2, then the
inverse operator can be approximately written with amplitude function a3 =
(u=19%S,/ apay)l/ ? because i is a slowly-changing function (the amplitude
function at the stationary point can be factored out and the pu and p~! in
the composition of the direct and inverse transform will cancel).

If we use the representation of approximate impact parameter p, then
the direct model is especially efficient. Given a 3D atmospheric model,
we first perform geometric optical modeling, and iteratively find the tra-
jectory point Y;(p), where the ray with the impact parameter p(p) is ob-
served. The wave function in the p-representation is then equal to w(p) =
A'(p) exp (—z’k S Ys(ﬁ)dﬁ), where the amplitude A’(p) equals a normalizing
constant in the light zone and 0 in the geometric optical shadow. This func-
tion is then mapped into the Y-representation by the inverse FIO2:

) = [y [y | [ estpy) as(v.(). 5wk

1 4 1/2

o Pa PG

. _ ‘ ¢ ’ 50
) (\/r% —PiNTE — DG {TLTGSIHG}SD dp ) "
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where p; and pg are functions of p computed for given atmosphere and
satellite trajectories. For modeling atmospheric absorption, the amplitude
A'(p) must also be multiplied by a factor of exp (—k [ n” ds), where n” is the
imaginary part of refractive index, and the integral is taken along the ray
with the impact parameter p(p).

This technique of direct modeling has the following limitation of applica-
bility: the approximate impact parameter p must be an unique coordinate
of the ray manifold. Another restriction of the asymptotic technique (for
both inverse and direct modeling) is that diffraction inside the atmosphere
is neglected (Gorbunov et al., 2004).

Gorbunov (2003) discussed the inversion of the standard BP+CT com-
position based on the FIO of the first type for direct modeling. The wave
function in the p-representation equals w(p) = A’(p) exp (zk [¢ (p)dp), where
¢ is the geometric optical momentum, and the amplitude for the 2D case and
immovable transmitter was taken to equal Ag (dv/ dp)l/ ?_ so that A%dp is
the infinetsimal element of transmitted energy. Then, éflw is equal to the
wave field along a vertical line, and it can be forward-propagated to the LEO
orbit using the diffractive integral. The draw-backs of this algorithm are (1)
the necessity of the forward propagation, which may be time-consuming for
high frequencies and (2) the modeling of immovable transmitter only. The
technique based on <i>2_ ! suggested in this paper, is free from these disadvan-
tages: it requires only one FFT, which is much faster than the computation
of diffractive integrals, and it allows for modeling simultaneous movement of
the transmitter and receiver, which is important for LEO-LEO occultations.

Simulation of moving transmitter and receiver was also discussed by
Mortensen et al. (1999), who used an approximation based on the composi-
tion of geometrical optics and the thin screen approximation. However, their
technique proved extremely time-consuming (for each sample of simulated
data, it requires geometric optical propagation from transmitter and receiver
to points of an intermediate thin screen and computation of one diffractive
integral). Besides, it only works above 4 km (Mortensen et al., 1999).

1.5 Numerical Simulations

Here, we compare the performance of the CT2 inversion technique intro-
duced above and the standard composition of BP and CT techniques. For
this purpose, we modelled a spherically symmetric atmosphere using a high-
resolution tropical radio sonde profile of refractivity. We simulated radio oc-
cultation signals using multiple phase screens (MPS) for the standard GPS
frequencies. The occultation model included an immovable transmitter and
a receiver moving along a circular orbit. The MPS simulation followed the
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scheme described e.g. by Gorbunov and Gurvich (1998a); Sokolovskiy (2001):
the signal is propagated through the atmosphere using parallel phase screens,
and from the last phase screen to the satellite orbit it is propagated using the
diffractive integral. We used 2D formulas for the amplitude. The screen-to-
screen step was 5 km, and the integration step for geometric optical modeling
was 2.5 km. The simulated radio occultation signals were processed by the
two inversion algorithms and the results of the reconstruction of refraction
angle profile were compared with the exact geometric optical solution. The
comparison presented in Figure 2 indicates a very good agreement between
both inversion algorithms and the geometric optical solution. All the differ-
ences are in small scales below 50 m, which cannot be effectively resolved
for the GPS frequencies, due to diffraction inside the atmosphere (Gorbunov
et al., 2004).

For the validation of the asymptotic direct modeling we performed numer-
ical simulations with a simple spherically-symmetrical phantom (exponential
model with a quasi-periodical perturbation):

n(z) = 1+ Nyexp (—%) {1 + acos (27%2) exp (—2—22)} . (51)

where z is the height above the Earth’s surface, Ny = 300 x 1079 is the char-
acteristic refractivity at the Earth’s surface (300 N-units), H = 7.5 km is
the characteristic vertical scale of refractivity field, o = 0.003 is the relative
magnitude of the perturbation, ~ = 0.3 km is the period of the perturbation,
L = 3.0 km is the characteristic height of the perturbation area. This phan-
tom was smoothly sombined with the MSIS climatological model above 20
km.

We simulated radio occultation signals using MPS and the asymptotic
solution for the frequency 9.7 GHz, which is intended to be used in LEO-LEO
occultations. The results of the comparison of the amplitude of the simulated
wave field for these two modeling techniques are presented in Figure 3. The
peculiarity of the amplitude around 28.5 s is due to the transfer from MSIS to
the test phantom. Between 40 and 47.5 s the amplitude indicates large-scale
oscillations reproducing the oscillations of the refractivity profile. In this
area there is no multipath propagation. After 47.5 s we notice increasing
small-scale scintillations due to emergency of multipath propagation. The
occultation fragment from 57 to 59 s with strong multipath scintillations is
enlarged and shown separately. Figure 3 illustrates a good agreement of both
these simulation techniques.

The asymptotic modeling is significantly faster than MPS modeling. One
run of the asymptotic propagator took 4 minutes, while the MPS modeling
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took 2 hours on a system based on a Pentium-III processor (1 GHz). For mul-
tiple channels, the computational time for MPS simulations is proportional
to the number of channels. In the asymptotic propagator, the most time-
consuming part is the geometric optical modeling, which is common for all
the channels. The computation of an FFT with 22! = 2097152 points, which
is required for the simulation of a 22.6 GHz channel, takes 3 s. Therefore,
when simulating 3 channels, the asymptotic propagator will take approxi-
mately the same time, 4 minutes, while an MPS simulation will require 6
hours.

Figure 4 shows the geometric optical refraction angle profile and the re-
sults of the inversion of the simulated data. We present four combinations of
the two simulation techniques: (1) the FIO asymptotic solution and (2) mul-
tiple phase screens; and the two inversion techniques: (1) CT2 and (2) the
standard combination of BP and CT. This Figure shows good agreement be-
tween the GO solution and the retrieved refractivity profile. The strongest
deviations of retrieved refraction angles from the reference GO profile are
observed for processing MPS simulations in the lowest 200 m. This can be
accounted for by the diffraction on the Earth’s surface.
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2 Conclusions on utility of Fourier Integral
Operators for RO

FIOs are a very efficient means of analysis of wave fields. These operators de-
scribe short-wave asymptotic solutions of wave equations. Furthermore, these
operators are linked to canonical transforms because the dynamics of geo-
metric optical rays is also described by a canonical transform. The canonical
Hamilton system describing geometric optical rays can be written in differ-
ent canonical coordinates (coordinate and momentum). Because momentum
is associated with a differential operator, a canonical transform can also be
understood as a transform of the Hamilton operator of the wave problem.

The FIO associated with the canonical transform maps the wave field to
the representation of the new canonical coordinates, and the wave equation
can be asymptotically rewritten in the new representation. This makes this
technique valuable for the inverse problem of the reconstruction of the ray
manifold of a wave problem. Using impact parameter as a new coordinate,
it is possible to map the wave function into the impact parameter represen-
tation. If impact parameter is a unique coordinate in the ray space, then in
this representation there is no multipath and the momentum is equal to the
derivative of the eikonal. The momentum is a function of ray direction or
refraction angle. Previously, the technique of FIOs was applied in the compo-
sition with back propagation. However, it is possible to apply FIOs directly
to radio occultation data measured along the LEO orbit, without BP. This
technique allows for a very effective numerical implementation based on a
single Fourier transform (CT2).

Another application of FIOs is the direct modeling. The asymptotic solu-
tion of the direct problem uses the mapping of the geometric optical solution
in the impact parameter representation to the standard coordinate represen-
tation. The method based on the inverse CT2 is very efficient numerically
because it can be implemented as the composition of the geometric optical
solution and a single Fourier transform. This is important for direct model-
ing and processing radio occultation data at high frequencies (10-30 GHz),
where the computation of diffractive integrals may be numerically very slow.
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3 Asymptotic methods of modeling the prop-
agation of centimeter waves in the atmo-
sphere on limb paths

3.1 Introduction

Radio occultation (RO) data obtained by sounding of the Earth’s atmosphere
by signals of global navigation satellite systems have a large potential for ap-
plications in numerical weather prediction and tracking of global climate
change (Hajj et al., 2002). The optimal utilization of RO data is achieved
by applying the most advanced data processing methods (Gorbunov, 2002a;
Jensen et al., 2003, 2004; Gorbunov and Lauritsen, 2004; Hocke et al., 1999;
Igarashi et al., 2000). The development of advanced data processing algo-
rithms always requires testing their capabilities on artificial data. Therefore,
it is essential to have both accurate and efficient techniques for generating
such data. Besides, realistic artificial data are necessary for ground-based
tests of receivers intended for RO measurements. Artificial RO data are gen-
erated from global gridded fields of meteorological parameters and satellite
trajectories by modeling the propagation of radio waves in the atmosphere.
From the fields of meteorological parameters, a gridded refractive index field
is computed, which is then interpolated.

Modeling of the wave propagation in the atmosphere is usually performed
by the multiple phase screens (MPS) method (Martin, 1992). However, if
the model field of the atmospheric meteorological parameters does not in-
clude small-scale inhomogeneities, the modeling can be performed by using
asymptotic solutions based on the theory of Maslov operators or Fourier In-
tegral Operators (FI10) (Maslov and Fedoriuk, 1981; Mishchenko et al., 1990;
Egorov et al., 1999). This approach allows for the design of fast algorithms
for modeling wave propagation in the atmosphere. The asymptotic algorithm
uses the geometric optical solution for bending angles which is transformed
by an FIO into the time-dependent wave optical solution. (Gorbunov, 2003;
Gorbunov and Lauritsen, 2004) derived explicit formulas for the operator
and constructed an approximation that allows to reduce the operator to a
composition of nonlinear coordinate transforms, multiplication with refer-
ence signals, and Fourier transforms. The approximation utilizes a canonical
transform linearized in the vicinity of a smooth model of the ray manifold.
For modeling of multi-channels measurements, it is sufficient to compute the
geometric optical solution only once. Since the most time-consuming part
of the algorithm is the geometric optical solution, the total computational
time only indicates a weak dependence from the number of the channels. On
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the contrary, in the phase screen method the computational time is propor-
tional to the number of channels. Gorbunov (2003); Gorbunov and Lauritsen
(2004) also suggested a simple modification of this forward modeling tech-
nique based on the inverse Full-Spectrum Inversion (FSI) which has been
utilized by Beyerle et al. (2006); Lohmann et al. (2006).

In modeling wave propagation in a turbulent atmosphere (Gorbunov and
Kirchengast, 2005) the asymptotic solution cannot be utilized because it
does not account for the diffraction on small-scale inhomogeneities inside the
atmosphere (the asymptotic forward modelling only accounts for the diffrac-
tion due to a large propagation distance). In this case, it is necessary to
use the phase screen simulation technique. The final step of this simulation
algorithm is the propagation of the waves from the last phase screen to the
orbit of the satellite carrying the space-born receiver. In previous versions
of the algorithm this step was implemented by the computation of multiple
diffractive integrals. This procedure, however, proves to be very slow, espe-
cially when computing the propagation of waves with frequencies 9 GHz and
higher.

In this paper, we start from the standard solution of the vacuum prop-
agation in the form of the Zverev Transform, which belongs to the class of
Fourier Integral Operators (FIO), and construct an approximation that re-
duces the operator to a composition of a nonlinear coordinate transform, the
multiplication with reference signals, and the Fourier transform. To this end,
we employ the method based on the linearization of the canonical transform
describing the propagation of geometric optical rays (Gorbunov and Laurit-
sen, 2004).

3.2 Fourier Integral Operator Solution for Wave Prop-
agation from the Last Phase Screen to the Obser-
vation Orbit

In problems where the account of the small-scale structures of the refractiv-
ity field is necessary we cannot use the asymptotic solution (Gorbunov, 2003;
Gorbunov and Lauritsen, 2004). This is due to the fact that this solution
only takes into account the diffraction effects due to the large propagation
distances, while the diffraction on small-scale inhomogeneities inside the at-
mosphere is neglected. In such problems it is necessary to model the wave
propagation using, for example, the multiple phase screens method. The ge-
ometry of wave propagation in the multiple phase screens method is shown
in Figure 5. The wave propagation from one screen to the next screen is com-
puted by the standard algorithm utilizing the fast Fourier transform (Martin,
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1992). The last step of the forward modeling is the propagation of the wave
from the last phase screen to the LEO (Low Earth Orbiter) orbit. Because
the LEO orbit is a curved line, it is impossible to write the exact solution
as a composition of Fourier transforms. Usually, this computation is imple-
mented as a multiple evaluation of the Fresnel diffractive integrals resulting
in significant computational costs. Here we apply the FIO technique along
with the method based on the linearized canonical transform for constructing
a fast algorithm for the propagation of waves from the last phase screen to
the LEO orbit.

Consider the computation of the wave field u(t) on the LEO orbit in the
vertical plane (X(t),Z(t)) with the boundary condition wuy(z) on the last
phase screen directed along the vertical axis z at = 0 (Fig. 5). We write
the boundary condition in the form ug(z) = A(z) exp(ik¥(z)), assuming that
the field equals either a fast-oscillation function with a smooth amplitude or
a superposition of such functions.

Next, we derive the FIO that describes the propagation from a straight
line to a generic curve. Consider the plane wave (Fourier) expansion:

- \/g / up(z) exp (—ikzn) dz. (52)

The plane wave with the spatial frequency, or momentum, n has the unit di-
rection vector < 1—n? 77) and, therefore, it has the following form (Zverev,

1975):

U(z,z,m) = \/gﬂo(n) exp (zkxﬂ—l— z'k:zn) : (53)

The field u(t) along the curve (X (t), Z(t)) equals the sum of all the plane
waves and subsequently reads (Zverev, 1975):

=\ [ o it (X VTP + Zom) | sl )

This form of the solution (Zverev Transform) is a FIO of the first kind de-
scribing the propagation from a vertical line to a curve. By substituting the
Fourier expansion (52) into (54), exchanging the integration order and inte-

grating over 7, we can derive the field in the form of the diffractive integral
(Gorbunov and Gurvich, 1998a,b; Viadimirov, 1971):

\/>/u0 z)cosp (z t) (rk(z(, t7 ))dz. (55)
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Here, r (z,t) = ((Z(t) — 2)° + X(t)z)l/2 is the distance between the obser-

vation point (X (t),Z(t)) and source point (0,z), and ¢ (z,t) is the angle
between the (horizontal) normal vector to the source line and the vector
(X(t), Z(t) — 2); thus, it follows that cos ¢ (z,t) = X(t)/r (2,1).

If the field is observed on a vertical line, X (¢) = X = const, it is conve-
nient to consider the field as a function of the vertical coordinate Z. In this
case, the operator (54) is a composition of a Fourier transform F,_,,, multi-

plying with a vacuum propagator in the frequency space exp (z’kX V91— 7}2>

(i.e., a reference signal), and an inverse Fourier transform Fn__l) . This trans-
form composition is the basis of the multiple phase screens method (Martin,
1992).

Below, we construct the approximation that allows, in a similar way, for
the computation of the wave propagation from the (last) phase screen to
an arbitrary curve. We will rewrite the operator as a composition of the
Fourier transform, a nonlinear coordinate transform, the multiplication with
a reference signal, the inverse Fourier transform, and one more multiplication
with a reference signal. For this purpose we will derive an FIO corresponding
to the linearization of the equations for the geometric optical rays in the
vicinity of a smooth model of the ray structure. We will use the momentum
representation of the field, @y(n) = A’(n) exp (ik¥'(n)). The stationary phase
point n,(t) of the integral (54) is determined from the following equation:

<—X(t)—1n_ = + Z(t) + %—j)

We also define z4(n) as the funtion inverse to 7(z) =

=0. (56)
n=n5(t)

d¥(z)
d

of time t, 1,(t) equals the momentum of the ray arriving at point (X (), Z(t)),
and the starting point of the ray is (0, z5(n, (t))). Both dependencies n,(t)
and z¢(n) can be multi-valued if multipath propagation takes place in the
coordinate or momentum representation (Mishchenko et al., 1990). However,
we can always limit our analysis to the field components corresponding to
separate branches of the ray manifold with single-valued projections to the
coordinate or momentum axis, and afterwards we can take the superposition
of such field components. Because the derivative of the eikonal ¥'(n) in the
momentum representation equals —z4(n), we can write:

1,(t)
Z(t) — z5(ny(1)) = X(t) ————. 57
(t) = 2s(ns(t)) (t) T (57)
Consider the canonical transform from the coordinate and momentum
(z,m) to the new coordinate and momentum (t,c0), where 0 = w/k, with

. Given a moment
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w being the Doppler frequency. The generating function of this canonical
transform equals the phase function of the operator (54):

Si(t,n) = X({)/1—n?>+ Z(t (58)
This function satisfies the following differential equation (Gorbunov and Lau-

ritsen, 2004):
dS; = odt + zdn. (59)

This allows for the derivation of the following expressions:

a_aastl—x WI1—n?+ Z(t (60)
95,
V1—n2

=—=7(t)— X(¢t
2= 5k = 2 - X0
For the amplitude function we have the following expression (Gorbunov and
Lauritsen, 2004):

2 . . 12
a(t,n)z,/ugtgz (Z(t)—X(t)\/%ﬁ) a2 (62)

where p is the measure density defined so as to match energy conservation
(Gorbunov and Lauritsen, 2004):

[o(m)I” dn = [u(®)]” pu(t, n)~"d. (63)
It follows from (54) that a(t,n) = 1, thus we obtain

plt,m) = (Z(t) _X(t)\/%n?> : (64)

Every ray has a starting point z, momentum 7, and observation time ¢t. So
the ray structure can be parameterically represented as [z, 7, t], which means
that all these varables are looked at as functions of the index j enumerating
rays. The corresponding funtions z(n) and t(n) may be multi-valued (Figure
6).

We shall now obtain a smooth model of the ray structure: [z, 7, to].
Consider the phase of the integrand of the diffractive integral (55): ®(z,t) =
U(z) + r(z,t). For each moment of time ¢ we find Z(¢) minimizing ®(z,1).
We compute 7 (t) as the filtered derivative d®(z(t),t)/dt. Solving (60) for 7,
we obtain the model 7, (¢):

20yl - sign (2() X() VX2 + 22(0) - o2(1) N
7)0(75) - X2<t)+22(t> . ( )

(61)
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In addition, the function 7,(¢) is monotonized so that we can obtain an inverse
single-valued function t, () and define z¢(n) and o¢(t) using (61) and (60):

o _ n
o0 (t) = X(O\/1 = (&) + Z(t)mo (1), (67)

Consider the canonical transform (z,7) — (¢, ) linearized in the vicinity
of the model zy(n):

b= tz,m) = tzoln), )+ 5% (= — () = Tolm)— o)+ 507 = Fn)

where we introduced the ancillary function f(n) = to(n) — —2o(n) and

ot ot(z
coordinate 2/, and % denotes the derivative (2,1)
0z 0z
(ZO (7]>7 77) :
It is convenient to represent the canonical transform (z,7) — (¢,0) as a

composition of two canonical transforms, (z,7) — (2/,€) — (t,0), where the
first step fulfills 2'd¢ = zdn:

taken at the point

, Oty
¥ =% (69)
(ot

For the generating function S, (¢, &) of the second step we have the following
equation: )
dSy = odt + 2'd§ = odt + (t — f(&))dE, (71)

where we use the short-form notation f(&) instead of f(n(£)). We furthermore
complement the canonical transform with the following expansion:

o = oltn) = o(t,no(t)) + %in (n— (1)) (72)

Now, dS; is a full differential, therefore: <g—0) = (%) . Utilizing the
n), .

definition of &, we arrive at the following relationship:

S -ny = (52) w-mo)-e-a0. @
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with £,(t) = € (1,(t)). From this it follows that

o =o(t,n) = oo(t) =& (1) + & = g(t) + &, (74)

where we introduced the second ancillary function g(t) = oo(t) — &, ().
Therefore, we have the following equation for the generating function:

05, = (g(t) + E)dt + (t — F(€))dE. (75)
Sit.6) = / o(t)dt - / F(E)de + €. (76)

The derivative ? is evaluated as follows:
z

Oty 0t(z,m) _ <M> B =
(92 az z=z0(n) at t=to(n)
-1
(2SN (- x
—(_Eﬁf> _ ﬂﬂ—X@;T?ﬁ - (77)
t=to(n) t=to(m)

This allows for the derivation of the following expression for the ancillary
function f(n):

Fn) = toln) — 2220(m) = tof) — ZL0IVEZ 0 = XChalmhy 7

BB Z(to(n) /1T —n2 — X (to(n))n’

In addition, the momentum & has the form:

£(n) = / (Z(to(n/))—X(to(n’))\/lL_/—W) dn'. (79)

The second ancillary function g(t) is evaluated as follows:
9(t) = 00(t) = &(t) = X(8)/1 = m3(t) + Z(t)ne(t) — E(no(1)).  (80)
Instead of p(t,n) we introduce the measure density v in the coordinates (¢, £):

v(t,€). Introducing the short-form notation ug(§) = up(n(§)) and using the
following definition of the measure density:

[ao(&)[ dé = lu(t)|” v(t,€)"dt, (81)
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we obtain the relationship:

O A5 = lule)v(,€) Gt = )P (e ) et (82
From this we derive the expression for the measure density:
d
V() = nltn) 5 =
. . T] . . 77 _
= (Z(t) - X(t>1——772> (Z(to(ﬁ)) - X<t0(n))1——772> R

1 —

~ (Z.(to(n))—X(to(U»an) . (83)

Finally, we arrive at the following expression for the desired FIO in (54):

u(t) = @ exp (k / g<t>dt> [ VoG g e i) exo (—z'k: / f<§>d§) Gon(€)) e,

(84)
which can be written as

[ik | . exp (—ik [ f(§)dg) to(n(8))
u(t) =1/ —exp ik [ g(t)dt exp (ikt§) dg.
o (1 fo0n) | 2009) ~ X tol6) 2
77(85)

Thus, we have obtained the FIO solution for the propagation of the field from
a vertical line (the last phase screen) to the observation curve. This operator
is an approximate form of the exact Zverev Transform (54), where for the
derivation of the phase function we used the geometric optical ray equations
linearized in the vicinity of a smooth model solution. This linearization
allows representing the Zverev Transform (54) as a combination of the Fourier
transform and multiplication with reference signals, and therefore it allows
for an effective numerical implementation as an FFT.

3.3 Numerical Simulations

In order to test the accuracy and performance of the FIO-based methods
of computation of wave propagation in the atmosphere, we carried out a
series of numerical simulations. For modeling the atmospheric refractivity we
used global gridded fields of meteorological parameters from the re-analysis
of European Center for Medium-Range Weather Forecasts (ECMWF). We
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consider the problem with the stationary transmitter. In order to reduce
the geometry with the moving GPS satellite to a geometry with a stationary
transmitter, the coordinate transform from (Gorbunov, 2002a) is used. The
field on the first phase screen equals the spherical wave from the transmitter
in a vacuum. We compare the following three methods of the computation
of wave propagation as illustrated by Figure 5.

1. Multiple phase screens and the propagation from the last phase screen
to the LEO orbit by diffractive integrals (MPS-DI).

2. Multiple phase screens and the propagation from the last phase screen
by the Linearized Zverev Transform (LZT) described in (85) (MPS-LZT).

3. Asymptotic forward modeling technique using FIO (AFM) as described
in (Gorbunov and Lauritsen, 2004) (where abbreviation AS was used).

Figure 7 shows the amplitude of the simulated observed radio signal as
a function of time. The typical duration of an RO measurement is 1-1.5
minutes. For the frequency 1.5 GHz (one of the GPS channels) the sampling
rate of the measurement is 50 Hz. Therefore, in each RO event 3000 —
5000 samples in each frequency channel are measured. The amplitude on
the observation curve is a very convenient quantity for the comparison of
different methods of numerical wave propagation, because it is very sensitive
to any phase perturbations. In the single-path propagation area before 69 s,
all the three methods give very similar results. After 69 s the multipath area
begins. Here the second method of propagation from the last phase screen
yields results very close to the accurate 1st method based on the diffractive
integrals. The accuracy of the 3rd method is slightly worse, although it also
reproduces the structure of the amplitude well. Here, the computational
time (on a system with a Pentium 4 processor, 3.00 GHz) is 9 min for the
1st method (MPS-DI), it is about 3 min for both the 2nd and 3rd methods
(MPS-LZT and AFM, respectively).

Figure 8 shows the results for the same atmospheric state and observation
geometry, but for a frequency of 9.6 GHz. In this case the sampling rate
should be not less than 1000 Hz. Therefore, the number of samples in this
frequency channel can reach a value of 100000. For the first method (MPS-
DI), this results in many hours of numerical computations (7 hours on a
system with a Pentium 4 processor, 3.00 GHz). The numerical computation
based on the 2nd method (MPS-LZT) is much more effective and requires 10
minutes on the same system, simultaneously providing a high accuracy. The
3rd, asymptotic method (AFM) has the highest performance and requires as
little as 3 minutes; however, its accuracy is slightly worse.
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3.4 Conclusions

We discussed the application of the FIO technique for modeling wave prop-
agation in the atmosphere. Asymptotic solutions of wave problems based
on Maslov operators or FIO (these two techniques are equivalent) are well-
known and widely used. However, they cannot be applied for modeling the
effects of diffraction on small-scale atmospheric inhomogeneities. In this case
it is necessary to use the multiple phase screens approach. The screen-to-
screen propagation allows for an effective numerical implementation based on
FFT. However, the last step, propagation from the last phase screen to the
curved LEO orbit was previously implemented by the computation of multi-
ple Fresnel integrals. In this paper we focused on constructing a method for
the vacuum propagation from the last phase screen to the observation curve
that allows for an effective numerical implementation. The exact Zverev
Transform solution of this problem can be written in the form of an FIO.
The phase function of the FIO is the generating function of the canonical
transform describing the propagation of straight rays in a vacuum. The basic
idea of our work consists of the approximation of using the linearization of
the canonical transform in the vicinity of a smooth model of the ray manifold.
This reduces the FIO to a composition of nonlinear coordinate transforms,
multiplications with reference signals, and the Fourier transform. Each of
these steps allows for an effective numerical implementation.

We performed a numerical comparison of three methods of the compu-
tation of the field of radio waves diffracted by the atmosphere: 1) the wave
propagation in the atmosphere by the multiple phase screen method, and
the propagation from the last phase screen to the LEO orbit by multiple
diffractive (Fresnel) integrals; 2) the wave propagation in the atmosphere by
the multiple phase screen method, and the propagation from the last phase
screen to the LEO orbit in the form of an FIO, and 3) a full asymptotic solu-
tion of the forward modelling of the wave problem. Our results show that the
vacuum propagation to the LEO orbit by the FIO has a much better perfor-
mance compared to the computation of multiple diffractive integrals. High
accuracy and numerical efficiency of the method is confirmed by numerical
simulations based on realistic gridded fields of meteorological parameters.

We have derived the linearized Zverev Transform that solves the problem
of the wave propagation from a straight line to a curve. It is straightforward
to invert this operator and thereby obtain a fast solution of the propagation
from a generic curve to a straight line. As a result, this allows for a linearized,
fast implementation of the Back Propagation (BP) formerly used for RO
data processing. It is also possible to combine the propagation from a source
curve to an intermediate straight line with the successive propagation from
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the intermediate straight line to an observation curve. This allows for the
design of fast algorithms for the propagation of waves between two generic
curves.
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4 Turbulent random refractivity field model-
ing

We used a model of the turbulent atmosphere, which includes a regular back-
ground part from European Centre for Medium-Range Weather Forecast
(ECMWF) ERA40 re-analyses complemented with anisotropic turbulence
with a magnitude chosen as estimated from high-resolution (~10 m vertical
spacing) radio sonde measurements. The re-analysis fields were given on a
latitudinal-longitudinal grid with 0.5° x 0.5° resolution and on 64 vertical
levels up to a height of about 60 km. Turbulence was modeled as a ran-
dom relative perturbation of the refractivity field with a power form of the
spectrum:

o
CRegty, K < Kext

~ 6K—“7 Regt S K S Rint

B(r) = R , (36)
cKkHexp | — ( - ) , K> King

Rint / 4

2N 1/2
where Kk = (liz +q2f—29) , Kk, and kg are the spatial frequencies (wave
numbers) conjugated tEo the polar coordinates z and 6 in the occultation
plane (z being the height above the Earth’s surface, 6 being the polar angle),
rg is the Earth’s curvature radius, ¢ is the anisotropy coefficient (¢ > 1,
horizontally stretched turbulence). Factor ¢ normalizes the rms turbulent
fluctuations to unity. In the coordinate space we use an additional factor
c(z), which describes the relative magnitude of turbulent perturbations as
a function of altitude. We assumed that the radiosonde-derived fractional
refractive index variations are primarily due to turbulence, and we did not
model the intermittence of the turbulence. These assumptions can result in
an overestimate of the turbulence fluctuation intensity. However, this will be
favorable for a conservative (upper-bound oriented) assessment of the method
in terms of which transmission retrieval error levels are to be expected.

Our model is based on the theoretical and experimental studies (Fritts
et al., 1988; Fritts and VanZandt, 1993; Fritts and Alexander, 2003; Gurvich
and Brekhovskikh, 2001; Gurvich and Chunchuzov, 2003, 2005). Gurvich and
Chunchuzov (2003, 2005) revealed that atmospheric turbulence is a mixture
of isotropic (Kolmogorov) component and strongly anisotropic component,
which has properties similar to internal gravity waves. We adopted the tur-
bulence to be characterized by an external scale 27 /K¢,y = 100 m, internal
scale 27 /K = 15 m, exponent p = —4 for the 2D spectrum (correspond-
ing to exponent ps, = —5 for the 3D spectrum) that follows (Gurvich and
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Chunchuzov, 2003, 2005). (Yakovlev et al., 2003) obtained a close value of
fsp = 4.5.

The value of 100 m for the outer scale of turbulence has been chosen con-
sistent with a parameterized turbulence modeling in previous ACE4+ LEO-
LEO studies (Kirchengast et al., 2004b,a; Kirchengast and Hpeg, 2004). It
is a realistic estimate for altitudes 5 to 15 km based on observations of tur-
bulence parameters reported, for example, by Faton and Nastrom (1998);
Rao et al. (2001) The outer scale typically lies around 50 - 150 m. The in-
ternal scale is chosen close to the diffractive limit (Gorbunov et al., 2004):

h > \/2X\*rg, which is about 20 m. Input of smaller scales into the amplitude
scintillation will be very small due to both the decrease of spectral density
of turbulence and diffraction. According to experimental studies (Kan et al.,
2002; Yakovlev et al., 1995, 2003), the maximum input into the amplitude
fluctuations comes from scales of about 100 m. According to (Gurvich and
Chunchuzov, 2003, 2005), amplitude fluctuation intensity increases as a func-
tion of anisotropy coefficient ¢ until ¢ reaches a value of about 30, where the
increase practically saturates. We simulated ¢ equal to 3, 5, 10, 20, and 50,
which covers all the characteristic range of g. Our turbulence model results
in a realistic pattern of scintillations of the simulated signals looking similar
to the experimentally observed ones (Kan et al., 2002; Yakovlev et al., 1995,
2003).

For generating realizations of the field f(z,0) of relative perturbation
of refractivity, we proceed as follows. We specify a coordinate box (z,6) €
[0, Z] x [0, ©], where parameters Z and O are the vertical and horizontal sizes
of the box. Random field f(z, ) is generated inside the box and periodically
extrapolated outside it. For the high-resolution simulations we choose Z =
4 km and © = 0.02 rad. This scheme allows for the reduction of the number
of discrete points for the gridded random field down to a number that can
be handled by computational system (not exceeding 2% = 4194304). The
discretization steps were chosen in order to resolve the smallest perturbation

scales and to adjust the number of grid points to the right-nearest power of
2:

Z
— Ceiling logy 4—
Az=7-2 § A ;
@TE
— Ceiling log, 4T
AG=6-2 957

)

where Ceiling is the function equal to the right-nearest integer. This allows
for forming grids in the coordinate and frequency spaces:
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The Fourier transform of a random realization of the statistically homo-
geneous field f;; = f (2;,0;) equals

. . ) 2K§7j 1/2 ‘
fig=A|B| £ +4q g exp (i) ,

where ¢,; are random non-correlated phases with a homogeneous distribution
inside the interval of [0, 27]. The realization of the random field is obtained
as follows:

fij =c(z)F! [ﬁg} ;

where F'~! is the inverse Fourier transform, and the factor of ¢(z) describes
the relative magnitude of turbulent perturbations as a function of altitude.
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6 Figures

Figure 1: Schematic ray manifold in the phase space with different types of
its projection to coordinate axes.
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Figure 2: Comparison of different modifications of the CT technique. Refrac-
tion angle profiles as functions of ray height (impact parameter minus Earth’s
curvature radius): (1) reference geometric optical solution (GO, solid line),
(2) standard composition of BP and CT (BPCT, dotted line), and (3) CT2
algorithm (dashed line).
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Figure 3: Validation of asymptotic direct modeling. Amplitude of simulated
radio occultation signal as function of time: (1) MPS simulation (solid line)
and (2) asymptotic simulation based on the FIO2 (A, dotted line).
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Figure 4: Refraction angle profiles from geometric optical ray tracing and
from simulated radio occultation data: (1) reference GO profile (GO, solid
line), (2) asymptotic simulation processed by CT2 (A-CT2, dotted line),
(3) asymptotic simulation processed by BP+CT (A-BPCT, dotted line), (4)
MPS simulation processed by CT2 (MPS-CT2, dashed line), and (5) MPS
simulation processed by BP+CT (MPS-BPCT, dashed line).
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Figure 5: Geometry of the simulation of wave propagation by different
techniques. Asymptotic forward modeling (AFM) uses the refractivity field
n(x, z) to obtain the geometric optical bending angle solution, which is trans-
formed to the asymptotic time-dependent wave solution. Multiple phase
screens (MPS) technique requires the propagation of the field from the last
phase screen to the LEO orbit. This can be done by diffractive integrals (DI)
or by the Linearized Zverev Transform (LZT).
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Figure 6: Ray manifold z(n) (left panel: solid line) may be a multi-valued
function. We define a smooth model 7, () to be a monotonous function. This
allows for the definition of smooth models zo(n) (left panel: heavy dashed
line) and to (n) with unique projections to the n axis.
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Figure 7: The numerical simulation of the propagation of a signal with a
frequency of 1.5 GHz. We compare three methods: 1) multiple phase screens
and the propagation from the last phase screen to the LEO orbit by the
diffractive integrals (MPS-DI), 2) multiple phase screens and the propaga-
tion from the last phase screen by the LZT (MPS-LZT), and 3) asymptotic

forward modeling by FIO (AFM).
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Figure 8: The numerical simulation of the propagation of a signal with a
frequency of 9.6 GHz. We compare three methods: 1) multiple phase screens
and the propagation from the last phase screen to the LEO orbit by the
diffractive integrals (MPS-DI), 2) multiple phase screens and the propaga-
tion from the last phase screen by the LZT (MPS-LZT), and 3) asymptotic
forward modeling by FIO (AFM).
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