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1 Introduction

Increasing evidence suggests that the Earth’s climate is significantly influenced by human activi-
ties (Houghton et al., 2001). While there is little doubt that the Earth’s surface temperature has
risen by about 0.6◦ C during the 20th century, the amount and even the existence of temperature
trends in the troposphere are still under debate (e.g. Christy and Spencer, 2003; Vinnikov and
Grody, 2003). Additional high quality observations of the atmosphere are therefore particularly
required in this context. The Global Navigation Satellite System (GNSS) radio occultation (RO)
technique has the potential to substantially contribute to this scientific challenge. For a detailed
description of the RO technique see, e.g., the reviews of Kursinski et al. (1997) and Steiner et al.

(2001).

With respect to climate studies, one of the most important properties of the RO technique
is the expected long-term stability of RO data. It is achieved since precise atomic clocks are the
basis for accurate measurements during each single occultation event, independent of whether
two events are separated by an hour or by decades. Unlike many traditional satellite data, RO
data are essentially self-calibrated as the measurement principle is basically counting of wave
cycles (including fractional ones).

The climate monitoring utility of a GNSS occultation observing system has not yet been
tested due to the lack of long-term measurements for such a study. The CHAMP (Challenging
Minisatellite Payload) RO data provide the very first opportunity to create real RO based
climatologies. Continuous data are available since 2001, the mission is expected to last until
2007. Wickert et al. (2005b) give an overview of the CHAMP RO experiment, information on
the current status can be found in Wickert et al. (2005a).

The prime objective of the CHAMPCLIM project is to help ensure that the CHAMP/GPS
RO data are exploited in the best possible manner for climate monitoring by addressing three ar-
eas: 1) CHAMP RO data and algorithms validation, 2) CHAMP/GPS-based RO data processing
advancements in order to optimize the climate utility of the data, and 3) CHAMP/GPS-based
monitoring of climate variability and change, respectively. This report is a documentation of
the processing system setup and related error estimation work in the context of the climate
monitoring work during the second part of the project (CHAMPCLIM-2 project). Here, some
efforts are still concentrated on further advancements of the CHAMP retrieval algorithm (cal-
culation of tropopause parameters and height reference to the geoid were added), whereas the
main work is focused on setting up and creating the processing system for provision of RO based
climatologies and on error characterization of the climatologies.

In Section 2.1 the processing system is introduced and characterized focusing on further
advancements of the retrieval algorithm. Section 2.2 explains how the climatological processing is
set up and in Section 2.3 we present representative processing products in terms of climatologies
showing CHAMP and ECMWF climatologies for the winter season December, January, and
February 2002/03 (DJF 0203) and for the summer season June, July, August 2003 (JJA 2003)
as well as their corresponding error fields of sampling error, measurement error (bias), standard
deviation, and total error. Furthermore, in section 3.1, results of an empirical error analysis of
CHAMP profiles of refractivity, pressure, geopotential height, and temperature are discussed,
which are important to understand the quality of the derived climatologies. Finally, in section
3.2, estimations of the local time-related error due to the discrete spatio-temporal sampling of
the CHAMP satellite are presented, which are important for the climate data quality as well.
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2 Processing System Description and Climatology Products

The CHAMPCLIM retrieval chain starts with CHAMP data provision by GFZ Potsdam. After
the GFZ-internal calibration process (Schmidt et al., 2005) on the original data, ∼ 180 atmo-
spheric excess phase profiles remain per day and are transferred to WegCenter. As reference
data, 6-hourly analysis fields of the European Centre for Medium-Range Weather Forecasts
(ECMWF) are used (four time layers per day; 6 UTC, 12 UTC, 18 UTC, 24 UTC), which are
downloaded directly from ECMWF.

The RO retrieval scheme applied to these data is developed at WegCenter (Steiner et al.,
2004; Gobiet and Kirchengast, 2004b) in close connection with developments of the End-to-end
GNSS Occultation Performance Simulator (EGOPS) (Kirchengast et al., 2002). The retrieval
is especially focused on minimizing the bias of atmospheric parameters. Table 1 provides an
overview on the main aspects of the retrieval scheme. The retrieval implements statistical
optimization in two different ways, one of which uses the MSISE-90 climatology (Hedin, 1991)
(WegCenter/MSIS) and the other operational ECMWF analysis fields (WegCenter/ECMWF)
as background information. This background information is integrated into the retrieval only
at one point (bending angle level), resulting in well defined error characteristics. Another main
aspect of the retrieval is that the hydrostatic integral is initialized only once from a pressure
guess at a height of 120 km (Gobiet and Kirchengast, 2004b).

Figure 1: WegCenter/ECMWF retrieval of a selected validation set of profiles compared to ECMWF analysis
fields. Bias (bold) and bias ± standard deviation profiles (light) of dry temperature. Panels divide events into
global, low-, mid-, and high-latitude regions. Above 30 km a significant deviation of ECMWF from CHAMP data
is observed.

As has already been reported in Gobiet et al. (2004) the retrieval scheme was validated
against independent data. For these validation purposes, a subset of the retrieved CHAMP
data was compared at refractivity and dry temperature level to various data sources including
data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the
Environment Satellite (ENVISAT). This analysis was carried out considering 3160 CHAMP
occultation events and 184 co-located ENVISAT/MIPAS events, observed in a 20-day period
during September 2002. Here, the WegCenter/ECMWF retrieval (Figure 1) and the validation of
the WegCenter/ECMWF retrieval compared to ENVISAT/MIPAS data (Figure 2) are shown.
The Figures depict the bias (bold) and the bias ± standard deviation profiles (light) of dry
temperature.

As can be read in more detail in Gobiet et al. (2004), the main finding of the validation of
the WegCenter/ECMWF against independent data was that the WegCenter/ECMWF retrieval

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
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Table 1: Overview of the WegCenter CHAMP-RO retrieval schemes (EGOPS/CCR Versions 2.2 and 2.3)

WegCenter/MSIS WegCenter/ECMWF

Outlier Re-
jection and
Smoothing

”3 σ” outlier rejection on phase delays
and smoothing using regularization (third
order norm, regularization parameter
=10(sampling rate/10)) (Syndergaard, 1999)

Like WegCenter/MSIS

Bending An-
gle Retrieval

Geometric Optics retrieval Like WegCenter/MSIS

Ionospheric
Correction

Linear combination of bending angles (Vorob’ev
and Krasnil’nikova, 1994). Correction is ap-
plied to low-pass filtered bending angles (∼1 km
sliding average), L1 high-pass contribution is
added after correction (Hocke et al., 2003). L2
bending angles < 15 km derived via L1-L2 ex-
trapolation.

Like WegCenter/MSIS

Bending An-
gle Initializa-
tion

Statistical optimization of bending angles from
30 km to 120 km. Vertical correlated back-
ground (corr. length L = 6 km) and observa-
tion (L = 1 km) errors. Observational error es-
timated from observed profile > 65 km. Back-
ground error: 15 %. Background information:
MSISE-90 (Hedin, 1991) best-fit profile, bias
corrected (Gobiet and Kirchengast, 2004b).

Like WegCenter/MSIS,
but co-located bending
angle profile derived from
ECMWF operational
analysis as background in-
formation (above ∼ 60 km:
MSISE-90). No further
pre-processing.

Hydrostat.
Integral Init.

At 120 km: pressure = p(MSISE-90) Like WegCenter/MSIS

Humidity Re-
trieval

Like WegCenter/ECMWF
Optional: 1D-Var using
ECMWF short-range fore-
casts as background

Quality Con-
trol

Like WegCenter/ECMWF

Refractivity 5 km−35 km:
∆N/N < 10 %; Tem-
perature 8 km−25 km:
∆T < 20 K. Reference:
ECMWF operational
analysis (T42L60)

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
Contact E-Mail: michael.borsche@uni-graz.at, Wegener Center Web: http://www.wegcenter.at

4



Processing System for Provision of CHAMP RO Based Climatologies
CHAMPCLIM - RO Data Analysis and Climate Monitoring based on CHAMP/GPS

compared to MIPAS temperatures above 30 km is not warm biased (see Figure 2) as are the
CHAMP dry temperatures compared to ECMWF (see Figure 1). This leads to the conclusion
that there is still significant information content in the CHAMP data exceeding 30 km. However,
in that height neither of the data is particularly good (confer Section 3.2).

Figure 2: WegCenter/ECMWF retrieval of a selected validation set of profiles relative to coinciding temperature
profiles from ENVISAT/MIPAS. Bias (bold) and bias ± standard deviation profiles (light) of dry temperature.
Panels divide events into global, low-, mid-, and high-latitude regions. Above 30 km no signficant deviations
between the two correlative datasets are observed.

2.1 Characterization of the Processing System

2.1.1 Status of the Pre-Operational Processing System

Recent work at WegCenter/UniGraz has concentrated on the establishment of a pre-operational
processing system, which includes data transfer from GFZ and ECMWF, retrieval of atmospheric
parameters, quality control, creation of climatologies, and storage of the data. At this stage,
the processing system operates in an automated way up to the RO retrieval and quality control,
whilst the automated creation of the climatologies will be integrated in the very near future.
The aim is to establish a data stream from GFZ which downloads 7-day packages of data within
a time delay of two days and to provide the final CHAMPCLIM climatology products within a
timeliness limit of 14 days.

Up to the present, CHAMP data have been transferred manually via a secure ftp connection
from GFZ to WegCenter/UniGraz. So far, the data transferred cover a time span from September
2001 to September 2005. The first six months of this data set span a period of sparse global
sampling amounting to only about 50 to 100 events per day. Nevertheless, this sampling is
sufficient for creating zonal mean seasonal climatologies.

ECMWF analysis fields have been downloaded directly from ECMWF comprising 6-hourly
fields with four time layers at 6 UTC, 12 UTC, 18 UTC, 24 UTC including the parameters geopo-
tential, temperature, specific humidity, and logarithm of surface pressure. ECMWF data cov-
ering the same time span as the CHAMP data have been transferred and stored locally at
WegCenter/UniGraz. The processing of the data is finished for the time period March 2002 to
May 2005 covering thirteen seasons or more than three years. The retrieval of the data is an
ongoing process and is being performed on the newly received data from September 2001 to
February 2002 as well as on the data starting from June 2005.

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
Contact E-Mail: michael.borsche@uni-graz.at, Wegener Center Web: http://www.wegcenter.at
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2.1.2 Enhancement of the Profile Retrieval: Tropopause Parameters

The current version of the retrieval, CHAMPCLIM Retrieval version 2.3 (CCRv23), has imple-
mented mainly three new features compared to the last version as described in Gobiet et al.

(2004): First, calculation of tropopause parameters such as lapse rate tropopause height and
temperature and cold point tropopause height and temperature, secondly, the calculation of the
geoid height of the profiles, and finally surface parameters as well as satellite specific parameters
were written out. The tropopause parameters serve new studies whereas the switch to reference
the profiles to the geoid as opposed to reference the profiles to the reference ellipsoid improves
the results systematically. The newly written out surface parameters comprise the surface orog-
raphy altitude at the position of the event, the surface (2 m) temperature, the skin temperature,
and the surface pressure and humidity. Satellite parameters include the azimuth as well as the
inclination of the occultation plane. Both the surface and the satellite parameters will also be
used in future studies.

DJF0203: Tropopause Temperature versus Latitude
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DJF0203: Tropopause Altitude versus Latitude
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Figure 3: Lapse rate tropopause temperature (left) and height (right) are shown for season DJF 0203 versus
latitude. The low-latitude tropopause (± 30◦) is even colder than the northern winter polar tropopause and
exhibits heights of 16 km to 18 km. Additionally it is the region with the least spreading in height.

The lapse rate tropopause was calculated according to the definition of the World Meteoro-
logical Organization (WMO). Here, the tropopause is defined as the lowest level at which the
temperature lapse rate is less than 2 K km−1 and the lapse rate average between this level and
the next two kilometers does not exceed 2 K km−1 (WMO, 1957). Preliminary results are shown
in Figures 3 and 4 in which for the winter season December, January, and February 2002/03
(DJF 0203) and for the summer season June, July, August 2003 (JJA 2003) the distribution for
the tropopause temperature (left) and height (right) for all CHAMP profiles are depicted in a
latitude-temperature and latitude-height plot, respectively. In the low-latitude region (± 30◦)
the lapse rate tropopause is clearly defined with the criterion from WMO which can be inferred
from the narrow spreading of tropopause height. However, in mid-latitudes and especially in the
high-latitude winter regions this criterion seems to be more difficult to meet due to the special
winter atmospheric layering. Here the tropopause parameters vary a lot for each profile. The
same is true for the cold point tropopause temperature and height which is defined as the coldest
point of the profile in the upper troposphere and lower stratosphere region (not shown here).

2.1.3 Enhancement of the Profile Retrieval: Geoid Altitudes

The second new feature implemented in CCRv23 is the calculation of the height above the geoid
for determining the vertical grid of the profiles.

The ECMWF analysis fields are referenced to the geoid whereas the CHAMP profiles were
up to now referenced to the reference ellipsoid. However, the geoid can differ compared to the

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
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JJA2003: Tropopause Temperature versus Latitude
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JJA2003: Tropopause Altitude versus Latitude
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Figure 4: Lapse rate tropopause temperature (left) and height (right) are shown for season JJA2003 versus
latitude. In this season the southern winter polar tropopause is colder than the tropical tropopause. Also, the
spreading of tropopause heights increases significantly in the winter polar region whereas in the low-latitude region
the spreading is rather small. (The lower-bound ”steps” in tropopause height at some latitudes are artefacts due
to the initialization height setting of this version of the tropopause algorithm; this will be rectified in future
versions.)

reference ellipsoid up to about 85 m above (around the island of New Guinea) and up to about
105 m below (northern Indian Ocean) as can be seen in Figure 5 which depicts the difference
between the geoid compared to the reference ellipsoid in meter. As long as the CHAMP profiles
were referenced to the reference ellipsoid a systematic bias was introduced. Because in the worst
case the profiles could be shifted more than 100 m to each other the bias could in theory amount
up to 0.65 K due to the vertical adiabatic temperature gradient in the troposphere of 0.65 K per
100 m (temperature gradients in the lower stratosphere are much smaller).

To demonstrate this theory in practice exemplarily, in Figures 6 and 7 the differences in
temperature between CHAMP profiles referenced to the geoid compared to profiles referenced
to the reference ellipsoid are shown. Figure 6 depicts the zonal mean of the season JJA 2003 in
which the effects on temperature of elevated and depressed landmasses of the geoid cancel each
other out. However, instead of using the zonal mean, profiles on a smaller scale using latitude
slices show the effect clearly. On the left of Figure 7 a latitude slice centered around 80◦ E
longitude is depicted (including the northern Indian Ocean with deepest depression) and on the
right a slice centered around 140◦ E longitude (including New Guinea with highest elevation).
In the first case (depression) the difference is positive in the troposphere because the profiles
start lower, and vice versa in the second case (elevation). Obviously, the effect switches in the
lower stratosphere, but as mentioned above the vertical temperature gradient is much weaker
and therefore the difference is much smaller.

2.2 Setup of RO Based Climatologies

The implementation of the climatologies as final product is pursued in two different ways. On
the one hand, a global 3D-Var analysis by assimilation of CHAMP data into ECMWF short-
term forecast fields was developed, which is described by Löscher et al. (2005). On the other
hand, a direct-binning grid strategy is implemented in two modes leading to the final products,
which will be the focus of this section.

2.2.1 Vertical Resolution of the Climatologies

For the creation of gridded pure RO based climatologies several factors and requirements con-
cerning the spatial and temporal resolution have to be taken into account. The resolution of a

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
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Figure 5: Latitude - Longitude map of the spherical harmonic Earth Gravitational potential Model (EGM 96)
by the U. S. National Space and Aeronautics Administration (NASA) and the National Imagery and Mapping
Agency (NIMA) with a horizontal resolution of 15 × 15 arc-Min. The geoid altitude is depicted in meters and
ranges from ∼ −105 m to ∼ +85 m.

Figure 6: Zonal difference of CHAMP temperature profiles referenced to the geoid compared to temperature
profiles referenced to the ellipsoid in the height range from the ground to 35 km. In the zonal mean there is
virtually no difference to be observed except for the lower troposphere. The blank space in the low-latitude lower
troposphere is due to the lack of CHAMP data in that region.
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Figure 7: Difference of CHAMP temperature profiles referenced to the geoid compared to profiles referenced to
the ellipsoid in the height range from the ground to 35 km for two latitude slices: On the left the latitude slice is
centered around 80◦ E, on the right around 140◦ E, corresponding to the locations of the greatest depression and
highest elevation of the geoid, respectively.

single measurement and the measurement density set the limits for the resolution of any gridded
data set derived from measurements. For RO measurements, the vertical resolution amounts to
around 1 km to 1.5 km whereas the horizontal resolution in the direction of the ray amounts to
about 250 km to 300 km. Since the CHAMP satellite over-samples (higher measurement density
than physical resolution) in the order of a factor of ten because of its measurements frequency
of 50 Hz, it is possible to provide gridded CHAMP data on a denser vertical grid than it would
correspond to the measurement’s physical resolution. However, in such a case it must be clearly
stated that neighboring values of the grid are not independent from each other.

The physical resolution of the WegCenter/ECMWF retrieval scheme has been determined
exemplarily on a test set of 12 CHAMP profiles, for each season one profile from high-, mid-,
and low-latitudes, respectively. To determine the vertical resolution of the retrieval scheme the
method of the perturbation theory was used. The perturbation theory states that an initial
infinitesimal narrow (delta) perturbation of the input to a continuous system will result in a
gaussian-like shaped response. The full width at half maximum of the gaussian distribution can
then be considered as the inherent resolution of the system. In that manner, each profile was
perturbed at phase delay level to determine the resolution of the WegCenter/ECMWF retrieval.

Figure 8 depicts a preliminary result of the perturbation of a CHAMP low latitude profile
taken in spring 2003. The first plot (upper left) depicts the delta perturbation at phase delay
level. At a time delay which will correspond to a certain height in the temperature plot, the
phase delay profile was perturbed with an amplitude of 110 % of the input value. This per-
turbation propagates through the retrieval system and the response function changes according
to the operator used: bending angle retrieval, refractivity retrieval, and finally the temperature
retrieval. Because of the Doppler Shift differentiation in the bending angle retrieval the response
to the initial perturbation is slant symmetrical - as opposed to a gaussian shaped response of
linear operators. After the refractivity and temperature retrievals this shape has changed to
a asymmetrical slant response of third order which is far from easy to interpret regarding the
intrinsic retrieval resolution.

As is displayed in Figure 8 in the lower right plot at the temperature level, we have narrowed
down the meaningful range of the resolution value: The peak-to-peak value represents arguably
the highest resolution, whereas the ”10 % peak-to-peak” value, which is met where the value of
each peak has decreased again to 10 % of its maximum, might be already underestimating the
resolution. The difference of these values seems to be a feasible value resulting in 1.33 km for
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Figure 8: Perturbation of one CHAMP profile at 20 km height. The perturbation was applied at phase delay level
in form of a delta perturbation with an amplitude of ∼100 % of the input value. The perturbation propagates
through the whole retrieval algorithm until it has become an asymmetrical slant response of third order at
temperature level. Displayed are the values of height differences which correspond to the response amplitude
at 10% of peak-to-peak, at peak-to-peak, and at the difference of both. These figures suggest estimates of the
vertical resolution of profiles at that height.
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the profile displayed at a height of 20 km.

2.2.2 Binning Strategy for the Climatologies

The second consideration for the resolution of a gridded data set is defined by the measurement
density and distribution. Each grid cell has to contain sufficient data to ensure the representa-
tiveness of the data for the mean location and time of the cell. In the horizontal, the spatial
measurement density depends on the temporal averaging period and on geometrical properties
of the measurement system. The CHAMP satellite yields some 150 globally distributed atmo-
spheric profiles per day with higher density (referred to equal areas) at high latitudes compared
to lower latitudes.

Additionally, it is of interest to evenly sample the diurnal cycle. According to the orbit
parameters of CHAMP the diurnal cycle is ideally scanned within ∼ 130 days which implies that
even seasonal means (90-92 day period) do not ideally sample it. However, error studies focusing
on the diurnal effect show that seasonal and even monthly sampling periods are not very much
degraded by this sampling error (cf. Section 3.2).

Figure 9: Two modes of binning. Overlapping equal-area bins at a regular 18 lat× 24 lon grid on the left, and
non-overlapping almost equal-area bins at 18 lat× lat-dependent lon grid on the right.

The arguments above implied a preliminary setup of global climatologies with a vertical
layer each 500 m and a horizontal binning as shown in Figure 9. Shown are two different modes
of how to possibly set up climatologies with differing arrangements of equal area bins. Along
latitude, both modes have the meridian divided into 18 bins of 10◦ width. Along longitude,
the first mode (left side of Figure 9) uses 24 fixed bins (baseline) at all latitudes leading to bin
overlapping, whilst the second mode (right side) uses a latitude-dependent number of bins to
obtain non-overlapping almost equal area bins (within ± 0.5◦ exact; except for polar latitudes
where the latitude extension differs up to 7.9◦ per bin). While climatologies on the regular grid
(lat×lon) are most convenient to handle, comparison to the second mode allows study of the
potential relevance of error correlations between overlapping bins.

The prime testbed season was arbitrarily chosen to be JJA 2003. Due to the high inclination
of the CHAMP satellite (87.3◦) the global event distribution varies from sparse sampling in the
equatorial region to high sampling in polar regions. As shown in Figure 10 on the left side
illustrating event distribution for a 10◦×15◦ binning for the testbed season, there are sufficient
events in the equatorial region for deriving robust statistics as is required for climatologies. As
shown in Section 2.3 in Figures 11 and 14 the gridding with 10◦×15◦ bins worked fine on the
prime testbed season.

During other seasons, however, there are rare occasions in which an equatorial bin of a
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JJA2003 : CHAMP Event Distribution (Lon =    0.0°) 
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Figure 10: Event distribution in a latitude slice for 10◦

×15◦ binning on the left and for 10◦

×60◦ binning on the
right. Both latitude slices are taken from the summer season JJA 2003 around the prime meridian. In both slices
the event distribution has a minimum number around the equator and increases towards the poles.

10◦×15◦ latitude slice does not contain any RO events at all. In monthly latitude slices there
are more latitude slices with no events in some bins. Therefore, we have decided to broaden the
gridding of the climatologies to 10◦×60◦ binning (18 lat× 6 lon grid). The right side of Figure 10
shows the event distribution of that grid exemplary on the latitude slice of the prime meridian
in the testbed season.

2.3 RO Based Climatologies

2.3.1 Gridded Climatologies

A lot of effort has been put into the creation of climatologies and determining their error fields. In
this section we exemplarily present two gridded climatologies, one is the prime testbed summer
season JJA 2003 and the other the winter season 2002/03 (DJF 0203) as well as their correspond-
ing error fields. To determine the error fields of the CHAMP data, near realistic atmospheric
fields as reference data are used. ECMWF operational analyses represent today’s best knowl-
edge of the state of the atmosphere and are ideally suited for serving as such reference data
sets. In the following, the four daily time layers of ECMWF analysis fields are taken as the true
state of the atmosphere, which is assured in most parts of the analysis by the integration of a
massive amount of observations into the analysis (ECMWF, 2004), to which CHAMP data are
compared to.

With such a reference data set it is possible to separate the total error of the CHAMP clima-
tologies into a sampling error and measurement error (bias). The sampling error is calculated as
the difference between the climatological fields obtained from perfect (error-free) profiles at the
locations of the RO events and climatological fields derived from the ”true” 3D reference fields.
The measurement error is calculated via difference error statistics by comparing each CHAMP
profile with a co-located reference profile extracted from the ECMWF fields.

In Figures 11, 12, and 13 the CHAMP and ECMWF climatologies for dry temperature in
Kelvin are shown together with the corresponding sampling error. They contain the seasons
DJF 0203 and JJA 2003 with gridding of 10◦×15◦, 10◦×60◦, and zonal means, respectively.
To obtain the CHAMP climatological fields, all events of each bin were averaged. ECMWF
climatologies are derived from the gridded ECMWF analysis fields. The climatologies are shown
in a latitude versus height coordinate system which ranges from the ground to 35 km in height
and over the whole meridian in latitude.

At first sight both climatologies are fairly alike to each other and the representation of the
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JJA2003 : CHAMP Dry Temp  (Lon =    0.0°)
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JJA2003 : ECMWF Dry Temp  (Lon =    0.0°)
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DJF0203 : CHAMP Dry Temp  (Lon =    0.0°)
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DJF0203 : ECMWF Dry Temp  (Lon =    0.0°)
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JJA2003 : CHAMP-ECMWF Dry Temp Sampling Error  (Lon =    0.0°)
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DJF0203 : CHAMP-ECMWF Dry Temp Sampling Error  (Lon =    0.0°)
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Figure 11: CHAMP and ECMWF climatologies of dry temperature with gridding of 10◦

×15◦ for the JJA 2003
(top row) and DJF 0203 (middle) seasons. The last row shows the corresponding sampling error of the JJA 2003
and DJF 0203 seasons on the left and on the right, respectively.
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temperature gradient is as expected. In the troposphere the temperature decreases with increas-
ing height up to the tropopause. The cold tropical tropopause region can be extinguished clearly
in both seasons with temperatures as low as ∼ 190 K. Above in the low to mid stratosphere, the
temperature rises again due to warming by ozone dissociation. In JJA 2003 the austral winter
polar vortex has developed with the lowest temperatures in the mid atmosphere reaching as far
low as ∼ 180 K. The boreal winter polar vortex does not cool down as much and for DJF 0203
was even warmer than the tropical tropopause region with temperatures just under 200 K.

2.3.2 Sampling Error of Climatologies

The error due to spatial and temporal undersampling of the true evolution of atmospheric
fields has been identified as a potential major error source for single-satellite climatologies with
the aid of simulation studies (Foelsche et al., 2003). Even with perfect observations at the
occultation locations the ”measured” climatologies would differ from the ”true” ones as the
sampling through occultation events is discrete and not dense enough to capture the entire
spatio-temporal variability of the atmosphere. Under the assumption that the ECMWF analysis
fields (4 time layers per day) represent the true state of the atmosphere, the sampling error is
estimated by comparing climatologies derived from the ”true” ECMWF profiles at the RO
locations with climatologies derived from the ”true” 3D ECMWF fields. The sampling errors
for each season is shown in the last row of Figures 11, 12, and 13, respectively.

Below 4 km in polar regions and below 8 km in low-latitudes (± 30◦ latitude) the climatologies
have been cut-off deliberately. Starting at the poles up to 65◦ latitude the climatologies reach
down to 4 km, the cut-off height increases in 1 km by 10◦ steps to 8 km height in the low-latitudes
(30◦ north and south). In addition to the height criterion the amount of the profiles in each bin
has to be above ten otherwise the bin will be treated as having no data. This cut-off strategy
was perused because there is a large ”warm” sampling error for dry temperatures. This feature,
which has been recognized by Foelsche et al. (2006), can be interpreted as a selective ”dry
sampling error”. The tracking of CHAMP signals and the geometric optics retrieval tends to
stop at higher altitudes in moist compared to dry conditions. The lowest part of the RO profiles is
therefore biased towards dry conditions, resulting in a systematic underrepresentation of the true
mean refractivity. When the refractivities are converted to dry temperatures, this systematic
error maps into warm-biased mean dry temperatures. This effect is most pronounced at low
latitudes, where the event density is particularly low (see Figure 10) due to the high inclination
of the CHAMP satellite.

The sampling error decreases with decreasing amount of bins per latitude band as can be
seen in the three figures. There is a sufficient amount of events in the 10◦×15◦ gridding (Figure
11) and the CHAMP climatology can be calculated with acceptable error characteristics. In
the JJA 2003 season the sampling error amounts up to ± 1.5 K. For the DJF 0203 season the
sampling error is less in general amounting to just above ± 1.0K except for a region of the boreal
winter polar vortex in heights above 20 km in which the sampling error amounts to more than
3.0 K. For the 10◦×60◦ gridding (Figure 12) the sampling error reduces and only in rare occasions
reaches above ± 1.0 K; the huge error in the boreal winter polar vortex has also reduced but still
amounts to more than 2.0 K. Finally, in the zonally gridded climatologies (Figure 13) except for
patches the sampling error is diminished to below ± 0.5 K; again the boreal winter polar vortex
region is an exception with errors ranging from 1 K to 2 K. It is assumed that the high sampling
error in high latitudes, which occurs in some other seasons as well, may be related to an uneven
sampling within bins located especially in regions with high temperature gradients (around 70◦

to 80◦). By averaging the unevenly distributed events in such a bin a bias is introduced. The
investigation of this feature is queued with high priority for immediate study.
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JJA2003 : CHAMP Dry Temp  (Lon =    0.0°)

-85 -75 -65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 850
Latitude [deg]

5

10

15

20

25

30

35

M
S

L
 A

lt
it

u
d

e 
[k

m
]

185

190

195

200

200

205

20
5

205

210

21
0

210

210

215

215

215

215

220

220

220

220
225

225

225225

230

230

230

230

235

235

235
235

240

240245
250

180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270[K]

JJA2003 : ECMWF Dry Temp  (Lon =    0.0°)
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DJF0203 : CHAMP Dry Temp  (Lon =    0.0°)
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DJF0203 : ECMWF Dry Temp  (Lon =    0.0°)
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JJA2003 : CHAMP-ECMWF Dry Temp Sampling Error  (Lon =    0.0°)
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Figure 12: CHAMP and ECMWF climatologies of dry temperature with gridding of 10◦

×60◦ for the JJA 2003
(top row) and DJF 0203 (middle) seasons. The last row shows the corresponding sampling error of the JJA 2003
and DJF 0203 seasons on the left and on the right, respectively.
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JJA2003 : CHAMP Dry Temp  (Zonal Mean)
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JJA2003 : ECMWF Dry Temp  (Zonal Mean)
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DJF0203 : CHAMP Dry Temp  (Zonal Mean)
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DJF0203 : ECMWF Dry Temp  (Zonal Mean)
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JJA2003 : CHAMP-ECMWF Dry Temp Sampling Error  (Zonal Mean)
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Figure 13: Zonal mean CHAMP and ECMWF climatologies of dry temperature for the JJA2003 (top row) and
DJF 0203 (middle) seasons. The last row shows the corresponding sampling error of the JJA 2003 and DJF 0203
seasons on the left and on the right, respectively.
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2.3.3 Measurement and Climatological Error of Climatologies

In Figures 14, 15, and 16 three additional ”error” fields for both seasons are shown. In the top row
the bias (the mean deviation between CHAMP and ECMWF), in the middle row the standard
deviation (square-root of the variance of individual CHAMP-ECMWF difference profiles about
the bias profile), and in the bottom row the climatological error (sampling error plus bias) is
depicted, respectively. Again, all three figures illustrate the gridding of 10◦×15◦, 10◦×60◦, and
zonal averaging, respectively. The errors are calculated based on difference profiles, obtained
by subtracting from each CHAMP profile the co-located ECMWF profile. The climatological
error can be directly determined by computing differences of RO based and ”true” reference
climatologies.

Being closely related to the sampling error, the climatological error decreases with the de-
crease in the number of latitude bins in the gridding scheme. On the left side in the last row of
Figure 16 the climatological error for the zonal mean of the summer season JJA 2003 is depicted.
While differences in the lower troposphere (which have been cut-off) can clearly be attributed
to RO errors, the differences above 30 km of about 1 Kelvin and more are most probably due
to errors in both CHAMP and ECMWF. At that height the ECMWF analyses are only partly
constrained by data and the RO measurement errors start to increase. In the height range in
which RO data have the highest quality (∼ 8 km to ∼ 30 km), the CHAMP and ECMWF clima-
tologies agree, in general, very well with an absolute bias of less than 0.5 K, occasionally peaking
at 1 K.

However, two features are eminent: The tropical tropopause region in the CHAMP-derived
fields is consistently warmer than the ECMWF analyses. Note that this is only a measurement
bias in which no distinct sampling error is involved (compare Figure 13 for both climatologies).
As has been stated in Gobiet et al. (2005) and is under close investigation at the moment, this
measurement bias may mainly be attributed to the ECMWF analyses fields and is probably
caused by weak representation of atmospheric wave activity and tropopause height variabil-
ity. Secondly, the alternating temperature structure with a magnitude of several Kelvin in the
southern winter polar vortex region (only visible in JJA 2003) is caused by deficiencies in the
representation of the Austral polar vortex in the ECMWF analyses. A detailed analysis can be
found in Gobiet et al. (2005). Again, with this feature no sampling error is associated.

Our results show that accurate seasonal climatologies between 8 km and 30 km height can be
obtained even with data from a single RO receiver. Already now RO based climatologies have
the potential to improve modern operational climatologies in regions where the data coverage
and/or the vertical resolution and accuracy of RO data is superior to traditional data sources.
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Figure 14: Error fields of CHAMP 10◦

×15◦ gridded climatologies with ECMWF as reference. Season JJA 2003
is shown on the left, DJF 0203 on the right. The error fields comprise from top to bottom: bias (deviation
CHAMP-ECMWF), standard deviation, and climatological error.
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Figure 15: Error fields of CHAMP 10◦

×60◦ gridded climatologies with ECMWF as reference. Season JJA 2003
is shown on the left, season DJF 0203 on the right. The error fields comprise from top to bottom: bias (deviation
CHAMP-ECMWF), standard deviation, and climatological error.

Wegener Center for Climate and Global Change, University of Graz, Leechgasse 25, A-8010 Graz, Austria
Contact E-Mail: michael.borsche@uni-graz.at, Wegener Center Web: http://www.wegcenter.at

19



Processing System for Provision of CHAMP RO Based Climatologies
CHAMPCLIM - RO Data Analysis and Climate Monitoring based on CHAMP/GPS

JJA2003 : CHAMP-ECMWF Dry Temp Bias  (Zonal Mean)
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Figure 16: Error fields of CHAMP zonal mean climatologies with ECMWF as reference for JJA2003 (left)
DJF 0203 (right). The error fields comprise from top to bottom: bias (deviation CHAMP-ECMWF), standard
deviation, and climatological error.
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3 Estimation of Errors Affecting Climatologies

3.1 Estimation of Observational Error based on an Empirical Error Analysis

The assimilation of radio occultation (RO) data has the potential to significantly improve the
accuracy of global and regional meteorological analysis and weather prediction, which has been
confirmed by several studies (e.g., Kuo et al., 2000; Healy et al., 2005). One important issue in
this respect is knowledge of radio occultation measurement errors in order to formulate adequate
observation error covariance matrices for data assimilation systems.

Since refractivity seems to be the most appropriate parameter for assimilation purposes
(Healy et al., 2005; Syndergaard et al., 2006) we performed an empirical error analysis of a set
of refractivity profiles retrieved from CHAMP RO observations. In addition we present results
of an empirical error analysis for the parameters pressure, geopotential height, and temperature.
Regarding the error analysis method, we build on the heritage of an earlier simulation study
(Steiner and Kirchengast, 2004, 2005) and extend it to a separate estimation of the observation
error for CHAMP refractivity data.

3.1.1 Description of the Data Set and the Retrieval Scheme

The study is based on a CHAMP level 2 data set comprising two seasons of radio occultation
observations, DJF 0203 and JJA 2003. For each season more than 12 000 profiles of atmospheric
excess phases were analyzed. The data sets were separated into three latitude bands, low (−30◦

to 30◦), middle (±30◦ to ±60◦), and high (±60◦ to ± 90◦) latitudes. In addition, we separately
analyzed the Northern Hemispheric (NH) and the Southern Hemispheric (SH) region.

For the basic error study refractivity profiles were processed from the data base of excess
phase profiles with the CHAMPCLIM Retrieval version 2.2 (CCRv22), the previous version of
CCRv23, including an advanced upper stratospheric retrieval scheme (Gobiet and Kirchengast,
2004b,a). The retrieval is based on the standard geometric optics approach, thus we will not
interpret the results below 5 km height. Since the basic study deals with the use of refractivity
data for assimilation systems, we used the general MSISE-90 model for the initialization of
bending angles. The sample sizes for this refractivity data set (CCRv22, MSISE-90 initialized)
are listed in Table 2 which corresponds to Figure 17.

Building on the basic error study design we further analyze errors of refractivity, pressure,
geopotenial height, and temperature profiles (Figures 17 to 21) which were processed with the
CCRv23 and initialized with ECMWF analysis data at bending angle level. The CCRv23
processing is described in detail in Steiner et al. (2004), an overview is given in Borsche et al.

(2006) as well as in Section 2.1 of this report.

Table 2: The number of occultation events for the different data sets analyzed.

DJF0203 JJA2003

Total NH SH Total NH SH

Global 12 329 5 995 6 334 12 710 5 989 6 721

Low lat 3 790 1 812 1 978 3 784 1 841 1 943

Mid lat 4 310 2 120 2 190 4 095 1 983 2 112

High lat 4 229 2 063 2 166 4 831 2 165 2 666
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3.1.2 Estimation of the Combined Error

The error statistics is based on the comparison of the retrieved and smoothed (comparable to
ECMWF vertical grid resolution) refractivity profiles with co-located refractivity profiles derived
from 6-hourly operational meteorological analysis fields from ECMWF. The co-located vertical
ECMWF profiles were calculated at a fixed mean tangent point location. When regarding the
ECMWF profiles as the truth this implies that the error estimates represent an upper bound
error estimate including the observation error, the model (ECMWF) error and the representa-
tiveness error. The representativeness error stems from the limited spatial and temporal model
resolution and from the comparison of the retrieved profiles with vertical reference profiles. This
fact becomes important in the troposphere below ∼ 7 km, where higher horizontal variability is
present (Foelsche and Kirchengast, 2004; Syndergaard et al., 2004). Since we will not interpret
results below 5 km, the representativeness errors to this end are largely negligible.

The statistical method for calculating the deviation of CHAMP from ECMWF (xCHAMP −
xECMWF), denoted as combined error (CHAMP observed error plus ECMWF model error), is
described in detail in Steiner and Kirchengast (2004). Bias profiles and error covariance matrices
are provided, the latter separated into standard deviation profiles and error correlation matrices.

The resulting error statistics for the combined refractivity error is shown in Figures 17 and
18 with MSIS and ECMWF initialization, respectively. The pressure, geopotential height, and
temperature errors based on data initialisation with ECMWF analyses are shown in Figures
19 to 21. These plots represent the global ensemble and the latitudinal data sets (horizontal
panel rows), globally (left), for the Northern Hemisphere (middle), and the Southern Hemi-
sphere (right) up to 35 km height for the JJA 2003 season (solid) and for the DJF 0203 season
(dashed). For refractivity and pressure the relative bias (green) and the relative standard de-
viation (Rel.StdDev) (black) of CHAMP RO with respect to ECMWF are shown, whereas for
geopotential height and temperature the absolute bias (green) and absolute standard deviation
(black) are shown.

In Figure 17 the relative refractivity bias of CHAMP RO with respect to ECMWF oscillates
around −0.4 % at 5 km to 25 km globally as well as at mid- and high latitudes, increasing to
0.5 % to 1 % at 35 km. Bias oscillations are seen at low latitudes, ranging from −0.4 % to 0.5 %
at 5 km to 35 km with salient structures appearing at tropopause heights. This effect may
partly be due to the higher resolved tropopause in CHAMP RO data than in ECMWF data
(RO resolution ∼ 1 km at that altitude, ECMWF analyses > 1.3 km) but may also stem from
a weak representation of tropopause height variability in the ECMWF analysis fields (Gobiet
et al., 2005). The most prominent features can be seen in SH winter at high latitudes (lower left
panel), which is an indication that the ECMWF field does not accurately represent the polar
vortex in this region (Gobiet et al., 2005). The smallest bias occurs at NH high latitudes (lower
middle panel) being −0.3 % at 5 km to 25 km in DJF0203 almost vanishing in JJA 2003.

The combined Rel.StdDev is of the order of 0.7 % to 1 % at 5 km to 28 km height globally
and at low latitudes (NH and SH). At mid- and high latitudes the Rel.StdDev shows different
behavior in the winter hemisphere and in the summer hemisphere at upper stratospheric heights,
being 0.75 % to 1 % at 20 km to 34 km in summer becoming twice as large (∼ 2 % at 35 km) in
winter. This may partly be due to the larger atmospheric variability in winter and is subject to
further investigation.

Figure 18 shows the combined refractivity error as a function of MSL altitude. Basically the
same features are prominent as in Figure 17. The main difference is that the relative refractivity
bias stabilizes above 25 km due to the ECMWF background data used in the initialization. The
bias oscillates around −0.3 % globally and around −0.4 % at middle latitudes at 5 km to 35 km.

The combined Rel.StdDev is of the order of 0.6 % to 1 % at 5 km to 35 km altitude globally
and at low latitudes (NH and SH). At mid- and high latitudes the Rel.StdDev shows a similar
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but not as marked behavior as in Figure 17 regarding the differences in the winter hemisphere
and in the summer hemisphere. In the summer hemisphere the combined Rel.StdDev is of the
order of 0.6 % to 0.7 % at 5 km to 26 km increasing to 1 % (1.5 %) at 30 km (35 km) altitude. In
winter above 20 km altitude the Rel.StdDev increases to 1 % at about 25 km, up to 1.5 % (1.9 %)
at 35 km at mid-latitudes (high latitudes).

Figure 19 shows the combined pressure error as a function of MSL altitude. The relative
bias increases from 0 at 5km to −0.3 % (−0.4 %) at 15 km, then decreases to about −0.1 % at
30 km altitude for the global (mid-latitude) data set. At high latitudes the relative bias is of the
order of −0.3 % between 7 km and 31 km, showing a twice as large difference between NH winter
and NH summer, and the above discussed oscillating structure in SH winter. The relative bias
at low latitudes is about 0.3% at 5 km changing to −0.3 % at 15 km and keeping constant at
about 0.2 % above 16 km altitude.

The Rel.StdDev shows the same structure for the global and the latitudinal data sets above
about 10 km altitudes. It is about 0.3 % between 10 km and 15 km increasing to 1 % at 26 km
and to 1.7 % at 35 km altitude. At high latitudes a larger difference between summer and winter
is visible above 15 km altitude. In tropospheric altitudes differences occur with a Rel.StdDev
of 0.4 % at high latitudes, of 0.6 % globally and at mid-latitudes, and of 1 % at low latitudes at
5 km altitude. The seasonal differences at tropospheric altitudes are most pronounced in low
latitude.

Figure 20 shows the combined geopotential height error as a function of pressure altitude in
form of absolute bias and absolute standard deviation (StdDev). The overall structure of bias
and StdDev are the same as for the pressure error discussed in Figure 19 above.

For the global data set the bias is of the order of 20 gpm (geopotential meters) above 8 km
altitude. At low latitudes the bias extends to about 20 gpm at upper tropospheric/lower strato-
spheric heights, almost vanishing above 17 km altitude. At mid-latitudes the bias increases from
0 at 5 km altitude to 30 gpm between 10 km to 15 km altitude, then decreasing to 20 gpm at
25 km and to 0 at 35 km altitude. The high latitudes show a bias of about 20 gpm to 30 gpm
above 8 km altitude.

The StdDev is of the order of 20 gpm between about 8 km to 15 km increasing to 50 gpm at
25 km and to 110 gpm at 35 km altitude. As for pressure small latitudinal differences at tropo-
spheric heights are seen which range from 25 gpm at high latitudes to 50 gpm at low latitudes
at 5 km altitude. The differences in upper stratospheric heights regarding winter and summer
are not as marked as for pressure.

Figure 21 depicts the temperature error statistics based on difference profiles which are
determined by substracting IGAM/ECMWF retrieved temperatures from ECMWF co-located
temperature profiles. The temperature bias of CHAMP RO with repect to ECMWF oscillates
globally around 0 K at 5 km to 30 km, the oscillation stemming mainly from the prominent
features in SH winter at high latitudes due to the inaccurate representation of the polar vortex
in ECMWF analyses (see explanation above). Another significant error feature can be seen in
low latitudes at tropopause height with a temperature bias of the order of 1.5 K (confer Section
2.3).

The standard deviation for the global data set amounts to 2 K at 5 km and to ∼1K at
8 km to 15 km increasing to 2 K at 25 km and to 2.5 K at 35 km. At mid latitudes the 1-K
range extends from 8 km to 17 km, up to 28 km the standard deviation amounts to 1.5 K. The
standard deviation at low latitudes amounts to 3 K at 5 km decreasing to 0.8 K between 8 km
and 14 km, then increasing to 2 K at 25 km and to 2.8 K at 35 km. The high latitudes globally
show a standard deviation of 1 K between 7 km and 17 km increasing to 2 K at 25 km. Here,
the standard deviation above 20 km is bigger in the winter season than in the summer season.
Except for high latitudes no significant seasonal difference to the standard deviation occurs.
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Figure 17: Combined refractivity error as a function of height for the global and the latitudinal ensembles
(horizontal panel rows), globally (left), Northern Hemisphere (middle), Southern Hemisphere (right). Relative
bias (green) and relative standard deviation (black) are shown for the JJA 2003 season (solid) and for the DJF 0203
season (dashed), respectively. The refractivity retrieval (CCRv23) in this case is based on data initialization with
MSISE–90 climatology.
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Figure 18: Combined refractivity error as a function of MSL altitude, the refractivity retrieval (CCRv23) in
this case is based on data initialization with ECMWF operational analysis fields. Figure layout and style same
as Figure 17, see that caption for details.
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Figure 19: Combined pressure error as a function of MSL altitude, the retrieval (CCRv23) is based on data
initialization with ECMWF operational analysis fields. Relative bias (green) and relative standard deviation
(black) shown for the JJA2003 season (solid) and for the DJF 0203 season (dashed), respectively. Figure layout
same as Figure 17, see that caption for details.
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Figure 20: Combined geopotential height error as a function of pressure altitude, the retrieval (CCRv23) is
based on data initialization with ECMWF operational analysis fields. Absolute bias (green) and absolute standard
deviation (black) are shown for the JJA2003 season (solid) and for the DJF 0203 season (dashed), respectively.
Global and latitudinal ensembles (horizontal panel rows) are shown, globally (left), Northern Hemisphere (middle),
Southern Hemisphere (right).
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Figure 21: Combined temperature error as a function of MSL altitude for the global and the latitudinal ensembles
(horizontal panel rows), globally (left), Northern Hemisphere (middle), Southern Hemisphere (right). Bias (green)
and standard deviation (black) are shown for the JJA 2003 season (solid) and for the DJF 0203 season (dashed),
respectively. The retrieval (CCRv23) is based on data initialization with ECMWF operational analysis fields.
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3.1.3 Estimation of the ECMWF Error

In order to separate the observed error of the CHAMP RO refractivity retrievals from the
combined error, we calculated a global estimate of the ECMWF refractivity model error. M.
Fisher (ECMWF, Reading, U.K., pers. communications, 2004) provided global error estimates of
ECMWF analyses in form of standard deviations for temperature, specific humidity, and surface
pressure, and of vertical error correlations for temperature and specific humidity. Temperature
T [K], water vapor pressure e [hPa], and total pressure p [hPa] are related to refractivity N [N
units] via the Smith-Weintraub formula (Smith and Weintraub, 1953),

N = c1
p

T
+ c2

e

T 2
(1)

with the constants c1 =77.6 K/hPa and c2 =3.73·105 K2/hPa. Water vapor pressure in Equation
1 was substituted for specific humidity q [kg/kg] using the following relation,

e =
p · q

a + b q
(2)

with a =0.622 and b =0.378. A simple error propagation based on Equation 1 was applied via

∆N =

√

(

∂N

∂T
∆T

)2

+

(

∂N

∂q
∆q

)2

+

(

∂N

∂p
∆p

)2

(3)

in order to calculate the standard deviation of refractivity. The pressure error at a given height
was calculated by error propagation using the given standard deviation of surface pressure of
2.5 hPa. The vertical refractivity error correlations were derived by a weighted combination of
temperature error correlations (wT = ∆N(∆p, ∆T )/∆N(∆p, ∆q, ∆T )) and specific humidity
error correlations (wq = ∆N(∆q)/∆N(∆p, ∆q, ∆T )).

Figure 22 displays global ECMWF error specifications for temperature (left panels), specific
humidity (middle panels), and estimated refractivity (right panels). Standard deviations are
shown in the upper panel row and error correlation functions for three different height levels
(∼ 10 km, ∼ 20 km, ∼ 30 km for T and N ; ∼ 3 km, ∼ 6 km, ∼ 10 km for q) are presented in the
lower panel row.

We tested the sensitivity of the estimated refractivity error with respect to the tempera-
ture error input for the four cases displayed in Figure 22, where we multiplied the temperature
standard deviation (case 1×T in blue) by 1.5 (green), 2 (red), and 2.5 (black). The results
judged most reasonable were found for the case of doubling the temperature standard deviation
(2×T case), giving a Rel.StdDev of ECMWF refractivity of the order of 0.5 % at 8 km to 15 km
increasing to 0.75 % at 30 km and to 1 % at 35 km. These results are consistent with the find-
ings of Kuo et al. (2004) who performed an estimation of short-range forecast errors using the
Hollingsworth-Lönnberg method (Hollingsworth and Lönnberg, 1986). For comparison we in-
cluded their estimates for low latitudes (dotted) and mid-latitudes (dashed) in Figure 22 (upper
right panel).

3.1.4 Estimation of the Observation Error

The observed refractivity error was then derived by subtracting the ECMWF error from the
combined error in terms of variances s2,

s2
Obs = s2

combined − s2
ECMWF (4)
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Figure 22: ECMWF error for temperature (left) for 4 test cases (1×T , 1.5×T , 2×T , 2.5×T ), specific humidity
(middle), and corresponding estimated refractivity (right) in terms of standard deviation (upper panels) and error
correlation functions (lower panels), the latter shown for three heights (∼ 10 km (red), ∼ 20 km/humidity: 6 km
(blue), ∼ 30 km/humidity: 3 km (black)). Estimates of short-range forecast errors for refractivity for low latitudes
(dotted) and mid-latitudes (dashed) made in Kuo et al. (2004) are also shown (upper right panel).
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Figure 23: Rel.StDev of refractivity for JJA2003: combined (black diamond shaped symbols), ECMWF (blue
diamond shaped symbols), observed (red thick), model (red thin); global (left), NH (middle), SH (right).

The results are displayed in Figure 23 for the JJA 2003 season showing the combined error
(black with diamond symbols), the ECMWF error for the 2×T case (blue), and the corresponding
observation error (red) in terms of Rel.StdDev, respectively.

The corresponding global estimate of the observed Rel.StdDev for CHAMP refractivity (2×T
case) is of the order of 0.5 % at 6 km to 18 km, increasing to 0.7 % at 28 km and to 1.2 % at 35 km
(left panel). At upper stratospheric heights the observed Rel.StdDev is around 0.5 % at 10 km
to 32 km in summer (middle panel) whilst it reaches 1 % to 1.5 % in winter. Our observation
error appears to be a more conservative estimate compared to the results of Kuo et al. (2004),
who found the observation error of refractivity to be of the order of 0.3 % to 0.5 % at 5 km to
25 km.

As a further result, refractivity error correlation functions are displayed in Figure 24 for three
different heights, ∼ 10 km, ∼ 20 km, ∼ 30 km, representative for the troposphere, the lower, and
the upper stratosphere, respectively. Basically, these functions express the correlation of errors
at these heights with the errors in the remainder of the profile. The ECMWF refractivity error
correlation functions (dotted) show negative correlation features in the vicinity of the peaks
whilst the correlation functions for the combined error (solid with diamond shaped symbols)
show a flattening. These features suggest that the correlation wings are dominated by the
observed data.

For the construction of refractivity observation error covariance matrices for data assimilation
systems we therefore suggest a combination of the observed Rel.StdDev with the total error
correlation matrix. We provide simple analytical formulations of refractivity error covariance
matrices, which were deduced in a simulation study for a Metop/GRAS receiving system (Steiner
and Kirchengast, 2005). The functional formulations for Rel.StdDev and for correlation functions
depend on a few parameters, which can be fitted for any given data set. Table 3 summarizes the
functions. Using them for Rel.StdDev and approximating an exponential drop-off for the error
correlations, a simple covariance matrix model S for the observed refractivity error can then be
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Figure 24: Error correlation functions for the refractivity error: combined (solid line with diamond shaped
symbols), ECMWF (dotted), and analytical exponential drop-off model (solid) shown for three heights ∼ 30 km
(black), ∼ 20 km (blue), ∼ 10 km (red).

constructed via

S = sisj exp(−|zi − zj/L(z)|) (5)

Figure 23 visualizes the analytical functions (thin solid) for the observed Rel.StdDev (thick
solid) for the JJA 2003 season; Figure 24 those for the error correlation (thin solid). In order to
fit the seasonal behavior of the Rel.StdDev we adjusted the scale height of error Hstrat to 30 km
for summer (NH) and the bottom level of the stratosphere domain zstratbot to 18 km for winter
(SH). The validity of the fit regarding the upper height limit depends on the receiving system,
e.g., 35 km for CHAMP data and 50 km for Metop/GRAS (Steiner and Kirchengast, 2005).

3.2 Sampling Error due to Local Time Distribution

In the horizontal, the spatial measurement density depends on the temporal averaging period
and on geometrical properties of the measurement system. In case of CHAMPCLIM, one GPS
receiver on a LEO satellite with high orbital inclination yields some 150 globally well distributed
atmospheric profiles per day with higher density (referred to equal areas) at high latitudes and
lower density at low latitudes (confer Section 2.2.2).

Additionally, it is of interest to evenly sample the diurnal cycle. According to the orbit
parameters of CHAMP, the local time of the ascending and descending nodes is at about the
same time as the local time of the corresponding occultation events. With a change rate of ∼ 1
hour per 11 days of both nodes the diurnal cycle is ideally scanned within ∼ 130 days. This
implies that even seasonal means (90-92 day period) are not ideally sampling the diurnal cycle.

The lack of continuity in the coverage, leading to sampling error, is a characteristic problem
of (low earth-orbiting) satellite data. In terms of temperature data retrievals, the local time of
the occultation events plays an essential role because of distinct daily temperature variations. A
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Table 3: Rel.StdDev s(z) model for CHAMP refractivity with respective fitting parameters: ztroptop denoting
the top level of the ”troposphere domain”, zstratbot the bottom level of the ”stratosphere domain”, sutls the
Rel.StdDev between ztroptop and zstratbot, s0 the best-fit value for the Rel.StdDev at ∼1 km, Hstrat the scale
height of error, and L(z) the correlation length, respectively.

Relative Standard Deviation s(z)
Correlation
Length
L(z)

2km < z ≤ ztroptop
sutls+s0(1 km/z−

1 km/ztroptop)
sutls = 0.5 %

s0 = 4.5 %
L = 2 km

ztroptop < z < zstratbot sutls
ztroptop = 14 km

global/NH: zstratbot = 20 km
linear
decrease to
L =1 km at
z = 50 km

zstratbot ≤ z < 35km
sutls exp

[

(z −
zstratbot)/Hstrat

]

SH: zstratbot = 18 km
global/SH: Hstrat = 15 km

NH: Hstrat = 30 km

monthly shift of the local time of a certain (meridional) sector’s occultation events could dupe
a temperature trend without physical relevance – simply caused by an inappropriate sampling
interval. To explore the retrieved data behavior, the local time for each event (in units [hrs],
longitude λ in units [deg]) was calculated:

LocalTimeevent = UTCevent + λevent ·
24 hrs

360◦
(6)

3.2.1 Investigation of Monthly Local Time Distribution

To get an impression of the local time distribution of RO events, for the summer months June,
July, and August 2003 the local times for the profiles of each month were plotted depending on
the longitude of the events as shown on the left side of Figure 25. The graphs show that the
events are not uniformly distributed in time but tend to accumulate “twofold” during a month
with a time lag of roughly twelve hours in between. The time range of the event accumulation
varies about three hours from month to month, as can clearly be seen from the histograms on
the right side of Figure 25. While in June 2003 the peaks of the bimodal distribution of the
histogram occur around midnight (between 12 p.m. and 3 a.m.) and noon (12 a.m. to 3 p.m.),
while one month later in July 2003 the peaks move to late morning (between 9 a.m. to 12 a.m.)
and late evening (between 9 p.m. to 12 p.m.). This scheme applies to the remaining months as
well.

3.2.2 Investigation of Seasonal Local Time Distribution

As expected, the local time influence fades when seasons are considered instead of months. In
Figure 26 on the left side the better (although not yet ”perfect”) event distribution is shown for
the seasons DJF 0203 and JJA 2003 at the top and at the bottom, respectively. On the right
side, the histograms are shown in which two narrow gaps remain, while two broad peaks were
formed. The error contribution of the uneven local time sampling is still under investigation,
preliminary results, however, show that it is small compared to the general spatial sampling
error.
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Figure 25: Local time distribution of RO events June – August 2003. On the left hand side: Local time of radio
occultation events as a function of longitude. On the right hand side: Histogram of number of radio occultation
events within three hour time intervals. A time shift of approximately three hours per month is clearly visible.
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Figure 26: Local time distribution of RO events for the DJF 0203 and JJA 2003 seasons. On the left: Local time
of radio occultation events as a function of longitude. On the right: Histogram of number of radio occultation
events within three hour time intervals.
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4 Conclusions and Outook

This report from the second phase of the CHAMPCLIM project (CHAMPCLIM-2) presented
work on establishing a pre-operational retrieval and processing system for creating RO based
climatologies. Whereas the first part CHAMPCLIM-1 has achieved sufficiently validated data
processed by sufficiently advanced algorithmic chains, CHAMPCLIM-2 concentrated on creating
month-to-month, season-to-season, and year-to-year climatologies in a pre-operational way.

The algorithm for retrieving the CHAMP profiles has been modified by adding the calculation
of tropopause parameters including the lapse rate tropopause height and temperature and the
cold point tropopause height and temperature. Results have been shown, which demonstrate
the feasibility of the algorithm applied to the CHAMP data. Furthermore, the CHAMP data
were referenced to the geoid instead of the reference ellipsoid according to the specification of the
ECMWF reference data. Even though the effect is small and does hardly show up in zonal mean
temperature climatologies, by doing so a systematic improvement was brought to the retrieval
algorithm. As has been shown, the difference in temperature in special latitude slices may reach
up to 0.6 K. Parameters with exponential height variation, such as refractivity and pressure,
receive more marked improvement.

It is an indispensable prerequisite for the creation of RO based climatologies to first validate
the measurements as done in the CHAMPCLIM-1 part and then to determine the error of the
measurement. We presented an error analysis for CHAMP RO refractivity profiles, processed
with the WegCenter CCRv23 scheme, for two seasons, DJF 2002/03 and JJA 2003. The error
statistics were based on a comparison to reference profiles from ECMWF analysis fields, implying
that the statistics include both, the observation error and the ECMWF model error. In order
to separate the errors we performed an error estimation of the ECMWF error based on error
propagation of temperature, humidity, and pressure error into refractivity error. Finally, the
subtraction of the ECMWF error from the combined error allowed an estimation of the global
observation error. In addition to this error analysis we investigated the possible error resulting
from the local time sampling of the CHAMP satellite. However, evidence was found that the
discrete sampling of the CHAMP satellite in time, resulting in a bimodal distribution of the RO
measurements in the local time, has only a small influence on the sampling error.

Climatologies were set up with a gridding strategy in two different modes: one mode com-
prises a fixed number of equal-area longitude bins at all latitudes, leading to bin overlapping
at high latitudes, the other mode is defined with non-overlapping almost equal area bins with
a latitude dependent number of longitude bins. Climatologies were arranged in a 10◦×15◦ and
10◦×60◦ binning as well as in zonal means. In addition to the dry temperature CHAMP clima-
tologies, error fields were presented, which were derived with reference to ECMWF operational
analysis fields. Coarser gridding leads to smaller climatological error.

For the zonal mean climatologies, the climatological errors amount to typically < 0.5 K glob-
ally, except for some distinct regions. Above 30 km, the climatological error at most latitudes
exceeds 1 K, which may be attributed to both the CHAMP data and the ECMWF analysis fields.
In the southern polar vortex for season JJA 2003 the climatological error varies by about ± 3 K,
which is mainly due to insufficient representation of the polar vortex in the ECMWF analysis
field. Near the tropical tropopause the climatological error throughout both seasons consistently
amounts to around 1.5 K, which is probably due to weak representation of tropical tropopause
variability in the ECMWF analysis fields. Further studies in these respects are on-going. For the
purpose of characterizing and validating the pre-operational retrieval and processing system, the
results of this type of climate diagnostics with reference to ECMWF data are very encouraging
for proceeding as a next step to an operationalization of the system.
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