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Abstract.  This paper investigates the application of the 3D-Var methodology within a 
global climate monitoring framework. It studies the assimilation of GNSS radio occultation 
derived refractivity profiles into ECMWF analysis or short-term forecast fields as back-
ground. The system is tuned for high vertical and moderate horizontal resolution, best 
suited to the spatial characteristics of these satellite based measurements. The analyses are 
performed on a GCM-compliant Gaussian grid, comprising 60 model levels up to a height 
of ~60 km and a horizontal resolution corresponding to a triangular spectral truncation T42 
(i.e., T42L60). Within the system two different operational modes are implemented, the 
first updating a refractivity background, derived from ECMWF analysis fields, the second 
directly updating the ECMWF temperature, specific humidity and surface pressure fields. 
First results indicate a significant analysis increment, emphasising the ability of RO data to 
add independent information to ECMWF analysis fields. 

1  Introduction 

Relatively new measurement concepts like GNSS RO (Global Navigation Satellite 
System Radio Occultation) offer the opportunity to develop new processing tech-
niques and strategies to exploit the data in the best possible and most efficient 
way. The RO experiment on-board CHAMP (e.g., Wickert et al. 2004) is the first 
system, which delivers continuous observations on a quasi-operational basis, pre-
paring the ground for the first RO-only based global climatologies. With the 
GRAS (GNSS Receiver for Atmospheric Sounding) sensor on-board the MetOp 
(Meteorological Operational) satellite (e.g., Loiselet et al. 2000) a fully opera-
tional system delivering RO observations will be available from 2006 onwards. 
On the other hand, the development of NWP systems during the last years im-
proved the forecast skill and the quality of the analyses continuously. Thus it 
would be interesting to use the same methodology as used by NWP, to introduce 
data into the model (in our case via 3D-Var), first working with single sets of ob-
servations, later with whole climatologies, in order to study the increments of 
monthly and seasonal mean fields. 
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2  3D-Var System Implementation 

2.1  Coordinate System 

A GCM (Global Circulation Model) compliant Gaussian grid corresponding to 
T42L60, i.e., 64 latitude × 128 longitude grid points, comprising 60 vertical model 
levels is used. The vertical coordinate system is based on the hybrid pressure co-
ordinate provided by ECMWF analysis fields. From this basic vertical coordinate 
system, grids of geopotential height and geometric height (over reference ellip-
soid) can be derived. The assimilation scheme can be used either with geometric 
height or geopotential height. 

2.2  N and TQPsurf Analysis 

The whole system can be run in two different modes. The first one performs a re-
fractivity analysis (N analysis scheme), which means that refractivity observations 
are assimilated into a refractivity background. This background field is derived 
from ECMWF temperatures, specific humidity, and surface pressure fields using 
basically the same operators, which are used in the TQPsurf version of the assimila-
tion scheme. This operation is performed at the beginning of the procedure, during 
the assimilation itself only the interpolation operators are used. The TQPsurf ver-
sion of the assimilation scheme directly updates the temperature, specific humid-
ity, and surface pressure background fields, which means that all fields are inter-
polated separately. At each successful iteration, the new pressure field has to be 
derived from the updated surface pressure field, and the refractivity has to be cal-
culated at the location of the observation. After comparison of background refrac-
tivity (also denoted as model observation) and observation, the gradients of the in-
put fields and observations are calculated and a suitable correction is applied. 

2.3  Incremental 3D-Var 

The solution of the minimization problem can be performed either in terms of full 
cost function fields J(xa ) or in terms of an analysis of increments 

J(xa)  =  J(x´a = xa – xb), (1) 

where xa and xb are the analysis and the background state, respectively, and the 
prime superscript denotes the (1st order) increment. We chose the latter solution 
method, which provides optimal analysis increments, which are added to the un-
modified background field. This procedure has a number of advantages like the 
use of linearized control variable transforms, which allow the straightforward use 
of adjoints to calculate the gradient of the cost function. Another advantage is that 
any imbalance introduced through the analysis procedure is limited to the small 
increments, which are added to the balanced first guess. 
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2.4  Control Variables 

The control variables used in the analysis are temperature, specific humidity, and 
surface pressure, or refractivity transformed to logarithmic (LOG) space, to get a 
better conditioned problem, within the refractivity-only assimilation framework. 
In order to avoid negative specific humidities in the analysis and to get a better 
conditioned problem, the specific humidity is also transformed to and analyzed in 
LOG space. The cross correlations between the control variables are assumed to 
be small enough to be neglected. This assumption serves to effectively block-
diagonalize the background error covariance matrix. For each control variable 
there still remains both, horizontal and vertical correlations. Those are assumed to 
be separable, which is a reasonable and widely used assumption. 

Control Space Transformations 

For a model state x with n degrees of freedom, minimization of the cost function 
requires O(n²) calculations (Bouttier and Courtier 1999), thus becoming prohibi-
tively expensive for usual n’s. One practical solution to this problem is to perform 
the minimization in a control variable space v given by 

x = U v. (2) 

The transform U has to be chosen in a way that 

B = U UT (3) 

is approximately satisfied. In the control space v the number of required minimi-
zation calculations is reduced from O(n²) to O(n). Furthermore, by using the trans-
form Eq. (3), the background error covariance matrix becomes 

Bv = I, (4) 

hence effectively preconditioning the problem. I denotes the identity matrix, Bv 
the vertical background error covariance matrix. In terms of increments, the con-
trol variable transform can be written as 

x′ = U v. (5) 

The inverse transformation 

v = U–1 x′ (6) 

can be specified in different ways. The definition must provide a way to break 
down the atmospheric state x into uncorrelated but physically realistic error 
modes, which can be penalized in Jb according to their estimated error magnitude 
(Barker 1999). See Löscher (2004) for more details. 
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Recursive-Filter Representation of Background Error Covariances 

The control variable transform uses the identity B BT to define a transform 
x′ = Uv, which relates preconditioned control variables v to analysis increments in 
x′ in model space. The horizontal component Uh, defined by 

Bh = Uh Uh
T, (7) 

is realized by scaled recursive filters (RF). The RF has to be applied in a non-
dimensional space (e.g., Lorenc 1992). 

2.5  Minimization 

The cost function is minimized by using an iterative descent algorithm, which is in 
our case the L-BFGS-B routine, a quasi-Newton method. The cost of the analysis 
is proportional to the number of cost function and its gradient evaluations, denoted 
as simulations. If a new state x is found, an iteration is performed, which means 
that to find a new x, several simulations may be required. See, e.g., Byrd et al. 
(1994) for details. 

2.6 Observation Operators 

Horizontal Interpolation 

The bi-linear interpolation consists of a weighted average of the four surrounding 
grid points to determine their interpolated value. Two linear interpolations on op-
posite sites are performed followed by a consecutive interpolation of these inter-
mediate results. This horizontal interpolation is performed for the atmospheric 
layer above and below any given observation point. 

Vertical Interpolation 

Due to the fact of a globally non-uniform vertical grid, the heights of the horizon-
tally interpolated values are also calculated by bi-linear interpolation from the ver-
tical background grid. Given the interpolated background values above and below 
the spatial location of a given observation, a logarithmic vertical interpolation is 
finally performed to get the value of the background at the location of the observa-
tion. Generally interpolation needs great care to ensure negligible residual interpo-
lation errors. 

Vertical Coordinate Operator 

The location of the observation is needed to calculate the refractivity. ECMWF 
provides temperature, specific humidity, and surface pressure fields. The back-
ground pressure field is derived by a series of operators. These operators are also 
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used to set up the vertical coordinate system of the assimilation scheme either as a 
vertical grid of geopotential heights or a vertical grid of geometric heights, respec-
tively. Since the pressure field is also derived, pressure coordinates are possible as 
well but not implemented at the moment. The values of Ti,j,k and specific humidity 
qi,j,k are given for the Gaussian grid of the latitudes φj and the homogenous grid of 
the longitudes λi, and an irregularly spaced height grid zi,j,k. For the T42L60 grid, 
the index ranges are I = 1...64, j = 1...128, and k = 1...60 for full level quantities 
and k = 0...60 for half level quantities. The pressures corresponding to the kth half 
and full levels are calculated by the means of standard formulae (e.g., Roeckner et 
al. 2003). The calculation of the geopotential heights is based on the hydrostatic 
equation and on an interpolation between the half and the full levels (Gorbunov 
and Kornblueh 2003). The geometrical heights over reference ellipsoid are calcu-
lated from the geopotential heights by the approximate formula of the US Stan-
dard Atmosphere (Gorbunov and Kornblueh 2003). 

Refractivity Operator 

To calculate the refractivity N at any point, it is required to know the variables 
temperature T [K], specific humidity q or water vapor pressure e [hPa], and pres-
sure p [hPa] or dry air pressure pA [hPa]. There are two standard formulae used, 
the Thayer and Smith-Weintraub formulae (e.g., cited in Kursinski et al. 1997). 
The Thayer formula is slightly more accurate, the Smith-Weintraub formula is ba-
sically the same but assumes an ideal gas (compressibility factors ZA,W neglected). 
k1, k2, k3 are the refractivity formula constants (e.g., Kursinski et al. 1997). 

 

Thayer formula: 
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Smith-Weintraub (3 terms) formula: 
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2.7  Calculation of Refractivity Fields from ECMWF Analyses 

Given the fields of temperature, specific humidity, and surface pressure (in our 
case analysis fields of ECMWF), we can calculate the field of refractivity using ei-
ther the Thayer or Smith-Weintraub formula. A comparison of the two formulae 
shows no significant differences, which is also true when compared with CHAMP 
refractivity data, but because of negligible additional computing cost, the more ac-
curate Thayer formula was chosen to calculate the background in the case of pure 
refractivity assimilation, and as forward operator to calculate refractivity from 
temperature, humidity, and surface pressure fields. To derive the error characteris-
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tics in case of the pure refractivity assimilation scheme, the Smith-Weintraub for-
mula was used. 

3  Error Formulation 

3.1  Observation Error Covariance 

The observation error covariance only takes vertical correlations into account. Due 
to the separation in space and time between the different RO events (mean dis-
tances generally >300 km, time differences >1.5 hrs) this simplification is justi-
fied. 

Formulation of the Observation Error Covariance Matrix 

A simple error covariance matrix formulation was deduced from the empirical es-
timated matrices following Steiner and Kirchengast (2005). A least-squares 
method was used to fit analytical functions to the relative standard deviation, 
which shows a different behavior below and above the tropopause height zTropo. 
The empirical relative standard deviation Sz can be approximated with an expo-
nential increase above zTropo, Eq. (10), and with a decrease proportional to (1/z) be-
low zTropo, Eq. (11). zTropo is defined here globally at 15 km; simplified from 
Steiner and Kirchengast (2005) no constant error range around 15 km is used in 
this study. To be able to scale the error magnitude, which is receiver dependent, 
the tropopause standard deviation sTropo can be tuned, we used 0.4 % based on ex-
perience with CHAMP data. Eq. (10) gives the exponential function for the rela-
tive standard deviation above zTropo, with the parameter HStrato, which is the scale 
height of the error increase over the stratosphere. The value for global HStrato was 
set to 11.9 km for the error scale height (Steiner and Kirchengast 2005). 

Sz = sTropo exp[(z – zTropo) / HStrato], z ≥ zTropo (10) 

Eq. (11) gives the analytical function for the relative standard deviation below 
zTropo, where the near-surface (z~1 km) error s0 = 4.46 %. 

Sz = sTropo + s0 (z–1 – z–1
Tropo), z < zTropo (11) 

This formulation of the observation error covariance also accounts for the error of 
representativeness, thus no additional specification of this is necessary within the 
assimilation framework. A somewhat improved representation of the observation 
error is presented by Steiner et al. (2006), based on a CHAMP data error analysis. 
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3.2  Background Error Covariance 

The used background fields of temperature, specific humidity, and surface pres-
sure were provided by ECMWF. Thus the basis of our considerations concerning 
the background errors and their correlations are based on ECMWF recommenda-
tions (M. Fisher, ECMWF Reading, UK, pers. communications, 2003). For the re-
fractivity assimilation scheme, the error characteristics have been derived using 
error propagation techniques. The relative standard deviation ranges from ~1.5 % 
at the surface to ~0.8 % at the uppermost levels with a peak of ~2.8 % within the 
troposphere; see Löscher (2004) for details. 

4  First Results 

Among a large number of smaller simulation experiments (Löscher 2004), a quasi- 
operational run was performed for the “testbed month” August 2003. The com-
plete August 2003 was processed day-by-day, dividing each day into four assimi-
lation windows of 6 hours per day, using the corresponding ECMWF analyses as 
first guess. This translates into 31 independent time slices, around 00 UTC, 
06 UTC, 12 UTC, and 18 UTC, delivering 124 analyses over the month. The 
global quite even distribution of the 4482 CHAMP RO profiles (about 150 profiles 
per day) of August 2003 (see Fig. 1), comprises 245 220 single observational val-
ues. 

A lower cut-off height of 5 km was chosen, based on other studies suggesting 
that the CHAMP data quality degrades rapidly below 5 km. This problem has to 
be solved at retrieval level by advanced wave optics methods (e.g., Jensen et al. 
2003) to enable effective use of observations below 5 km. The analysis fields were 
averaged separately for each time layer of each day and in addition a total monthly 
mean was derived by averaging the time layer means. These averaged fields were 
compared to the corresponding monthly mean analysis fields of ECMWF. This 
procedure was applied for the refractivity and the temperature, specific humidity, 
and surface pressure assimilation schemes. The minimization process was stopped 
after 20 cost function and gradient evaluations (a number based on extensive sen-
sitivity and convergence tests), leaving some safety margin, which practically 
meant that about 5 to 6 successful iterations were found sufficient for completing 
the analysis within each assimilation time window. The comparison between the 
two assimilation schemes (N and TQPsurf), agrees well, especially above the tropo-
sphere. 

As an alternative approach concerning the choice of the ECMWF background 
fields, short-range (24 hr and 30 hr) forecasts and the corresponding error charac-
teristics will be used in future. This will be a better choice of background data for 
climate monitoring applications and climate studies, since the short-term forecasts 
will provide physically consistent atmospheric states independent of details of the 
initial condition analysis, which in future will presumably have assimilated radio 
occultation data itself routinely via ECMWF’s analysis and prediction system 
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(Healy and Thépaut 2005). Another possible approach might be the derivation of 
first guess fields from reanalysis projects like ERA40 (ECMWF 40 year Re-
analysis), taking a time frame of the last 20 years into account. 

As an example of the preliminary assimilation results (see Fig. 2), the incre-
ment of the total refractivity assimilation (mean of all time layers) for August 
2003 for a model level near 20 km height is shown. It can be seen that any non-
persistent deviations are vanishing within the monthly mean delivering a neutral 
result, leaving only a significant increment over the southern high latitudes. As the 
RO observations are an independent source of information, these results indicate a 
systematic deviation within certain regions of the ECMWF analysis fields. A bias 
within the RO refractivities themselves cannot currently be excluded from the 
considerations (we applied a 0.4 % correction prior to the assimilation experi-
ments); cf., the error analysis results of Steiner et al. (2006); improved retrieval 
algorithms are expected to solve this problem. On the other hand, a systematic de-
viation introduced by the observations would be expected to be globally evenly 
distributed (see Fig. 1). This not being the case, strengthens evidence of a system-
atic deviation within certain regions of the ECMWF background data. This evi-
dence is roughly consistent with the significantly more elaborated inter-
comparison of seasonal mean RO-only climatologies of dry temperature and re-
fractivity with the corresponding ECMWF fields (Gobiet et al. 2005; Borsche et 
al. 2006). Next steps of the work are further advancement of the assimilation 
scheme and larger-scale application to longer radio occultation datasets, using 
ECMWF short-range forecasts as background. 

5  Conclusion 

The first results are promising and show that the information content of RO data is 
not redundant, thus the observations introduce useful information in ECMWF 
analysis fields. Furthermore, these findings suggest that the operational use of RO 
data within NWP frameworks yields a promising perspective for the future (see 
also Healy and Thépaut 2005). In that respect especially the stratospheric tempera-
ture information seems to have a significant impact. A variational climate moni-
toring framework based on RO data will provide the opportunity to study incre-
ments over time, and gain insight into the characteristics of the used background 
fields. First-guess fields from re-analysis data might be another interesting back-
ground option in the future, to be independent from operational model updates. 
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Fig. 1.  Geographic distribution (longitude vs. latitude map) of the 4 482 occultation pro-
files used within the assimilation experiment covering August 2003. 

 
 

Fig. 2.  Increment of the refractivity assimilation of August 2003 between analysis and 
ECMWF background (monthly mean of all time layers) in a longitude-latitude map for 
model level 40 (z ~20 km). 
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