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[1] Radio occultation (RO) observations using the Global Navigation Satellite System
(GNSS) globally provide high quality atmospheric data which can support the
advancement of climate monitoring and modeling as well as the improvement of
numerical weather prediction. In order to make optimal use of the data, e.g., via data
assimilation systems, the characterization of measurement errors is of importance. Within
this context we present results of an empirical error analysis based on quasi-realistically
simulated GNSS RO data. The study is based on an end-to-end forward-inverse
simulation involving (1) modeling of the neutral atmosphere and ionosphere,
(2) simulation of RO observations, (3) forward modeling of excess phase observables
including realistic observation system error modeling, and (4) retrieval of atmospheric
parameters. Occultation observations were simulated for one day from which an ensemble
of 300 occultation events was chosen, with 100 events in each of three latitude bands (low,
middle, high). Phase path profiles were computed showing a realistic rms error of the
ionosphere corrected phase paths of 2–3 mm at mesospheric and stratospheric heights
at 10 Hz sampling rate. Atmospheric profiles were retrieved by applying a dry air retrieval
in the stratosphere and an optimal estimation retrieval in the troposphere. The retrieved
profiles were referenced to the ‘‘true’’ co-located ones of the analysis field of the European
Centre for Medium-range Weather Forecasts (ECMWF). We empirically estimated bias
profiles and covariance matrices (standard deviations and correlation functions) for the
retrieval products such as bending angle, refractivity, pressure, geopotential height,
temperature, and specific humidity. Results include the refractivity error showing a
relative standard deviation of 0.1–0.75% and a relative bias of <0.1% at 5–40 km height.
Temperature exhibits a standard deviation of 0.2–1 K at 3–31 km height and a bias of
<0.1–0.5 K below 33 km and of <0.1 K below 20 km. Simple analytical error covariance
formulations are presented for refractivity, as deduced from the empirically estimated
covariance matrices. The reasonably realistic error estimates presented are a good basis for
further retrieval algorithm improvements and for proper specification of observational
errors in data assimilation systems.
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1. Introduction

[2] The GNSS RO technique is based on active limb
sounding using a satellite-to-satellite radio link to probe the
Earth’s atmosphere. The GNSS-transmitted radio signals are
influenced by the atmospheric and ionospheric refractivity
field during their propagation to a receiver on a Low Earth
Orbit (LEO) satellite. Observed excess phases (relative to
propagation in vacuum) are the basis for high quality retriev-
als of atmospheric variables such as bending angle, refrac-
tivity, density, pressure, geopotential height, temperature,
and water vapor as well as of ionospheric electron density.

[3] Briefly, the processing proceeds along the following
main steps. The time derivation of measured excess phase
time series yields Doppler shift profiles. From the Doppler
shift and from precise orbit information (satellite positions
and velocities) bending angle profiles as function of impact
parameter are derived. Ionospheric influences are removed
by linear combination of the dual-frequency measurements
either on phase path level or on bending angle level. A high
altitude initialization of bending angle profiles is involved
in order to prevent errors at mesospheric heights from
degrading accuracy in the lower stratosphere. The retrieval
of refractivity profiles from bending angles is based on the
Abel inversion involving the assumption of local spherical
symmetry about the profile location. Density, pressure, and
temperature profiles can then be deduced from refractivity
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employing the equation of state and the hydrostatic equation
in a dry atmosphere (temperatures < 250 K). The retrieval
of specific humidity and temperature profiles in the
troposphere requires auxiliary background information. A
detailed description of the data processing methodology is,
e.g., provided by the review of Kursinski et al. [1997],
complemented by the more technical description of Hajj et
al. [2002].
[4] Originating from planetary radio science [e.g.,

Fjeldbo and Eshleman, 1965, 1969] the first practical
application of the RO method to the terrestrial atmosphere
was successfully demonstrated with the U.S. Global
Positioning System Meteorology (GPS/MET) experiment
[Ware et al., 1996]. The strengths of the technique include
all-weather capability, long-term stability, global coverage,
and high accuracy and vertical resolution. Analysis and
validation of GPS/MET data confirmed that the highest
quality of the retrieved variables is achieved in the upper
troposphere and lower stratosphere region with an (upper
bound) accuracy in refractivity of <0.4%, in temperature of
<1 K [Kursinski et al., 1996, 1997; Rocken et al., 1997;
Steiner et al., 1999], and in geopotential height of <20 m
[Leroy, 1997]. The accuracy in specific humidity in the
lower to middle troposphere is of the order 0.2–0.5 g/kg
[Kursinski and Hajj, 2001].
[5] Ongoing GPS RO experiments are placed on board

the German CHAMP satellite [Reigber et al., 2002; Wickert
et al., 2001] and the Argentine SAC-C satellite [e.g., Hajj et
al., 2004]. The validation of CHAMP RO data with
corresponding weather analyses profiles revealed an ensem-
ble mean agreement of <0.4 K between 10–35 km height
with a standard deviation of �1 K at 10 km increasing to
�2 K at 30 km height [Wickert et al., 2004]. The precision
of RO data was investigated by Hajj et al. [2004], who
performed an inter-comparison of nearby CHAMP and
SAC-C temperature retrievals, which were found to be
consistent to <0.1 K in the mean, and to 0.86 K in the
standard deviation, between 5–15 km height.
[6] These results demonstrated the suitability of RO data

for global climate monitoring and modeling and indicated
their potential to make a vital contribution to the Global
Climate Observing System [GCOS, 2003]. Such a contri-
bution is studied by GNSS RO observing system simulation
experiments (OSSE) [Steiner et al., 2001; Foelsche et al.,
2003] and by climatological exploitation of RO data from
GPS/MET [Schroeder et al., 2003] and CHAMP [Schmidt
et al., 2004; Foelsche et al., 2005]. It is planned to be
fully realized by future RO constellation missions such as
COSMIC [Rocken et al., 2000; Lee et al., 2001] and
potentially ACE+ (Atmosphere and Climate Explorer)
[Hoeg and Kirchengast, 2002; Kirchengast and Hoeg,
2004]. Regarding weather forecasting, Kuo et al. [2000]
confirmed that the assimilation of RO data has the potential
to significantly improve the accuracy of global and regional
analysis and weather prediction, which is subject to inves-
tigation in assimilation studies [e.g., Eyre, 1994; Zou et al.,
2000; Collard and Healy, 2003; Healy et al., 2005].
[7] One important issue in this respect is the knowledge

on RO observation errors, which has also been addressed by
Kuo et al. [2000] regarding the need for a better error
characterization. Syndergaard [1999] investigated in a the-
oretical analysis the step-by-step covariance propagation

from excess phase profiles via Doppler shift, bending angle,
refractivity and pressure to temperature profiles. Palmer et
al. [2000] presented an optimal estimation inverse method
for the simultaneous retrieval of temperature, specific
humidity and surface pressure from bending angle data with
an error analysis emerging from the optimal estimation
theory [Rodgers, 2000]. The practical application of this
method to GPS/MET bending angles was carried out in a
follow-on study by Palmer and Barnett [2001] including
assumptions of simple background and measurement error
covariances with correlations being neglected. A complete
theoretical error analysis and characterization, based on
optimal estimation methodology and accounting for error
correlations, was performed by Rieder and Kirchengast
[2001b]. Starting with excess phase error profiles, the
properties of bending angle, refractivity, pressure, and dry
temperature profiles were assessed and their covariance
structure and correlation functions were analyzed.
[8] Within this context we present results of an ensemble-

based empirical error analysis, which involves quasi-
realistically simulated GNSS RO data and provides a
complete error characterization for each retrieval product,
including profiles of bending angle, refractivity, pressure,
geopotential height, temperature, and specific humidity.
The purpose of the work is to provide reasonably realistic
error estimates of covariance matrices and, in addition to
the above described previous studies, on bias profiles.
Estimations of the latter are not possible with the optimal
estimation approach [Rodgers, 2000], which could only
linearly propagate pre-specified biases such as it propagates
statistical errors [e.g., Rieder and Kirchengast, 2001b]. The
present empirical approach, estimating the error statistics
from Monte Carlo-type ‘‘retrieved-minus-true’’ profile
ensembles, allows for both non-linearities and the natural
emergence of biases throughout the end-to-end simulation
chain, without the need for error pre-specifications.
[9] The study is based on an end-to-end forward-inverse

simulation involving modeling of the neutral atmosphere
and ionosphere and simulation of radio occultation events
(section 2), forward modeling of excess phase observables
including realistic observation system error modeling
(section 3), and retrieval of atmospheric parameters
(section 4). In section 5 a brief description of the error
analysis scheme is given and the results of the empirical
error statistics for each retrieval product, comprising bias
profiles, standard deviation profiles and correlation func-
tions, are presented and discussed. One practical result of the
study is the specification of simple analytical observation
error covariance matrices for refractivity, which is described
in section 6, where also the applicability to other parameters
beyond refractivity is discussed. Section 7 finally summa-
rizes the findings and conclusions of the study and provides
a brief outlook to further investigations.

2. Ensemble Design and Simulations

[10] The simulation of the data ensemble, from occulta-
tion event simulations via excess phases to atmospheric
retrieval products, was performed with the End-to-end
GNSS Occultation Performance Simulator (EGOPS)
[Kirchengast et al., 2002]. Quasi-realistic atmospheric and
ionospheric models as well as realistic error characteristics
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were involved in order to obtain reliable simulated occul-
tation data.
[11] Occultation events were simulated for one day,

September 15, 1999, adopting the planned European Mete-
orological Operational satellite (METOP) [Edwards and
Pawlak, 2000] as Low Earth Orbit (LEO) satellite and its
GNSS Receiver for Atmospheric Sounding (GRAS) [ESA/
EUMETSAT, 1998; Silvestrin et al., 2000] as sensor. Rising
and setting occultation events were taken into account
employing the GPS satellites as transmitter system. The
number of simulated events for this day was 574 in total. In
order to save computation time with respect to the time
consuming forward modeling, we chose an ensemble of
300 occultation events equally distributed in space and time
with 100 events in each of three latitude bands, low (�30�
to +30�), middle (±30� to ±60�), and high (±60� to ±90�)
latitudes. Figure 1 illustrates the distribution of these
300 profiles, which were used for the following simulations
and error analysis.
[12] The atmospheric modeling was based on an

ECMWF operational analysis field (Sept. 15, 1999,
12 UT) used as reference atmospheric state for the simu-
lations, with resolution T213L50 (operational resolution at
ECMWF in Sept. 1999, �60 km � 60 km horizontal grid
spacing, 50 vertical levels up to 0.1 hPa, i.e., �65 km
height). This horizontal sampling of the model field is about
5 times higher than the along-ray horizontal resolution of
RO data of about 300 km [e.g., Kursinski et al., 1997] and is
capable of representing weather features such as frontal
systems, but smaller scale horizontal variations are no
longer resolved. Figure 2 shows exemplary slices of tem-

perature and specific humidity, extracted from the ECMWF
operational analysis field, which indicate the reasonably
realistic nature of the model for the purpose of the study.
Proper computation of the atmospheric variables of interest
(refractivity, temperature, etc.) at arbitrary locations within
the gridded ECMWF field, as needed for this study, is part
of the EGOPS atmospheric models software [Kirchengast et
al., 2002].
[13] The ionosphere was prescribed with the NeUoG

model, which is a global empirical solar-activity and local-
time dependent 3D climatological model of the ionospheric
electron density field developed by Leitinger et al. [1996]; a
moderate solar activity index F10.7 = 130 was supplied to the
model for the present study. The model does not account for
small scale irregularities, which has to be taken into account
when interpreting the results of this study. NeUoG was of
good use already in other occultation-related studies [e.g.,
Leitinger and Kirchengast, 1997; Steiner et al., 2001; Gobiet
and Kirchengast, 2004].

3. Phase and Doppler Observables

[14] The geometry for each occultation event was calcu-
lated based on Keplerian orbits. Based on geometric optics
forward modeling of the signal propagation through the
atmosphere-ionosphere system was performed with a sub-
millimetric precision 3D ray tracer providing signal
profiles as seen by the sensor. Since ray tracing stops at
multipath situations in the lower troposphere in case of
sharp vertical gradients, this study does not include multi-
path and diffraction effects, which has to be kept in mind

Figure 1. Distribution of the 300 occultation events used in the study; rising occultations (triangles),
setting occultations (upside-down triangles), latitude circles delimiting selected latitude bands (heavy
dashed lines). For each individual event (inspect, e.g., the event at the equator at about �110 deg
longitude as a clear example), small lines give an indication of the ‘‘verticality’’ of the event (the shorter
the tangent point trajectory/heavy line, the more vertical) and of the occultation plane orientation
(orientation of the parallel light solid lines), respectively.

D15307 STEINER AND KIRCHENGAST: ERROR ANALYSIS FOR GNSS OCCULTATION DATA

3 of 21

D15307



when interpreting the results at heights below 5 km in the
lower troposphere.
[15] Observation system modeling was subsequently

performed to superpose instrumental and raw processing
system effects on the forward modeled signal. The results
are fairly realistic excess phase path profiles reflecting the
GRAS receiving system performance [Silvestrin et al.,
2000; Ramsauer and Kirchengast, 2001]. Modeling of
the observation system error characteristics comprises
precise orbit determination (POD) errors, antenna pattern,
local multipath, receiver thermal noise, and clock instabil-
ities. The POD error model contains satellite positioning
and velocity errors with the along-ray velocity error of
0.05 mm/s being the dominant error source. The radial
position errors of the GPS and the LEO satellites were fixed
at 0.2 m and at 0.4 m, respectively, a conservative bound for
modern POD performance. Receiver noise was modeled as
white Gaussian noise for a LEO antennae noise temperature
of 150 K and a loop bandwidth (single-side) of 10 Hz. Local
multipath effects were modeled using a sinusoidal shaped
function with the multipath phase error amplitude set to
0.5 mm and the multipath phase error period set to 100 sec.
The modeling of clock errors, representative of the perfor-
mance of high-quality ultra-stable oscillators (USOs), was
based on a random walk model and a ground-based single-
differencing clock correction method with the relative

stability of the ground clock set to a 1-sec Allan deviation
of 1 � 10�13. Ramsauer and Kirchengast [2001] performed
a thorough error budget analysis for a GRAS-type receiving
system and more details can be found therein.
[16] Figure 3 (left column) shows the ionosphere-

corrected excess phase path LC for the global ensemble
(Figure 3a) and for the three latitudinal data sets
(Figures 3b–3d), with the mean LC excess phase path
indicated for the latitudinal data. An occultation event
starting/ending at 90 km (0 sec) lasts 1–2 min with a
(neutral-gas) excess phase path of about 2 mm near the
mesopause (�80 km/�4 sec; in Figure 3, left column,
involving ionospheric residuals), �20 cm near the strato-
pause (�50 km/�16 sec), and >20 m below the tropopause
level (�15 km/�30 sec). The near surface excess phase
path reaches �0.7–2 km depending on the water vapor
content of the atmosphere. The ionospheric residual after
linear ionospheric correction of phases is of the order of a
few centimeters, which can be seen in the phase path
profiles in the first few seconds of the occultation, espe-
cially in the mean profiles of the ensembles. The different
latitudinal ensembles reflect the varying influence of the
ionosphere, showing ionospheric residuals of up to �1 cm
at high latitudes increasing to up to �10 cm at low latitudes.
Since the ionospheric model used does not account for
small-scale ionospheric noise (see section 2), this noise
component which can act to increase random noise on top
of thermal noise and clock noise is not represented in the
present end-to-end simulations. Dependent on ionospheric
conditions, real RO data may thus exhibit somewhat in-
creased random noise, which needs careful filtering in the
processing of real data [e.g., Gorbunov, 2002].
[17] Figure 3, furthermore, illustrates the phase errors

(middle column) and associated Doppler errors (right
column), which are shown without the ionospheric errors
in order to explicitly depict the errors due to the GRAS
receiving system specifications. The error statistics for the
LC phase is based on difference profiles each of which was
computed by subtracting the raw phase profile without
observational error from the phase profile including obser-
vational error. Calculation of the mean of the difference
profiles led to the bias profile. Furthermore, profiles of
the standard deviation and of root mean square (rms) error
were calculated (the latter not shown in Figure 3, since
essentially identical with the standard deviation). Relative
error quantities (percentage errors) were derived by relating
the absolute error quantities to the mean phase profile
(Figure 3, left column) and by multiplying it with the factor
100. The errors in the Doppler shift, the time derivative of
the phase (see section 4 below), were computed in the same
manner.
[18] The standard deviation (and also the rms error, since

the bias contribution is negligible) of the LC phase sampled
at 10 Hz is found to be 2–3 mm at <30 sec (above the
tropopause), which reasonably reflects the METOP/GRAS
receiving system performance [Silvestrin et al., 2000].
While absolute errors increase into the troposphere to
25 mm, the relative standard deviation is found to be
<0.02% at these low heights. The Doppler shift exhibits a
standard deviation and rms of �3 mm/sec above the
tropopause. Also for the Doppler shift, relative errors are
found <0.02% in the troposphere. Biases in both, excess

Figure 2. ECMWF T213L50 operational analysis field of
September 15, 1999, 12 UT, at 15�E: (top) temperature slice
and (bottom) specific humidity slice. See color version of
this figure at back of this issue.
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Figure 3. The left panels show the ionosphere corrected LC excess phase path for the global ensemble
(a) and the latitudinal ensembles (b–d); for the latter three also the mean profile of each ensemble is
shown (heavy black line). The middle and right panels show the associated absolute (heavy) and relative
(light) bias (grey) and standard deviation (black) of the LC phase delay (middle) and Doppler shift (right),
respectively.
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phase and Doppler shift, are negligible, reflecting the self-
calibrated nature of these basic observables.

4. Retrieval of Atmospheric Profiles

[19] The calculation of atmospheric profiles from excess
phase paths included filtering of the phases with a regular-
ization method resembling a low pass filter to eliminate
high frequency noise [Syndergaard, 1999]. Time-derivation
of the filtered phase path data led to the Doppler shift,
from which bending angles were calculated. We applied
the ionospheric correction of bending angles, which leads to
a considerably smaller residual bias in derived bending
angles than the phase correction method [Vorob’ev and
Krasil’nikova, 1994; Hocke et al., 1997].
[20] The processing involved an initialization of retrieved

bending angles with background bending angles derived
from the MSISE-90 climatology [Hedin, 1991]. A back-
ground search in the height interval of 40–55 km was
performed to find the best-fit background bending angle
profile by using a least squares criterion. An inverse-
covariance-weighting statistical optimization [Healy,
2001a] was applied to combine observed and background
bending angle profiles as described in detail by Gobiet and
Kirchengast [2004].
[21] Briefly, for the specification of the background error

covariance matrix a relative standard deviation of 20% of
the background bending angle was assumed, and the
variances constituting the diagonal elements of the covari-
ance matrix set accordingly. The off-diagonal elements
representing covariances were calculated by assuming an
exponential correlation decay with a correlation length of
6 km, representing the length scale at which the inter-level
correlation is decayed to 1/e. The observation error was
estimated as the standard deviation of the observed bending
angle profile from the background profile between 70 and
80 km, where the bending angle signal is small and iono-
spheric residual and measurement noise dominate. The
average standard error of the 300 retrieved bending angles
was found to be �1.2 mrad, fairly consistent with the
accuracy requirement specification of 1 mrad of the
METOP/GRAS operational RO receiving system [ESA/
EUMETSAT, 1998]. For reference and scaling, bending
angle accuracy from present experimental RO systems such
as CHAMP/GPS is found more at the 2–3 mrad level
(A. Gobiet, University of Graz, Austria, private communi-
cations, 2004). The off-diagonal observation error covari-
ance elements were set to follow an exponential decay with
a correlation length of 1 km. All these settings are based on
fairly extensive adequacy and sensitivity tests, partly
inherited from earlier studies and related development work
[Sokolovskiy and Hunt, 1996; Hocke et al., 1997; Healy,
2001a; Steiner et al., 2001].
[22] Refractivity, pressure, geopotential height, tempera-

ture, and specific humidity profiles were calculated from the
bending angle profiles by using, from bending angle via
refractivity towards dry temperature, a classical GPS RO
retrieval chain summarized by Gobiet and Kirchengast
[2004]. A detailed review of the algorithms involved was
given by Kursinski et al. [1997]. In the troposphere, an
optimal estimation temperature and humidity retrieval
algorithm was applied to refractivity, using the ECMWF

24-hour short-range forecast valid at September 15, 1999,
12 UT (the time of the model analysis field used for the
present simulations) as background field for temperature
and humidity. This algorithm is an implementation closely
following the variational retrieval (1D-Var) algorithm
of Healy and Eyre [2000]. It was implemented for a
latitude-dependent tropospheric top height defined to
decrease linearly with latitude from 15 km at the equator
to 9 km at the poles. Down to this height (z � ztop), standard
dry air retrieval was applied, with a smooth half-Gaussian
weighted transition (i.e., weighting exp[�(jz � ztopj/Dz)2])
to the 1D-Var solution over a width scale of 2 km (Dz)
below this height (z < ztop).
[23] For the background error, covariance matrices fol-

lowing an exponential decay with a correlation length of
3 km for temperature and specific humidity were adopted.
The standard deviation of the background specific humidity
was assumed 20% at 0 km linearly increasing to 50% at
10 km and kept constant further up. The standard deviation
of the background temperature was taken constant with
height but dependent on latitude with 1.5 K at high, 1.25 K
at middle, and 1 K at low latitudes, respectively. These
simple settings were checked by comparing the background
with the true profiles and by comparing to the specifications
given by [Andersson et al., 2000]. They were found to
reasonably reflect the uncertainty of the short-term forecast
fields used as background; limited further improvement
may be achieved by using more sophisticated forecast error
covariance matrices [e.g., Derber and Bouttier, 1999]. The
refractivity error covariance matrix was specified following
an exponential decay with a correlation length of 2 km, and
a latitude and height dependent standard deviation. The
standard deviation of refractivity was 0.8%, 1.4%, 2% at
0 km linearly decreasing to 0.2%, 0.2%, 0.1% at 10 km and
staying constant further up for high, middle, and low
latitudes, respectively. These settings were based on the
refractivity error analysis results of this study itself.

5. Analysis Results and Discussion

[24] For each atmospheric retrieval product an empirical
error analysis was performed as follows. We computed, for
each retrieved profile, the co-located ECMWF analysis
vertical profile at the mean tangent point location of the
event to serve as the ‘‘true’’ profile. Based on the difference
profiles of the retrieved profiles and the ‘‘true’’ profiles we
calculated sample mean deviations (bias profiles) as well as
sample error covariance matrices including sample standard
deviation profiles and sample error correlation matrices,
respectively. Relative error quantities were obtained by
dividing the absolute ones by the mean profile of the ‘‘true’’
profiles and multiplying this ratio with 100.
[25] For each ensemble, we computed these statistical

estimators with the usual expressions [e.g., Anderson, 1984;
Steiner and Kirchengast, 2004] at a standard vertical grid
with 60 levels chosen to correspond to an ECMWF L60 grid
(available from http://www.ecmwf.int/products/data/
technical/model_levels/model_def_60.html), which is the
present vertical grid of ECMWF operational analyses. Using
the L60 hybrid pressure levels definition, 60 standard pres-
sure levels were computed using a standard surface pressure
of 1013.25 hPa. From these 60 pressure levels, the standard
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height levels used throughout were obtained with the baro-
metric height formula using a standard scale height of 7 km.
This type of vertical grid for computing the statistics was
chosen since it provides the error analysis results at a vertical
sampling closely consistent with that of a modern numerical
weather prediction system such as ECMWF’s.
[26] The error estimates include both the observational

error (due to the measurement and retrieval process) and the
representativeness error (due to atmospheric horizontal
variability), the latter becoming important in the lower
troposphere due to increased horizontal variations [Foelsche
and Kirchengast, 2004b; Syndergaard et al., 2004]. The
representativeness error depends on the resolution of the
model data used for the simulations. Low resolution data
sets do not resolve horizontal gradients well, resulting in
smaller errors as shown by Zou et al. [2002], while the
effects of horizontal gradients in meso-scale simulations
produce larger errors [Healy, 2001b]. The restrictions of the
present study are that small scale structures are not resolved
by the input models (see section 2 for model resolution and
section 3 for discussion of ionospheric residual errors)
and that possible seasonal dependencies of RO errors
[Marquardt et al., 2001] are not represented since a single-
day data set is used. These potential additional error con-
tributions have to be kept in mind when interpreting
the results. Figures 4–9 present the error analysis results
of each retrieval product from bending angle, via refractivity,
pressure, geopotential height, to temperature and specific
humidity.
[27] The results are shown for the global ensemble (panel

row a) and for the latitudinal data sets (panel rows b–d) up
to 50 km height. The left panels show the number of events
entering the error statistics at a given height. The middle
panels illustrate the error characteristics in terms of absolute
and/or relative quantities of bias and standard deviation
profiles. For visual clarity we did not draw statistical
significance bounds for the bias profiles but note that the
standard deviation of bias at each height is the standard
deviation divided by the square-root of the number of
events in the ensemble (left panel). For example, for 100
events the 2-sigma uncertainty of the bias is thus 5 times
smaller than the standard deviation implying that, e.g., the
bending angle and refractivity profiles are found generally
unbiased all over the domain.
[28] We refer primarily to relative error quantities for

the atmospheric parameters with near-exponential height
decrease and to absolute error quantities for geopotential
height and temperature. These primarily-referred-to error
quantities are denoted by heavy lines, solid black for the
standard deviation and solid grey for the bias, respectively.
Mean atmospheric profiles are depicted by light dotted grey
lines. The right panels display error correlation functions,
which are defined as the rows of the error correlation
matrix. They are displayed for three different height levels
(�40 km, �20 km, �5 km) representative of upper strato-
sphere, lower stratosphere, and troposphere. For humidity,
three representative tropospheric levels are shown (�7 km,
�5 km, �3 km). The error correlation functions express the
correlation of errors at these specific heights with the errors
in the remainder of the profile.
[29] When interpreting and using the bending angle error

results it has to be taken into account that the ‘‘true’’

bending angle was computed here by Abel transform from
the ‘‘true’’ refractivity assuming spherical symmetry. While
this still leads to reasonable results in the stratosphere and
upper troposphere it does not represent with full adequacy
the errors under significant horizontal variations below
�7 km [Foelsche and Kirchengast, 2004b].
[30] Bending angle: Figure 4 displays the error statistics

for the bending angle profiles showing the mean bending
angle profile to range from �20 mrad at near 2 km to
�15 mrad at 50 km impact height. The global data set shows
a relative bias of the bending angle of <0.1% at 5–40 km
with a maximum of 0.5% outside this height interval. The
0.1% bias height interval shrinks to �7–30 km at mid
latitudes. Maximum bias values of up to 1% occur below
5 km impact height at all latitudes. The relative standard
deviation (Rel.StdDev) of the bending angle is 0.2–1%
between �8–35 km, increasing to about 5% at 50 km at all
latitudes. In the troposphere, the Rel.StdDev increases to
�5% at high latitudes and to �8% at low and mid latitudes.
[31] Comparison of these empirical bending angle errors

with the findings in theoretical studies [Syndergaard, 1999;
Rieder and Kirchengast, 2001b] shows that the theoretical
estimates of the standard deviation appear somewhat
smaller than the empirical ones. Rieder and Kirchengast
[2001b] report a Rel.StdDev of <1% below �37 km for a
standard receiver scenario (SR; GPS/MET receiver type)
and below �43 km for an advanced receiver scenario (AR;
GRAS receiver type) while our results shows a 1%-height at
35 km. The difference can be explained by the set up of the
theoretical study: a lower vertical resolution was used
leading to higher accuracy (�4 km resolution near the
stratopause instead of �2 km here), no ionospheric errors,
assumption of lower background bending angle uncertainty
(�10% near the stratopause instead of 20% here) and higher
excess phase accuracy (2 mm instead of �2.5 mm here).
Accounting for the differences, the stratospheric results of
that theoretical error analysis are found consistent with the
present empirical analysis results. Since our study involves
significantly less restrictive assumptions (no linearity, un-
biasedness, dry air, and spherical atmosphere assumptions),
the results obtained here are more realistic. Still it is to be
kept in mind that data products from different measurement
and retrieval processes than here (i.e., other than GRAS-
type receiving system performance, different retrieval
algorithms) will need at least a scaling of the present results
to those different conditions, if not repeat of the error
analysis itself, in case of severe differences.
[32] Deriving from uncorrelated measurements of excess

phase time series, the bending angle errors are uncorrelated
except for small negative correlations of the given height
levels with their lower and upper neighboring levels. These
negative correlations stem from derivative operations at the
step from phase to Doppler shift [Syndergaard, 1999;
Rieder and Kirchengast, 2001b] and are most pronounced
in the low latitude ensemble at lower to middle stratospheric
heights where they reach values of about �0.4.
[33] Refractivity: Figure 5 displays the error statistics for

the refractivity profiles with the mean refractivity profile
ranging from �280 [N units] at 1 km to �0.2 at 50 km
height. Refractivity exhibits a Rel.StdDev of 0.1–0.75%
and a relative bias of <0.1% at 5–40 km height in all data
sets. Outside this ‘‘core’’ domain, the relative bias reaches
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Figure 4. Bending angle error analysis results, as a function of impact height, for the global (a) and the
latitudinal (b–d) ensembles. (left) Number of events used for the error statistics calculation at any given
height. (middle) Relative bias (heavy grey), relative standard deviation (heavy black) as well as the
absolute standard deviation (light black) and the mean of the ‘‘true’’ profiles (dotted). (right) Error
correlation functions for �40 km (light grey), �20 km (dark grey), and �5 km (black) height,
representative of upper stratosphere, lower stratosphere, and troposphere, respectively.
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Figure 5. Refractivity error analysis results, as a function of height, for the global (a) and the latitudinal
(b–d) ensembles. Figure layout and style same as Figure 4; see that caption for details.
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Figure 6. Pressure error analysis results, as a function of height, for the global (a) and the latitudinal
(b–d) ensembles. Figure layout and style same as Figure 4; see that caption for details.
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Figure 7. Geopotential height error analysis results, as a function of pressure height, for the global
(a) and the latitudinal (b–d) ensembles. (left) Number of events used for the error statistics calculation at
any given height. (middle) Absolute bias (heavy grey), absolute standard deviation (heavy black) as well
as relative bias (light grey) and relative standard deviation (light black). (right) Error correlation functions
for �40 km (light grey), �20 km (dark grey), and �5 km (black), representative of upper stratosphere,
lower stratosphere, and troposphere, respectively.
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Figure 8. Temperature error analysis results, as a function of height, for the global (a) and the latitudinal
(b–d) ensembles. Figure layout and style same as Figure 7; see that caption for details.
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Figure 9. Specific humidity error analysis results, as a function of height, for the global (a) and the
latitudinal (b–d) ensembles. (left) Number of events used for the error statistics calculation at any given
height. (middle) Relative bias (heavy grey), relative standard deviation (heavy black), as well as the
absolute standard deviation (light black) and the mean of the ‘‘true’’ profiles (dotted). (right) Error
correlation functions for tropospheric height levels at �7 km (light grey), �5 km (dark grey), and �3 km
(black) height.
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0.3% in the lower troposphere at all latitudes and up to 0.7%
at 50 km height at high latitudes. The relative standard
deviation stays below 2% outside the ‘‘core’’ domain,
except for the low latitude ensemble, where it reaches
�2.3% at the bottom [Steiner and Kirchengast, 2004].
[34] In the Rieder and Kirchengast [2001b] analysis, the

upper height limit for a Rel.StdDev of <1% is 43 km for the
SR scenario and 49 km for the AR scenario, respectively.
Our empirically estimated height limit lies in between these
heights at 45 km. Kursinski et al. [1997] estimated an rms
error of refractivity of <0.4% between 5–30/40 km for a bad/
good scenario. This agrees well with the empirically derived
Rel.StdDev of <0.4% at �6–36 km height, but at lower
tropospheric heights the error derived here is bigger, mainly
due to subsuming more horizontal variability error. Our
findings are also consistent with the results of a study carried
out by Kuo et al. [2004], who performed an error analysis of
CHAMP and SAC-C data and found the observation error of
refractivity to be of the order of 0.3–0.5% at 5–25 km
increasing to 3% in the tropical lower troposphere.
[35] The refractivity error correlation functions are

broader than the bending angle error correlation functions
revealing the effect of the Abelian integration. The broad-
ening in the troposphere seen in the refractivity error
correlation functions is mostly a result of the errors due to
horizontal variations; it is particularly marked in the mid
and high latitude ensembles with negative correlations
vanished. Negative correlations are most pronounced in
the low latitude ensemble at lower to middle stratospheric
heights. Since the error statistics is performed on an L60
height grid, these anti-correlation features are smoothed and
can hardly be seen in Figure 5 but can be resolved on a finer
grid (further addressed in section 6 below).
[36] As refractivity is the RO data product perhaps most

convenient for data assimilation [e.g., Healy and Eyre,
2000; Syndergaard et al., 2004], we present in section 6 a
simple analytical formulation for refractivity error covari-
ance matrices based on the empirical results obtained.
[37] Pressure: Figure 6 presents the error statistics of

pressure with the mean profile ranging from �900 hPa at
1 km to �0.7 hPa at 50 km height. For all data sets the
Rel.StdDev of pressure is 0.25% in the troposphere de-
creasing to 0.1% above the tropopause and increasing to 1%
at 40 km height.
[38] The relative bias is <0.2% below 30 km and <0.5%

below 40 km for the global and low latitude ensembles. The
smallest biases occur at mid latitudes, the largest ones at high
latitudes, with a relative bias of close to �3% and a
Rel.StdDev of �3% at 50 km. These biases are the result
of downward hydrostatic integration of refractivity (or,
equivalently, density), which carries residual density biases
from above the stratopause, where background information
dominates [e.g., Rieder and Kirchengast, 2001b; Gobiet and
Kirchengast, 2004], by about two scale heights downward
into the upper stratosphere. This is most readily seen in
comparing the high latitude results of Figures 5 and 6
(weaker, but otherwise similar, also in the low latitude
results): Inspecting, for example, the height limit of biases
smaller than �0.25%, this lies at �46 km for refractivity
(density) (Figure 5d, middle panel) while it lies at �30 km
for pressure (Figure 6d, middle panel). At low latitudes,
these heights are �48 km (refractivity, density) and �36 km

(pressure), respectively. As this type of bias characteristics
also maps further into geopotential height and temperature,
special efforts are required to keep them as low as possible in
magnitude, in order to have the upper stratospheric profiles
accurate as high up towards the stratopause as possible.
[39] A common approach at the pressure retrieval is to

impose an initialization of the hydrostatic integral, in addi-
tion to the initialization at bending angle level. The integra-
tion starts at a height between 30 and 50 km initialized by
a model temperature usually taken from ECMWF [e.g.,
Kursinski et al., 1997; Wickert et al., 2004; Hajj et al.,
2004]. The most complete discussion of this approach,
including sensitivity tests, has so far been given by Hajj et
al. [2004]. Regarding the climatological use of geopotential
heights and temperatures this approach is problematic, since
it leads to intricate error characteristics and a priori-
dependence in the stratospheric data down to about 20 km,
which threats the crucial aims of un-biasedness and a clear
understanding of the degree of residual biasedness. For these
reasons, we do not perform any ‘‘2nd initialization’’ but use
full downward integration of the hydrostatic integral from
120 km. The initialization at 120 km, whether zero or the
MSISE-90 pressure as we adopted, has negligible influence
on the results below 50 km [e.g., Steiner et al., 1999]. This
preferable approach for climatological applications needs
fair care in performing the bending angle initialization in
order to keep the residual refractivity (density) biases above
the stratopause, and consequently the downward-propagated
biases in pressure, geopotential height, and temperature, as
small as possible (as discussed above and illustrated in
Figure 5 versus Figures 6–8, middle panels). Gobiet and
Kirchengast [2002, 2004] discuss respective optimization
algorithm advancements in detail. They report that particu-
larly residual upper stratospheric biases at high latitudes,
which are the most salient ones, can be further reduced
significantly by bias correction of background bending angle
profiles, at least given data of GRAS-type quality (1 mrad
bending angle accuracy). Gobiet et al. [2004] validated
CHAMP RO data with various sources of correlative data
in the stratosphere and found that these less accurate current
RO data demand initialization with better background bend-
ing angle profile libraries than from pure MSIS or CIRA
climatologies, e.g., from ECMWF analyses (extended above
�60 km by climatology). Pressure errors, furthermore,
exhibit strong correlation due to the hydrostatic integration;
see Rieder and Kirchengast [2001b] for a theoretical dis-
cussion of pressure error correlation properties.
[40] Geopotential height: Figure 7 displays the error

statistics of geopotential height, which is discussed with
respect to absolute error quantities. The absolute standard
deviation of geopotential height is 5–20 gpm below 30 km,
staying <70 gpm up to 40 km pressure height for all data
ensembles (pressure height zp = �(7 km)�ln[p(z)/
1013.25hPa], for showing pressure levels as heights). The
bias of geopotential height is <5 gpm below 30 km and
<30 gpm below 40 km except for the high latitude ensem-
ble. The latter shows a bias of 50 gpm at 40 km, bias and
standard deviation increase to 200 gpm at 50 km pressure
height. The correlation functions of geopotential height
errors are basically the same as for pressure (see right
panels of Figures 6 and 7). The same holds for the behavior
of relative pressure errors vs. absolute geopotential height
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errors (see middle panels of Figures 6 and 7), a property
rooted in the physical relation that fractional pressure is
proportional to geopotential height.
[41] The results are in good agreement with the findings

of Kursinski et al. [1997], who published an rms error of
�10 gpm at 10–20 km and with those of Leroy [1997]
publishing a geopotential height error of <20 gpm at upper
tropospheric and lower stratospheric heights.
[42] Temperature: Temperature error is presented in

Figure 8 and is also discussed with respect to absolute error
quantities. For the global data set, temperature shows a
standard deviation of 0.2–1 K at 3–31 km height and a bias
of <0.1–0.5 K below 33 km and of <0.1 K below 20 km. In
the lower troposphere, the standard deviation does not exceed
1.5 K in all latitude bands; note that it is a result of the 1D-Var
retrieval below about 8 km (high latitudes) to 12 km (low
latitudes). The temperature bias is lowest at mid latitudes with
<0.1–0.2 K at 2–40 km. Large temperature errors occur at
high latitudes, revealing a bias of >3 K and a standard
deviation of >5 K above 40 km, which is dominating the
global error statistics. The reasons for the residual strato-
spheric biases are the same as discussed above for pressure;
the pressure biases transfer to temperature biases via the
equation of state for dry air, which expresses that temperature
is proportional to pressure divided by refractivity (or density).
[43] The correlation functions of temperature error are

reminiscent of both pressure and refractivity correlation.
The vertical correlations are most pronounced at high
latitudes, least at low latitudes. This indicates that temper-
ature profile errors at high latitudes are more vertically
coupled, and hence in particular vulnerable to downward
propagation of errors in the retrieval process, in line with the
findings based on independent larger-ensemble climatolo-
gies (�1000 profiles in total from a full season) of Steiner
et al. [2001], Foelsche et al. [2003], and Gobiet and
Kirchengast [2004]. The relations determining how both
refractivity and pressure errors propagate into temperature
errors are somewhat involved and not addressed further
here; Rieder and Kirchengast [2001a, 2001b] provide some
insight. The different shapes of errors and correlation
functions below and above the tropopause are due to the
application of the 1D-Var retrieval algorithm in the tropo-
sphere (see section 4) [Steiner and Kirchengast, 2004].
[44] Kursinski et al. [1997] found the rms error of

temperature to be <1 K at 8/2–30/40 km for a bad/good
scenario, which is in good agreement with our empirical
estimates of sub-Kelvin accuracy at 3–31 km for the global
data set and at 3–36 km for the low latitudes. In fact the
error estimates in this study can be viewed in several
respects as an advancement and generalization of the
Kursinski et al. [1997] results under more realistic condi-
tions as possible due to the ensemble-based empirical error
analysis approach used here. Palmer et al. [2000] applied a
1D-Var retrieval and showed higher temperature errors of
1.5 K below �30 km and up to 5–8 K at 40–50 km height,
mainly due to different assumptions on error covariances.
[45] Specific humidity: The error statistics for specific

humidity is presented in Figure 9 and is discussed with
respect to relative error quantities again. The global mean
profile of specific humidity reaches from�4–0.1 g/kg at 1–
10 km height. In the lower troposphere below 2 km, mean
specific humidity exhibits values of�10 g/kg at low latitudes

and of �2 g/kg at high latitudes, in the upper troposphere
near 8 km the mean values range from �0.6 g/kg at low
latitudes to below 0.1 g/kg at high latitudes. Note that all
humidity retrieval results are based on the optimal estimation
algorithm applied (section 4).
[46] The Rel.StdDev of specific humidity in the global

ensemble is 20–25% below 5.5 km increasing to 40% at
10 km height. The low latitude data set reveals a smaller
Rel.StdDev of 15–30% at 1–10 km. At mid latitudes the
Rel.StdDev increases to 50% at 8 km height, the increase in
error above about 7 km indicating the height where the
background profile dominates the retrieved profile. At high
latitudes, a priori knowledge plays a role already in the
lower troposphere in the 1D-Var as used here, since, for
example, at 3 km humidity values are smaller than 1 g/kg
already and the a priori uncertainty is assumed no more than
about 30% at this height. Checking with the background
uncertainties shows that the retrieved specific humidity
error is everywhere smaller except at high latitudes in the
upper troposphere where humidity is low.
[47] An encouraging result from the climatological point

of view is the low bias in all humidity data sets: Humidity
biases are found smaller or near 5% at all latitudes and
heights except at mid latitudes above 6 km, where biases
reach up to 10%, despite the quite simplified error covariance
specifications used in the optimal estimation (section 4). This
finding, together with the small biases also found in tem-
perature below 10 km (Figure 8), indicates that 1D-Var
retrieval based on ECMWF short-term forecasts as back-
ground can lead to tropospheric humidity and temperature
retrievals useful for climatological applications. Our plans
for building RO based climatologies consequently include
the full range of products from refractivity via geopotential
height to temperature and humidity, where the latter param-
eters will, in the troposphere, be retrieved from refractivity
by the optimal estimation approach [Foelsche et al., 2005].
[48] The correlation functions for specific humidity errors

are displayed for three tropospheric height levels showing
that the statistical errors in humidity are correlated over
several kilometers in the troposphere, comparable to the
correlation range of refractivity and temperature profiles
rather than to that of pressure profiles.
[49] Theoretical estimates by Kursinski et al. [1997] on a

specific humidity rms error of 10–20% in the lower to
middle troposphere are comparable to our empirical esti-
mates in low latitude regions, generally our rms error
estimates are more conservative. Good general agreement
exists with the results of Palmer et al. [2000], who show a
25–35% error at <9 km in specific humidity. Humidity rms
errors will always significantly depend on the algorithm
used, in particular on the refractivity errors and the error
characteristics of the background or other external informa-
tion used to extract humidity and temperature from refrac-
tivity. Optimal estimation is rated the method of choice for
this purpose [cf. also Healy and Eyre, 2000].

6. Error Covariance Matrices for Refractivity
and Other Data Products

[50] Given that refractivity is particularly useful for data
assimilation [e.g., Healy and Eyre, 2000; Syndergaard et
al., 2004], we deduced a simple observation error covari-
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ance matrix formulation for refractivity from the empirical
estimation discussed above, for convenient use in data
assimilation systems. We performed this in fitting simple
analytical functions to the relative standard deviation profile
and to the error correlation functions of refractivity. We also
comment on the suitability of this model for retrieval
products other than refractivity.
[51] We applied a least-squares fit of analytical functions

to the empirical relative standard deviation and calculated

post-fit residuals of the fit. The functional forms chosen lead
to a very small fit residuum (total post-fit residual variance
of data against fitted functions within 2–50 km < (0.15%)2)
while conveniently depending on a few parameters only,
and exhibit the following simple height dependences. In an
upper troposphere/lower stratosphere region between about
14–20 km the relative standard deviation (s) of global
refractivity errors is closely constant (value �0.1%). Above
this region it follows an exponential increase (Figure 10,

Figure 10. Analytical error models (connected diamonds) fitted to empirical values (‘‘x’’ symbols) for
the specification of refractivity error covariance matrices at an L60-type grid (top panels) and a 90 level
grid (bottom panels), respectively. For the standard L60-type grid results for the global ensemble are
shown in terms of relative standard deviation (top middle; also bias values indicated as grey ‘‘x’’
symbols) and error correlation functions (top right; for �40 km, �20 km, �5 km height). For the 90 level
grid error correlation functions are shown for the low latitude ensemble (bottom middle) and for the
global ensemble (bottom right), respectively; the functions shown for �40 km, �30 km, �20 km, and
�5 km height. (left) Number of events used for the error statistics calculation at any given height.
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top; see Figure 5), at least up to the stratopause, which
reflects the downward exponential decrease of high altitude
initialization errors [e.g., Kursinski et al., 1997; Rieder and
Kirchengast, 2001b]; more explanation is provided below.
From near 14 km downwards, the relative refractivity error
is found to increase closely proportional to an inverse-
height law. In summary, the standard deviation model s(z)
can thus be formulated as

s zð Þ ¼

sutls þ s0 1=zpð Þ � 1=zptroptop
� �� �

; for 2 km < z � ztroptop 1að Þ

sutls; for ztroptop < z < zstratbot 1bð Þ

sutls * exp z� zstratbotð Þ=Hstrat½ ; for zstratbot � z < 50 km; 1cð Þ

8>>>><
>>>>:

where z denotes the height, ztroptop the top level of the
‘‘troposphere domain’’, zstratbot the bottom level of the
‘‘stratosphere domain’’, and sutls the relative (fractional or
percentage) error in the ‘‘upper troposphere/lower strato-
sphere domain’’, respectively. For our global refractivity
results, we found ztroptop = 14 km and zstratbot = 20 km as
best domain boundary heights, and sutls = 0.1% as best-fit
constant error between these heights (equation (1b)). This
constant height range marks the transition of the exponential
error decrease from above and the inverse-height error
decrease from below; the fit residual is fairly insensitive to
the exact setting of ztroptop and zstratbot so that these heights
can be safely rounded to full-kilometer values as done here.
[52] Above zstratbot, an exponential function was fitted

within 20–50 km (equation (1c)), with Hstrat denoting the
scale height of the error increase over the stratosphere.
Figure 10, top-middle panel, illustrates this fit. We found
a best-fit value of Hstrat = 11.1 km for the error scale height.
The model may also be valid over some height domain
beyond the stratopause, the vertical extent of which will
depend on the exact handling of the upper boundary
initialization. Furthermore, this type of error model over
the stratosphere also holds reasonably well for the other
retrieval products (see Figure 4 and Figures 6–8, middle
panels), with sutls adjusted and Hstrat fit to the empirical data
of those products.
[53] The reason for an exponential function fitting well

lies in the physical nature of the refractivity error. The
absolute refractivity error at strato-/mesosphere heights is
approximately constant, with random noise being the dom-
inating error source at excess phase path level, propagating
almost linearly to bending angle and refractivity level [e.g.,
Kursinski et al., 1997]. Since refractivity falls off exponen-
tially with an atmospheric scale height of around 7 km, the
relative refractivity error then also shows an exponential fall
off. The deviation of the fitted stratospheric error scale
height (�11 km) from the atmospheric scale height (�7 km)
is mainly due to the application of the statistical optimiza-
tion at bending angle level, which damps the error increase
with height and thus leads to an increased error scale height.
[54] From the upper troposphere level downwards, the

relative refractivity error is found to increase closely pro-
portional to an inverse-height law (‘‘1/zp’’ law, with p = 1),
which captures the increasing influence of horizontal vari-
ability errors [e.g., Kursinski et al., 1997; Foelsche and
Kirchengast, 2004a]. In fitting our global refractivity results
with p = 1 (‘‘1/z’’) within 2–14 km, we found a best-fit

value s0 = 4.5% for the �1 km error, corresponding to an
error of �2% at 2 km. Figure 10, top-middle panel,
illustrates the fit. From our fit we can recommend use of
equation (1a) down to 2 km, the physics-based limit we see
is that it should be used only within the free troposphere
above the planetary boundary layer, i.e., in general above
1–2 km only. Regarding other retrieval products, this ‘‘1/
zp’’ model is applicable also to bending angle (Figure 4),
where equation (1a) with p = 3 (‘‘1/z3’’ dependence) fits
well down to an impact height of 4 km. For the other
parameters (after hydrostatic integration, optimal estima-
tion) the structure is less simple. However, error models for
refractivity and bending angle are of main interest for data
assimilation purposes.
[55] Equations (1a)–(1c) can be used, via re-adjusting/

-scaling/-fitting the parameters ztroptop, zstratbot, sutls, Hstrat,
s0, and p, to similarly approximate any other error profile
data. An example is scaling to current RO data such as
CHAMP data, which furnish somewhat less accuracy than
the GRAS-type system baselined here. For this case we
suggest that adjusting sutls to 0.3–0.5% and re-scaling or re-
fitting Hstrat to near 15 km, keeping the other parameters
the same, captures the main differences in global and
annual mean refractivity errors between GRAS-type and
CHAMP-type systems. Given sufficiently resolved error
analysis data sets, regional and seasonal dependences can
also be estimated and modeled by varying the parameters
accordingly.
[56] The second aspect of the error covariance matrices is

the correlation structure. We tried to fit different functions
(exponential, Gaussian, Mexican Hat) to match the correla-
tion structure, the ones presented were chosen depending on
the smallest fit residuum. We approximated the shape of the
refractivity error correlation functions at an L60 height grid
by an exponential drop-off with a correlation length L = 2
km in the troposphere (up to 15 km), linearly decreasing to
L = 1 km at 50 km height. Figure 10, right panel, illustrates
this exponential drop-off model with height-varying L.
Combining the standard deviations from the model above
with this error correlation modeling, we can write the global
refractivity error covariance matrix, S, as

S ¼ Sij ¼ sisj * exp �
zi � zj
		 		
L zð Þ


 �
; ð2Þ

where L(z) is the (linearly) height dependent correlation
length, zi and zj are the height levels between which the
correlation is measured, si and sj are the standard deviations
(from equation (1)) at zi and zj, respectively, and Sij are the
covariance elements of S. Considering use of equation (2)
also for error covariance matrices of other retrieval
products, it is found that it also reasonably applies to fit
bending angle covariance matrices at the L60 grid, whereby
in this case correlation lengths appear to be as small as 0.5–
1 km (see Figure 4). For the parameters further retrieved
from refractivity, correlation structure is more involved, as
already noted above also for the standard deviation structure
in the troposphere (Figures 6–8).
[57] As described in section 5, negative correlations in

refractivity can hardly be seen at an L60 height grid but can
be resolved at a finer grid. Since these negative correlations
are most pronounced in the low latitude ensemble at lower
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to middle stratospheric heights we also tried to model error
correlation functions including anti-correlation features at a
higher vertical resolution, using about 90 height levels
instead of 60 levels. For this grid we just used every 5th
height level of the original retrieved profiles resulting in 92
height levels from 2 km to 50 km. Figure 10, bottom panels,
illustrates the results for the low latitude (middle panel) and
global ensemble (right panel), respectively.
[58] For this alternative modeling of S, we used a

Mexican Hat function of the form,

S ¼ Sij ¼ sisj � 1�
zi � zj
� �2
c � Lð Þ2

 !
� exp �

zi � zj
� �2

L2

 !
; ð3Þ

where, for the results of Figure 10, L was used as above (L =
L(z)). For the global ensemble the stretching factor c was set
to c = 2, and for the low latitude ensemble it was set to c = 2
below and to c = 0.8 above the tropopause level (15 km),
respectively. Since the Mexican Hat function implies a
Gaussian shape of the correlation structure, equation (3) is
not generally invertible. This can be overcome by

approximating the Gaussian factor, f = exp �
zi � zj
� �2

L2

 !
,

in equation (3) with a 5th order polynomial function as
described by Gaspari and Cohn [1999]. Using a re-scaled
height z defined by

z ¼
zi � zj
� �

�
ffiffiffiffiffiffiffi
0:3

p
�
ffiffiffi
2

p

L

					
					; ð4Þ

an approximate function ~f can be written in the form,

~f ¼ � z5

4
þ z4

2
þ 5z3

8
� 5z2

2
þ 1; 0 � z � 1;

~f ¼ z5

12
� z4

2
þ 5z3

8
þ 5z2

3
� 5zþ 4� 2

3z
; 1 < z � 2:

ð5Þ

Substituting the Gaussian factor f with this approximate
factor ~f , we can write S as

S ¼ Sij ¼ sisj � 1�
zi � zj
� �2
c � Lð Þ2

 !
� ~f ; ð6Þ

which is robustly invertible and delivers closely the same
result as equation (3). Since bending angle error correlation
structure shows more anti-correlation than refractivity (see
discussion in section 5), equation (6) might also be adequate
for modeling bending angle error correlations.
[59] As can be seen in Figure 10, bottom panels, the

empirical error correlation values at the higher vertical
resolution are approximated fairly well with the Mexican
Hat model. For the low latitude ensemble (middle panel) the
anti-correlation structures are reasonably captured, while in
the global ensemble (right panel) the negative correlations
are smoothed already and consequently not modeled. This
finding points also to the fact that use of global covariance
matrices, and thereby disregarding latitudinal, and other,
dependences of errors, is a rather crude approximation, in
particular so at high vertical resolution. On the other hand,
data assimilation systems are often not that sensitive to the

precise formulation of the observation error covariance
matrices employed, as long as it is reasonably adequate,
but the exact sensitivities have to be individually investi-
gated for each specific system (e.g., C. Marquardt and S. B.
Healy, Met Office, Exeter, UK, private communications,
2003).

7. Summary, Conclusions, and Outlook

[60] We presented results of an empirical error analysis
for GNSS radio occultation (RO) data based on end-to-end
forward-inverse simulations of an ensemble of RO events
under fairly realistic modeling conditions. Starting with
information on excess phase and Doppler errors, which
are representative of the expected performance of the
upcoming METOP/GRAS GPS RO data, we provided a
comprehensive error estimation for the atmospheric retrieval
products bending angle, refractivity, pressure, geopotential
height, temperature, and specific humidity.
[61] The ensemble-based empirical error analysis ap-

proach allowed to avoid making assumptions such as
linearity, un-biasedness, dry troposphere, a few standard
atmospheric conditions only, spherically symmetric atmo-
sphere, and no ionosphere, which were to varying degrees
involved in previous error studies [e.g., Kursinski et al.,
1997; Syndergaard, 1999; Palmer et al., 2000; Healy and
Eyre, 2000; Rieder and Kirchengast, 2001b]. One limitation
of realism also in this study is the use of geometric optics
ray-tracing in the forward modeling, which implies that
multipath and super-refraction conditions in the lower
troposphere are not accounted for; all simulated profiles in
the statistical ensembles stop above such conditions if they
encounter them. Future consolidation of estimates will thus
be valuable in particular below about 3 km at low latitudes,
where multipath and super-refraction effects can play the
largest role. Furthermore, small scale atmospheric and iono-
spheric structures are not accounted for, being an additional
contribution to the error budget of real data sets.
[62] The present study advanced the earlier results in that

it provided, based on the quasi-realistic data sets, both
complete error covariance estimates (standard deviation
profiles and correlation functions) and bias profile esti-
mates, for all parameters from bending angle to humidity.
Understanding of residual biases in retrievals from the self-
calibrated and thus nominally un-biased raw RO data, and
subsequent efforts to mitigate them, is crucial for climate
applications.
[63] Where comparable, the results of this study are

consistent with the findings of theoretical studies
[Syndergaard, 1999; Rieder and Kirchengast, 2001b]. When
comparing and interpreting them in relation to the findings of
the theoretical studies, one has to be aware of the differences
between the studies, however, especially of the limiting
assumptions in the theoretical studies like un-biasedness
and dry air assumptions, but also of retrieval algorithm
differences such as different resolution-accuracy trade-offs
and background error specifications. This way the theoretical
results obtained under more simplified conditions proved a
valuable aid in the interpretation of the empirical results
under more realistic conditions.
[64] The results, furthermore, expanded and consolidated

the rms error estimates obtained by Kursinski et al. [1997]
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based on a more simplified analysis. The empirically derived
standard deviations of refractivity, geopotential height and
temperature agree well with the rms errors estimated by
Kursinski et al. [1997] in the upper troposphere and lower
stratosphere; in lower troposphere refractivity we found a
twice as large error due to the more realistic horizontally
variable fields used in the present study. Kursinski et al.
[1997] also looked into error budget components not
addressed in this study on total retrieval errors. An error
budget analysis for a GRAS-type receiving system was
recently performed by Ramsauer and Kirchengast [2001].
[65] The estimated bias profiles confirmed the high cli-

mate monitoring utility of RO data but also pointed to
further improvement potential in the retrieval algorithms,
especially related to the high-altitude initialization. In gen-
eral, residual biases are found negligible below about 30 km
in all data products and increasingly relevant throughout the
upper stratosphere. More specifically, bending angle and
refractivity biases start to become appreciable (systemati-
cally >0.25%) close to the stratopause only. Appreciable
pressure, geopotential height and temperature biases are
found to extend about 2 scale heights (�12–15 km) lower
into the stratosphere than those of refractivity, being small-
est at mid latitudes and reaching down to below 30 km into
the lower stratosphere at high latitudes. These biases are
caused by residual mesospheric refractivity (equivalently,
density) biases carried downward by the hydrostatic inte-
gration in the retrieval of pressure from refractivity. The
density biases are, in turn, caused by residual mesospheric
bending angle biases carried via the Abelian integration
from bending angle to refractivity.
[66] This insight implies that further mitigation of upper

stratospheric biases can be achieved via improvements in
the statistical optimization of bending angles. In this respect
an improved bending angle retrieval algorithm was devel-
oped by Gobiet and Kirchengast [2004], who included a
bias correction of background bending angle profiles which
led to significant bias reduction, especially at high latitudes
[Gobiet and Kirchengast, 2004; Gobiet et al., 2004]. An
alternative way of bias mitigation in many RO data pro-
cessing schemes involves a ‘‘2nd initialization’’ at pressure
level, i.e., the initialization of the hydrostatic integral at a
height within 30–50 km by an a priori model temperature
[e.g., Kursinski et al., 1997; Wickert et al., 2004; Hajj et al.,
2004]. This approach is problematic if the retrieved profiles
target climatological use, since it leads to intricate error
characteristics and a priori dependence in the stratospheric
profiles down to about 20 km, which threats the crucial
climate requirements of un-biasedness and of a clear under-
standing of the systematic and statistical error properties.
[67] An encouraging result from the climatological point

of view is, furthermore, that biases in specific humidity are
found small around 5% at all latitudes and heights, except at
mid latitudes above 6 km, where biases reach up to 10%.
This finding, together with the small biases also found in
temperature below 10 km, indicates that optimal estimation
(1D-Var) retrieval based on ECMWF short-term forecasts as
background can lead to tropospheric humidity and temper-
ature retrievals useful for climatological applications. While
there is other approaches still in use, usually based on a
priori temperature aiding observed refractivity for humidity
retrieval [e.g., Kursinski et al., 1997], we rate 1D-Var the

preferable method for humidity and temperature retrieval
from GNSS RO refractivity in the troposphere [cf. Healy
and Eyre, 2000].
[68] Regarding error correlation functions, the results

provide insight into covariance propagation under quasi-
realistic conditions. The main differences between the
empirically estimated correlations and theoretical ones are
seen in the troposphere, including broader refractivity error
correlation functions due to horizontal variability. The 1 D-
Var retrieval, which is applied in the troposphere does not
significantly broaden the correlation functions of tempera-
ture and humidity compared to the ones of refractivity in
this height regime. Negative correlation minima adjacent to
the main correlation function peaks of bending angle and
refractivity can be hardly resolved on the L60 vertical grid.
Nevertheless, they are present and found resolved on a finer
90 level grid; they are found most pronounced at strato-
spheric heights at low latitudes, where they are comparable
to the error correlation features in theoretical studies
[Syndergaard, 1999; Rieder and Kirchengast, 2001b]. The
hydrostatic integration process prevents any appreciable
negative correlations in pressure, geopotential height, tem-
perature, and humidity error profiles.
[69] We derived simple analytical formulations of refrac-

tivity error covariance matrices by closely fitting the empir-
ically estimated matrices. The functional formulations
depend on a few sensibly selected adjustment/fitting param-
eters only. While we provided values for these parameters
based on our empirical data sets reflecting GRAS-type
performance, the formulations can be used, via re-adjusting/
re-scaling/re-fitting the parameters, to approximate any other
error estimation data set; as an example, scaling to CHAMP
RO data was addressed. Comparison of the formulations with
results of an error analysis of CHAMP RO refractivity
profiles confirmed their practical utility [Steiner, 2004].
[70] The error covariance matrices, especially those for

refractivity and bending angle, should be useful for evalu-
ation and proper specification of observational errors in data
assimilation systems as well as in optimal estimation parts
of retrieval algorithms, i.e., the optimal bending angle
estimation part and the 1D-Var temperature and humidity
retrieval part. The simple analytical formulations might be
of particular convenience for use in large-scale operational
data assimilation systems.
[71] In our ongoing work on the topic we build on the

heritage of this simulation study and focus on the empirical
error analysis of CHAMP RO data with respect to ECMWF
analyses and the separate estimation of the ECMWF model
error. This will allow the separation of the observation error
from the model error and shall lead to the specification of
adequate observation error covariance matrices for data
assimilation systems as derived from real CHAMP RO
data. The results will provide a further test of the utility
of the simple error covariance formulations presented here.
Meanwhile it is hoped that these, properly adjusted to the
characteristic error magnitudes of the respective observing
and retrieval systems of interest, will serve as useful
approximations for observation error covariance matrices
of radio occultation data.
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Figure 2. ECMWF T213L50 operational analysis field of September 15, 1999, 12 UT, at 15�E: (top)
temperature slice and (bottom) specific humidity slice.
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