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[1] An efficient temperature and humidity retrieval algorithm for radiometric
measurements at high spectral resolution is introduced and applied to climatological
profiles. The algorithm is developed for analyzing Infrared Atmospheric Sounding
Interferometer (IASI) data of the European weather satellite METOP-1 (launch scheduled
2005) for climatological purposes but is also applicable for other purposes and to other
similar data. The algorithm’s core features are a channel selection methodology followed
by a linearized optimal estimation. The key concept of the former is that a small subset
(5–10%) of all available IASI channels (�8000) is selected based on maximizing a
suitable information content measure at each retrieval level. This enables efficiency and
robustness of the retrieval algorithm and curtails the high redundancy in the
measurements. In addition to profile and error covariance estimates optimal estimation
furnishes various sensitivity functions of which we used ‘‘weighting functions’’ for
quantifying the utility of measurement channels and ‘‘averaging kernel functions’’ for
assessing the resolution of retrieved profiles. Results based on simulated IASI spectra
computed from a set of standard climatological profiles and a realistic radiometric noise
model demonstrate, for clear air, the capabilities of high spectral resolution measurements
for improving temperature and humidity soundings compared to current operational
sensors. In the troposphere (below �200 hPa), retrieved profiles exhibit temperature errors
of <1 K and specific humidity errors of <10% at most heights, associated with a vertical
resolution of �1.5–2 km. Promising performance was found in the upper troposphere
(500–200 hPa), where about five independent reliable values of temperature and humidity
are available indicating the high potential of the IASI sensor for monitoring climatic
changes in upper tropospheric moisture. Tests on the sensitivity of retrieved profiles to the
quality of a priori profiles showed weak sensitivity of temperature but significant
sensitivity of humidity. The results provide a solid basis and clear guidance for
improvements of the presented algorithm for reliable large-scale application on cloud-free
spectra. INDEX TERMS: 0394 Atmospheric Composition and Structure: Instruments and techniques;

3394 Meteorology and Atmospheric Dynamics: Instruments and techniques; 0365 Atmospheric Composition

and Structure: Troposphere—composition and chemistry; 0340 Atmospheric Composition and Structure:

Middle atmosphere—composition and chemistry; KEYWORDS: IASI, Interferometer, temperature retrieval,

water vapor retrieval, channel selection

1. Introduction

[2] The determination of atmospheric humidity and tem-
perature profiles from satellite measurements has a history
dating back to the early 1970s with the NIMBUS series of
operational weather satellites. In the last two decades,
improvements have been made on the horizontal sampling
and accuracy of retrievals particularly with instruments such

as the High Resolution Infrared Sounder (HIRS) [Kidwell,
1986]. The numerical weather prediction (NWP) and cli-
mate monitoring communities both require improvements in
both accuracy (<1 K for temperature and <10% for humid-
ity in the troposphere) and vertical resolution (1–2 km
under cloud-free conditions) of satellite soundings to meet
their objectives [World Meteorological Organization, 1998].
It appears that these requirements may be met with
the launch of satellites carrying interferometers, which
sample the thermal infrared spectrum at high resolution
(<0.5 cm�1).
[3] The concept of obtaining high vertical resolution

profiles from high spectral resolution interferometers was
discussed by Kyle [1977] and Smith et al. [1979], among
others. They proposed the use of a partial interferogram for
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high-resolution temperature soundings with the capability
of better than 1 K accuracy. Despite the coarse horizontal
resolution, the Infrared Interferometer Spectrometer (IRIS)
on the NIMBUS 3/4 satellites offered a glimpse into the
utility of interferometric data for temperature, water vapor,
and other trace gas retrievals from space. More recently, the
aircraft High-resolution Interferometer Spectrometer (HIS)
instruments [Smith et al., 1993] have demonstrated the
ability to sample the horizontal structure of temperature
and humidity throughout the middle and upper troposphere
from aircraft. The Atmospheric Infrared Sounder (AIRS) is
a high-resolution grating spectrometer that will be launched
on the AQUA satellite in 2001. It will sample several
infrared absorption bands useful for temperature and humid-
ity retrievals. The Infrared Atmospheric Sounding Interfer-
ometer (IASI) is a Michelson-type interferometer sampling
the entire thermal infrared spectrum from 3.6 to 15 mm and
is scheduled to fly aboard the METOP-1 satellite in 2005
(CNES, Infrared Atmospheric Sounding Interferometer
homepage, available at http://smsc.cnes.fr/IASI/index.html,
hereinafter referred to as IASI hompage). The Crosstrack
Infrared Sounder (CrIS) is another future high-spectral
resolution interferometer system being developed for the
National Polar-Orbiting Operational Environmental Satellite
System (NPOESS) with the 1st launch foreseen also in 2005
on the NPOESS Preparatory Program (NPP) satellite.
[4] One of the primary objectives of the IASI instrument,

according to the IASI Science Plan (available at http://
smsc.cnes.fr/IASI/index.html), is to improve the vertical
resolution of temperature and water vapor profiles to
�1 km in the middle to lower troposphere and to improve
the retrieval accuracy to within 1 K in temperature and 10%
in (specific) humidity. Part of the scientific motivation for
accomplishing this stems from the key role of water vapor
in the upper troposphere and its effects on the global climate
since only small changes in water vapor and its trends have
serious implications on the amount of thermal energy
escaping to space [Schmetz et al., 1995; Spencer and
Braswell, 1997]. Improved quantification of global climate
variability is another important theme that advanced soun-
der retrievals will likely be able to address, particularly
contributing to our knowledge of the climate of the upper
troposphere. In addition, NWP will greatly benefit from
more accurate and frequent temperature and humidity
profiles for operational and research needs.
[5] The fundamental problem of inverting the radiative

transfer equation to retrieve the state of the atmosphere,
which produced the corresponding observation (radiance or
brightness temperature), is an ill-posed problem such that
there exists no unique solution. Rodgers [2000] presents a
comprehensive tutorial on retrieval theory and outlines
many of the various methods on approaching the under-
determined, nonlinear problem of geophysical retrievals.
[6] In this paper, temperature and humidity profiles are

retrieved from simulated IASI measurements using a set of
standard climatological profiles (U.S. standard atmosphere
profiles). Section 2 describes how measurements from the
IASI instrument are simulated as well as the retrieval
algorithm including the channel selection procedure and
the optimal estimation methodology used. The results and
corresponding discussion of applying the retrieval algorithm
and performing various sensitivity tests is presented in

section 3. A summary and conclusions are given in section
4, where also avenues of useful further improvements are
outlined.

2. IASI Data Simulation and Retrieval
Methodology

2.1. Sensor and Satellite

[7] The European meteorological operational satellite
METOP-1 carrying the IASI sensor is scheduled to be
launched in 2005 as the initial component of the European
Polar System (EPS) operated by the European Organization
for the Exploitation of Meteorological Satellites, EUMET-
SAT (IASI homepage). It is the first in a series of European
polar orbiting satellites dedicated to operational meteorol-
ogy and climate monitoring. The satellite will orbit Earth at
an altitude of �830 km in a 5-day repeat sun-synchronous
orbit with a 0930 local time of equator crossing. In addition
to the novel IASI instrument, companion meteorological
payload instruments will include the Advanced Microwave
Sounding Unit A (AMSU-A) and the High-Resolution
Infrared Sounder (HIRS/3), which are already in orbit on
the U.S. weather satellite NOAA-15.
[8] IASI is a high spectral resolutionMichelson-type inter-

ferometer detecting thermal emissions from a spectral range
between 645–2760 cm�1 with a constant spectral sampling
interval at 0.25 cm�1. The unapodized spectral resolution
varies slightly with wavelength between �0.32–0.42 cm�1

(apodized spectral resolution is 0.5 cm�1). The radiance
spectrum is obtained by taking the Fourier transform of the
sampled interferogram. The cross-track scanning mode of
IASI is similar to its companion METOP payload instru-
ments mentioned in the previous paragraph. The swath width
is approximately ±1100 km with an instantaneous field of
view (IFOV) of �48 � 48 km at nadir corresponding to one
observation pixel, which in turn is composed of 2 � 2 IASI
detector pixels with�12 km diameter. Each swath is covered,
in ‘‘step-and-dwell mode,’’ by 30 full pixels acquired within
�8 s. More details on the sensor is available at http://
smsc.cnes.fr/IASI/index.html.

2.2. Forward Modeling

[9] For the successful retrieval of temperature or humid-
ity within the framework of an optimal estimation approach
as adopted here, the underlying physics of the measurement
need be properly modeled by a forward model solving the
radiative transfer equation. At the same time, proper mod-
eling of the derivative of the forward model with respect to
the state (also termed ‘‘weighting matrix’’ or ‘‘Jacobian’’) is
quite important, especially with regard to computational
efficiency, since nonlinearities in the problem of interest
demand an iterative state estimation. The general forward
model equation mapping the state (atmospheric profile) into
measurement space (satellite-measured radiance or bright-
ness temperature spectrum) takes the form [e.g., Rodgers,
2000]

y ¼ FðxÞ þ e; ð1Þ

where y is the measurement vector, F(x) is the forward
model operator for a given state x, and e is the measurement
error. The measurement error characteristics should be
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known in terms of systematic biases and random instrument
noise. The measurements y should in fact be corrected for
biases before using them in the retrieval so that e can be
statistically well characterized by a measurement error
covariance matrix (see section 2.4). Inserting reasonable
temperature and humidity test profiles for x, (1) was used to
confirm that the present retrieval problem is moderately
nonlinear only so that we can apply (1) in linearized form,
i.e., replace y = F(x) by (y � y0) = K0�(x � x0), where K0 =
@F(x)/@x is the weighting matrix (evaluated at state x0) and
x0 is a suitable reference state [Rodgers, 2000].
[10] For computing F(x) = TB (TB, brightness temper-

ature) and K0, the fast radiative transfer model RTIASI
[Matricardi and Saunders, 1999; P. Schluessel, EUMET-
SAT, private communications, 2000] was used, which can
take temperature and humidity (and other) profiles as input
and then furnishes simulated IASI brightness temperature
measurements and temperature and humidity weighting
matrices for any desired subset of IASI channels. The model
calculates level-to-space transmittances on 43 pressure
levels spanning from 0.1 hPa (�65 km height) to the
surface. We use these same levels, the so-called ‘‘ATOVS
pressure level grid,’’ also as our retrieval grid (all 43 levels
for temperature, the lowest 28 levels for humidity). Con-
volved line-by-line (LBL) transmittances from a set of
atmospheric profiles and selected predictors are used by
RTIASI to compute regression coefficients in turn used to
derive approximate transmittances from which the final
estimates of brightness temperatures (or radiances) are
made. In comparison with LBL model calculations, RTIASI
performs at or below a noise of <0.5 K for wave numbers
below �2400 cm�1 [Matricardi and Saunders, 1999]. An
example of brightness temperatures computed by the
RTIASI model for a standard midlatitude summer atmos-
phere is displayed in Figure 1. The results for all channels of
IASI are depicted and major spectral features such as the
15 mm CO2 band, 9.6 mm O3 band, and 6.3 mm H2O band
are easily identifiable.

2.3. Channel Reduction Procedure

[11] For each individual IFOV pixel, full IASI spectra
will contain 8461 channels from 645–2760 cm�1 with
0.25 cm�1 channel width, which is an enormous amount
of data. For the retrieval of temperature and humidity, it is
not practical nor an advantage to use all spectral points [e.g.,
Rodgers, 1996]. Therefore a strategy is devised to eliminate
those channels whose information content does not add to
the final retrieval accuracy and, even before for the sake of
efficiency, those channels potentially contaminated by solar
radiation or significantly affected by ‘‘foreign’’ trace gases
(not required for temperature and humidity profiling but
posing difficulties in forward modeling). Subsections 2.3.1
to 2.3.4 subsequently discuss the reduction measures
applied in our algorithm.
2.3.1. Elimination of wavelength <4 mmmmm channels
[12] As a first filter based on evaluating the general utility

of the channels for the intended purpose, all channels with
wave numbers >2500 cm�1 (wavelengths <4 mm) are
dropped, which reduces the number of channels from
8461 to �7420. The removal of these channels avoids
potential problems with contamination by residual short-
wave (solar) radiation, which plays some role up to �4 mm

but is not taken into account by the RTIASI forward model.
Moreover, the eliminated channels, mostly surface channels
or channels with some CH4 sensitivity, are not missed in the
temperature and humidity profiling context. Retaining the
channels for test purposes in the procedure described in
subsection 2.3.3 below showed that they would not be
selected anyway because of the comparatively high IASI
radiometric noise at wave numbers >2500 cm�1 (e.g., IASI
homepage). Thus they might also be dropped simply for
increasing the efficiency of that procedure.
2.3.2. ‘‘Foreign’’ gas elimination
[13] Including channels with significant emissions from

variable trace gas species other than the ones best aiding
temperature and humidity retrieval (CO2, H2O, partially
N2O) increases the uncertainty in the retrieved states in
the present study, because these variable gases are treated as
fixed, partly due to limitations of the RTIASI model. With
the luxury of kilo channel availability, we remove those
channels which have significant contribution from such
‘‘foreign’’ trace gases including O3, CH4, CO, and (in the
‘‘atmospheric window’’ region) CFCs (cloroflourocarbons).
Also most of the ‘‘atmospheric window’’ region is dropped
as not a high number of such channels is required for the
intended vertical profiling. Based on careful consideration
of the relevant ‘‘foreign’’ absorption features within the
range of interest the eliminated spectral regions include the
following: 825–1100 cm�1 (9.1–12.1 mm; ‘‘atmospheric
window’’, O3, CFCs), 1220–1370cm

�1 (7.3–8.2 mm; CH4),
and 2085–2220 cm�1 (4.5–4.8 mm; CO, O3), respectively.
Figure 2 shows these excluded areas as shaded regions. We
confirmed via sensitivity tests including these bands (and
assuming known ‘‘foreign’’ gas concentrations) that their
exclusion does not degrade the temperature and humidity
profiling performance. After the removal of the ‘‘foreign’’
bands we are left with groups of channels in preferred
absorption bands such as the �650 cm�1 CO2 band, the
�1600 cm�1 H2O band, and the �2250 cm�1 CO2/N2O
band. This step reduces the number of potential retrieval
channels by �2240 channels (�26% of the original set).
2.3.3. Information content based channel selection
[14] As we are still left with over 5000 channels at this

point, a way is now needed to reduce this abundance of
channels by prioritizing in some way part of the measure-

Figure 1. Simulated IASI brightness temperature spec-
trum for a standard midlatitude summer atmosphere.
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ments over other parts. We found it a sensible approach, and
a key to an efficient and robust algorithm, to perform this
reduction based on two ingredients: (1) a measure for the
information which a given channel will supply to the
retrieval at a given pressure level and (2) a formulation
for a target number of channels not yet implying a cost in
retrieval accuracy. For this baseline study, we directly
adopted the information content (IC) measure as described
by Rodgers [1996] and applied it at each retrieval level. We
used a simple formula reasonably bounding the number of
channels per level as well as the total number of channels.
[15] Following Rodgers [1996] [see also Bennett et al.,

1999], the IC may be viewed as the information gained by
including a measurement or, alternatively, as the corre-
sponding incremental reduction in uncertainty. It is a scalar
measure, H, expressed as the logarithm to base two (units of
bits) of the ‘‘ratio’’ of prior to posterior error covariances in
the form

H ¼ 1=2flog2jSaS�1j: ð2Þ

In equation (2) Sa is the a priori error covariance matrix and
S is the retrieval error covariance matrix defined by

S ¼ ½Sa�1 þKTS�1
e K��1; ð3Þ

where SE is the measurement error covariance matrix and K
is the forward model operator, or weighting matrix,
introduced above in section 2.2. The specification of Sa,
SE, and K for this study is detailed in section 2.4 below. In
implementing the selection, we presorted the IASI channels
into the retrieval levels based on the peak of weighting
functions (rows of matrix K) associated with them; that is,
each channel was allocated to that level where its weighting
function peaks. This presorting by level acts to distribute the
weighting functions such that each retrieval level safely
receives a sufficient number of channels. Moreover, the IC
selection processing time is reduced since the number of
channels in each layer is small compared to computing on
all channels at once. Then at each level (43 for temperature,
28 for humidity) H was computed by updating the retrieval
error covariance matrix from the calculation of S in the
previous step [cf. Rodgers, 1996]. The channel with the
greatest H value, Hmax, is retained for the retrieval and
removed from subsequent calculations of Hmax repeating the
procedure for one channel less. The selection via Hmax stops
for a given level i after Ni channels are determined, where Ni

is computed by the heuristic formula

Ni ¼ minfmin½ni;maxðð f * niÞ; nthresÞ�; nmaxg: ð4Þ

In (4), ni is the total number of channels available at the
level (corresponding to the number of weighting functions
peaking there), f is a fraction parameter, nthres is a threshold
parameter, and nmax is a parameter for the maximum
number of channels allowed. The free parameters f, nthres,
and nmax in (4) are used to enforce a suitable target number
of channels both per level and in total. For this study we
used for temperature retrievals below/above 100 hPa f =
0.07/0.07, nthres = 25/15, and nmax = 40/25 and for humidity
retrievals f = 0.07, nthres = 15, and nmax = 50 throughout,
respectively. These parameters were selected, after tests
with many different parameter scenarios, so that (1) the final
number of channels obtained would not exceed 700 (�8%
of total number), (2) all retrieval levels are properly
represented with somewhat more weight on tropospheric
heights, and (3) the vertical distribution of channels is
smooth (small gradient in the number of channels associated
with adjacent levels).
[16] Figure 2 illustrates the outcome of the IC selection,

for both temperature T and humidity q, by showing the IC
measure H (incremental IC in bits) as a function of wave
number for those channels, which have been selected. KT =
@TB/@T and Kq = @TB/@lnq were evaluated for a standard
midlatitude summer atmosphere in this case, which served
as the standard a priori atmosphere in this study. It is
generally sensible to base the computation of KT and Kq

for the selection on a priori temperature and humidity
information. Separate channel sets were prepared for T
and q (the one for T using KT in (3), the one for q using
Kq) as we retrieve these parameters separately in this
baseline study. The number of channels eliminated by this
step is around 4500 (�87% of the channels on input),
leaving �600–700 channels based on highest IC per level.
[17] Though the numbers Ni (equation (4)) are not partic-

ularly high, the computation of Hmax, required Ni times per
level, is computationally demanding. For example, suppose
that for humidity retrievals, 100 channels peak at level

Figure 2. Information content (IC) based channel dis-
tribution and IC magnitude (vertical spikes in units bits) for
(a) temperature and (b) humidity. Shaded areas indicate
bands excluded due to significant ‘‘foreign’’ gas contribu-
tions. Asterisk symbols indicate pseudo channels, i.e.,
channels derived from clustering of neighboring channels.
On top of each panel the midlatitude summer atmosphere
brightness temperature, TB, spectrum is drawn for reference.
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30 (520 hPa). This would require a total of
P14
n¼0
(100-n)

calculations of IC or, in other words, Hmax is realized
1395 times at level 30. Since this step can be computation-
ally intensive for levels with many channels, the channel
selection was carried out only for the U.S. standard clima-
tological profiles and is not foreseen to be done in this way
for individual retrievals in large-scale application (these
would use a prescribed channel set closest to current
conditions, e.g., based on climatological prior information
such as from the CIRA86aQ_UoG model [Kirchengast
et al., 1999]). We have, however, also successfully explored
simplified faster information content measures [Weisz et al.,
2001; unpublished manuscript].
2.3.4. Channel clustering
[18] After the IC step, we are left with <10% of the

original channels. As Figure 2 indicates, many of the
channels are in tight groups (as in the CO2 absorption
bands), and yet others span across the water vapor vibra-
tion-rotation band. We seek to further reduce redundant
information, while at the same time suppressing instrumen-
tal noise, by creating single pseudochannels in case clusters
of four neighboring channels occur at a single retrieval
level. An average over the measurement values and weight-
ing functions of channels is performed in such clusters, and
the error values involved in SE are reduced by a factor of
�0.6 to reflect the noise reduction due to averaging (since
the four channels are correlated there is less error reduction
than by 1=

ffiffiffi
4

p
). Each pseudochannel thus replaces four

individual channels (reducing the number of channels by
three) and exhibits improved error characteristics. Restrict-
ing clustering to single retrieval levels ensures that the
brightness temperature differences among the neighboring
channels are small and that the vertical resolution is not
blurred. In general, clustering reduces measurement redun-
dancy in ‘‘atmospheric window’’ regions or in regions
displaying spectral homogeneity. Clustering over more
than 1 cm�1 (more than four channels) was not performed
in order to ensure that the weighting functions involved
are similar, particularly in the 1600 cm�1 H2O band and
along the wings of the CO2 bands centered near 650 and
2300 cm�1. This final step of the channel reduction proce-
dure typically produces �10–15 pseudochannels, which are
indicated by asterisk symbols in Figure 2. The number
of channels available for the retrieval algorithm is thus
�600 (�7% of the total). Moderate room for improved
clustering exists in making the handling of cluster size more
flexible (e.g., size variable between two and four to eight
channels dependent on supply of cluster blocks at any level
involving sufficiently similar weighting functions).

2.4. Retrieval Algorithm

[19] We approach the inverse problem associated with (1),
the retrieval of temperature and humidity profiles x from
brightness temperature measurements y, by the concept of
Bayesian optimal estimation described in detail by Rodgers
[2000]. Since the problem of interest is moderately non-
linear, we chose an iterative optimal estimation of the form

xiþ1 ¼ xa þ Si �KT
i � S�1

e f½y� FðxiÞ� þKi � ðxi�xaÞg; ð5Þ

where subscript i is the iteration index, xa is an a priori
profile (for temperature or humidity), Si is the retrieval error

covariance matrix defined by (3), SE is the measurement
error covariance matrix, and the other quantities are as
defined earlier. The optimization scheme expressed by (5) is
usually termed Gauss-Newton method and provides a
reliable maximum a posteriori (MAP) estimate for ‘‘small
residual’’ inverse problems as the one dealt with here
[Rodgers, 2000]. In applying (5), the iteration was
initialized with x0 = xa and state estimate, xi, measurement
estimate, yi = F(xi), weighting matrix, Ki = @F(x)/@x|x=xi,
and retrieval covariance estimate, Si, were updated at each
iteration step until convergence (or a maximum number of
12 iterations) was reached. Convergence was determined
based on the scalar ‘‘cost function’’ measure

c2
i ¼ ½y� FðxiÞ�TS�1

e ½y� FðxiÞ� þ ðxi�xaÞTSa�1ðxi � xaÞ: ð6Þ

If ci
2 is less than Nchan, the number of channels

(approximately corresponding to the number of degrees of
freedom involved [Rodgers, 2000]), then convergence is
considered obtained when the criterion (ci+1

2 � ci
2) <

0.1Nchan is met and the profile with the minimum c2 value
(either xi or xi+1) is retained. In the event a maximum of 12
iterations is used up without convergence as defined or if c2

values start to re-increase at c2 > Nchan, the profile xi with
the minimum c2 value is retained and properly flagged.
Convergence is usually obtained with one to three iterations
for temperature and two to four iterations for humidity
retrievals. The computationally most demanding part in the
estimation scheme is the calculation of Ki (dimension Nchan

� number of retrieval levels), which must be performed at
each iteration step (by the RTIASI model). Effective
channel reduction is of key importance to render this
efficient.
[20] The a priori error covariance matrix (Sa) reflects the

uncertainty in our knowledge of how close the a priori
profile xa is to the ‘‘true’’ profile x we desire to estimate. In
order to reflect the typical smooth character of a priori
profiles, we use an autoregressive model variant and adopt
Sa to be nondiagonal such that there exists interlevel
correlation and the nondiagonal components fall off expo-
nentially from the diagonal, i.e.,

Saði; jÞ ¼ si sjexp
�jzi � zjj

L

� �
: ð7Þ

In (7), si and sj are the standard deviations of the a priori
error covariance matrix, z is height, and L is the correlation
length. For temperature, L = 3 km, and the standard
deviations are assumed to grow linearly in log pressure from
2 K at the surface to about 14 K at the top of the model
(0.1 hPa). For humidity, L = 1 km, and we assume a similar
type increase in standard deviation from surface to 400 hPa
(linear from 25 to 40% uncertainty). Above 400 hPa, a
constant value of 40% is used. For application to the smooth
climatological profiles used in the present study, this
specification of covariances is generally conservative.
[21] The measurement error (or noise) figures were

obtained from the best available current noise model for
IASI level 1c data (P. Schluessel, EUMETSAT, private
communications, 2000). The diagonal elements of SE were
set to the (squared) noise figures, the off-diagonal elements
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set to represent interchannel correlation up to the third
neighboring channel required to account for the apodization
process involved in the spectrum. Before using the noise
figures, the standard noise figures (referring to a back-
ground scene at 280 K) were scaled to the actual brightness
temperature of each channel (i.e., if this is colder than 280 K
the scale factor is higher than unity). It is sufficient to
determine this scaling from forward modeled a priori
information. Typical instrument measurement noise values
range between 0.1 and 0.5 K with a marked increase for
wave numbers above 2500 cm�1, one major reason why we
limited the wave number range to <2500 cm�1 (see sub-
section 2.3.1). In addition, we roughly account in SE for
forward model (RTIASI) deficiencies by adding for all
channels 0.2 K to the measurement errors (J. Eyre, The
Met. Office, Bracknell, U.K., private communications,
2000). Besides implementing SE according to this formula-
tion, each simulated measurement vector y was superposed
by a randomly generated noise vector statistically consistent
with the formulation of SE (except for the forward model
error component, which need be ignored when generating
noise in y).
[22] Dependent on the quality of the a priori profile, the

first or the first two iteration steps may need special aid with
convergence due to linearization errors, which is often dealt
with in extending the Gauss-Newton scheme to the Leven-
berg-Marquardt scheme [e.g., Rodgers, 2000; Rieder and
Kirchengast, 1999]. We utilized the more simple but for the
present purpose equivalently effective extension introduced
by Liu et al. [2000], termed ‘‘D-rad’’ method. Leaving (5)
unchanged, just SE is modified in its diagonal according to

Seðm;mÞ ¼ max
ð yðmÞ � yiðmÞÞ2

a
; siðmÞ2

" #
; ð8Þ

where i is the iteration index, y(m) is the measurement value
of channel m, yi(m) = Fm(xi) is the forward-modeled
measurement, a is a (free) control parameter set to 10 for
this study, and si(m)

2 is the variance of measurement noise
for channel m (the original SE(m,m) values). Liu et al.
[2000] found the ‘‘D-rad’’ extended Gauss-Newton algo-
rithm to perform equally well or better than the Levenberg-
Marquardt algorithm in aiding convergence when a poor
initial guess profile was given. It also performs well in the
present context.

3. Results and Discussion

[23] Several examples are shown in order to demonstrate
the performance properties of applying an optimal estima-
tion retrieval algorithm to a reduced simulated set of high
spectral resolution measurements. For the tropical climatol-
ogy example discussed below, the number of channels after
the reduction steps according to section 2.3 were 651 and
534 for temperature and humidity, respectively.
[24] First it is instructive to examine, for both temperature

and humidity, the vertical-derivative-of-transmittance func-
tions (rows of matrix @t/@lnp, which has dimensions
number of channels � number of levels), the weighting
functions (rows of matrix K, which has dimensions number
of channels � number of levels), and the averaging kernel

functions (rows of matrix A = SKTSe
�1K, which has

dimensions number of levels � number of levels), respec-
tively. (We deliberately do not term rows of @t/@lnp
‘‘weighting functions’’ to avoid potential confusion with
the rows of K, the Jacobians, which are termed weighting
functions in our notation [Rodgers, 2000]).
[25] The vertical-derivative-of-transmittance functions

represent the classical kernel of the ‘‘atmospheric integral
term’’ of the radiative transfer equation. Figure 3 illustrates
them both for temperature (total transmittance) (Figure 3a)
and humidity (H2O-only transmittance), (Figure 3d). We do
not directly utilize them in this study but shown them for
reference, especially in order to highlight the difference to
the weighting functions (Figures 3b and 3e).
[26] The weighting functions quantify the sensitivity of

measured values y to the state x, while the averaging kernel
functions express the sensitivity of the retrieved state xi
(estimated via (5)) to the true state x and give with the width
of their main peak at half-maximum a measure of the
vertical resolution of the retrieved profiles [Rodgers,
2000]. Figures 3b, 3c, 3e, and 3f illustrate the vertical
distribution and magnitude of the weighting and averaging
kernel functions and indicates where the retrieval perform-
ance is expected to be good or degraded. Note that for
humidity K = @TB/@lnq, thus the units are K/1. The
retrieval grid is indicated by grey dashed lines in order to
highlight its nonuniform spacing, which increases close to

Figure 3. (a, d) Vertical-derivative-of-transmittance func-
tions, dt/dlnp, (b, e) weighting functions, and (c, f)
averaging kernel functions for Temperature, T, and
humidity, q, respectively. For highlighting the nonuniform
level spacing used, the grid levels are indicated as dashed
gray lines. Only every eight channel is displayed for clarity
in Figures 3a, 3b, 3d, and 3e.
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linearly with height (by a factor of �3 from 900 to 200 hPa,
where it is �1 km, and by a factor of �4 from 200 to 1 hPa,
respectively).
[27] The nonuniformity needs to be taken into account

especially when interpreting the height dependence of the
magnitudes of weighting and averaging kernel functions
independent of the chosen grid. For this purpose the
functions’ values should be considered rescaled (divided)
by the linearly increasing spacing in order to be representa-
tive of a uniform grid. Such scaling implies a significant
increase of the magnitudes at lower heights relative to the
ones at greater heights while the widths of function peaks
are not changed much as the local non-uniformity across
any single peak is linear and weak in the present case.
Strictly speaking, the complete matrices K and A should be
transformed to a uniform grid by utilizing the generalized
inverse of the matrix interpolating the state x to the uniform
grid [Rodgers, 2000].
[28] The weighting functions show highest peak magni-

tudes in the middle to upper troposphere (�500–200 hPa)
implying greatest sensitivity of the measurements to the state
x at these levels, while the sensitivity to the atmospheric state
in general (independent of the chosen grid) is slightly greater
in the lower troposphere. The averaging kernel functions
also indicate rather sharp resolution of retrieved profiles
(�1.5–2 km) in the 500–200 hPa region. Together this
strongly indicates the potential of IASI measurements to
monitor the upper troposphere both in thermal structure and
moisture, at least in clear air. In contrast, the boundary layer
(>900 hPa) and equatorial tropopause region (near 100 hPa)
appear to be probed, at reasonable resolution as expressed by
the chosen grid, with comparatively degraded sensitivity as
indicated by the smaller magnitudes of weighting functions
in these regions. Throughout the stratosphere, reasonable
sensitivity is indicated up to the stratopause (�1 hPa) for
temperature, while reasonable sensitivity to humidity is
limited to below �200 hPa (thus the retrieval domain for
humidity was restricted to below 100 hPa). Above these
levels, no significant weighting function peaks exist, the
resolution is rather low, and the retrieval is dominated by a
priori information. As we deal with thermal infrared sound-
ing, the characteristics of matrices K and A (and @t/@lnp)
are significantly influenced by the type and concentration of
interfering cloud and aerosol particles if these are present in
the sensor’s field of view. While this sensitivity complicates
temperature and humidity profiling, it can be exploited to
extract valuable information on clouds. In this study we
assumed cloud free field of views.
[29] ‘‘Baseline case’’ retrievals of temperature T and

humidity q were carried out using a standard midlatitude
summer profile as a priori profile and simulated measure-
ments from a standard tropical profile, superposed with
noise according to SE. For the T retrieval the corresponding
q profile was assumed perfectly known in this case and vice
versa. The results are illustrated in Figure 4. Besides the
final retrieval results, the results of intermediate retrieval
steps (intermediate xi values in (5)) are shown in order to
highlight the improvement with subsequent iterations, par-
ticularly where the initial step performs poorly (e.g., near
the tropopause).
[30] For temperature, differences from the ‘‘true’’ profile

initially vary up to 20 K at the tropopause, 5 K near the

surface, and 3–10 K in the stratosphere. After three steps
(two iterations) the final temperature differences in most of
the troposphere and stratosphere are less than 1 K. Near
100 hPa, temperature differences are reduced to �4 K. The
peak difference at these heights indicates the difficulty to
resolve the sharp equatorial tropopause structure, which
falls already above the best performance region below
�200 hPa discussed earlier. The retrieved RMS error
estimates (square root of diagonal of Si, (3)), Figure 4c,
are consistent with the actual differences, Figure 4b, in
the troposphere but more conservative than those in the
stratosphere. The reason is that the ‘‘smoothing error’’
component [Rodgers, 2000] is estimated rather conserva-
tively by (3) in the given case, since the adopted a priori
error covariance matrix represents an ensemble of profiles
with more spatial variability of errors than contained in the
smooth a priori profile used in the retrieval. Generally, the
RMS error magnitude is small where the weighting func-
tions (Figure 3b) are strong and vice versa.
[31] For humidity, improvement upon the initial step

result is also significant, and the final retrieval is obtained
after the first iteration (in this baseline case). A linear-log
plot is used below 500 hPa, and a log-log plot is used above
this height to best visualize the results despite the exponen-
tial decay of specific humidity with height. According to
Figure 4e the initial difference of the a priori profile ranges
from �25% near the surface to 50% near 250 hPa.
Throughout the troposphere, the retrieved humidity profile
is within 10% of the ‘‘actual’’ profile, indicating the
potential of IASI to furnish rather accurate humidity infor-
mation given an accurate a priori temperature. Regarding
the retrieved RMS error estimate, Figure 4f, the most salient
feature is again the dependence of accuracy on measure-
ment sensitivity (illustrated by the weighting functions in
Figure 3e). As for temperature, also the humidity error
estimate is conservative, since the a priori error covariance
matrix was not specifically tailored to the midlatitude
summer climatological profile but is rather reflecting a
broad ensemble of thermodynamic profiles including more
variable ones. It should be noted that only the diagonal
component of the retrieval error covariance matrix is shown
in Figures 4c and 4f, while a more detailed error analysis
recently worked out (Weisz et al., unpublished manuscript,
2001) also examines the error correlation structure.
[32] While Figure 4 has illustrated a baseline case where

we prescribed the actual q/T profile for the T/q retrieval
(which is idealistic), it is of practical interest to learn how
sensitive the retrieved T/q profiles are to uncertainties in the
prescribed q/T profiles. Related to this we performed
preliminary tests with a retrieval algorithm jointly retrieving
T and q, both stacked into state x in (5). Also, all the other
relevant quantities (especially Sa, K) were extended accord-
ingly, and different channel subsets were considered.
Repeating the baseline case discussed above in this joint
retrieval mode indicated that the humidity sensitivity pre-
vented the preliminary scheme from reaching convergence
in the tests run. Thus we quantitatively studied the sensi-
tivity of T/q retrievals to prescribed q/T profiles in applying
perturbations to the prescribed profiles and observing the
effects on the retrievals.
[33] Results for three representative perturbations of q/T

profile are shown in Figure 5: two systematic plus/minus
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perturbations and one randomly generated profile realiza-
tion consistent with the q/T a priori covariance matrix used.
The midlatitude summer profile was used as a priori profile
in all cases. Figures 5a and 5b indicate that the retrieved
temperature is quite robust when subjected to large (even
somewhat unrealistic) uncertainties in the prescribed q
profile. For both the systematic ±30% uncertainties and

the relatively large uncertainties in the realization profile,
the retrieval error stays within 3 K in the troposphere
(except toward the surface) and is not degraded in the
stratosphere. Note that systematic humidity deviations pro-
duce systematic temperature errors in the troposphere: the
retrieved temperature is consistently warmer/cooler than the
‘‘true’’ one if the prescribed humidity is too moist/dry.

Figure 4. (a) IASI temperature retrieval and iteration results, using a standard midlatitude summer a
priori profile and standard tropical ‘‘true’’ profile. (b) Temperature difference profiles from ‘‘true’’ profile.
(c) Square root of the diagonal of temperature error covariance matrices. (d) Humidity retrieval in log-log
coordinates for 200–500 hPa range and linear-log coordinates for 500 hPa-surface range. (e) Relative
difference profiles from ‘‘true’’ profile. (f) Square root of the diagonal of humidity error covariance
matrices.
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[34] Humidity retrievals are much more sensitive to per-
turbations in the prescribed temperature profile as Figures 5c
and 5d indicate. For systematic T perturbations of ±2 K, the q
retrievals are biased by about ±20–30%. Below 800 hPa the
sensitivity is significantly more pronounced with the
retrieval difference exceeding 60% for a +2 K perturbation.
The (rather unrealistic) random realization profile produces
big differences in the upper troposphere, where the temper-
ature perturbation exceeds 5 K. The results underscore the
requirement for accurate a priori temperature information

(uncertainties less than �2 K) for retrieving both temper-
ature and humidity (e.g., from a comprehensive library of
profiles or a � 24 hours weather prediction model forecast).
[35] A further sensitivity of interest is that of the retrieved

profile to the a priori profile used. It indicates how a priori
profile errors may alter the retrieval. Figure 6 displays, for
both temperature and humidity, results on these sensitivities
invoking the different extratropical U.S. standard atmosphere

Figure 5. Sensitivity of (a, b) temperature retrievals and
(c, d) humidity retrievals to (a) prescribed humidity (Figure
5a) and prescribed temperature (Figure 5c) uncertainties,
respectively. The retrievals are shown as absolute difference
profiles from ‘‘true’’ profile for temperature (Figure 5b) and
relative difference profiles from ‘‘true’’ profile for specific
humidity (Figure 5d), respectively.

Figure 6. (a and b) Sensitivity of temperature retrievals
and (c and d) humidity retrievals to different a priori
temperature (Figure 6a) and humidity (Figure 6c) profiles,
respectively. The retrievals are shown for temperature
(Figure 6b) and specific humidity (Figure 6d) in the same
manner as in Figure 5. Linestyles in Figure 6b same as in
Figure 6a and in Figure 6d as in Figure 6c, respectively.
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profiles as a priori profiles for retrieving the tropical profile.
The prescribed profiles are assumed known in these sensi-
tivity tests. In the troposphere and lower stratosphere, the
temperature retrievals arrive at a solution that is very similar
for all cases. We begin to see the solutions diverge above
�30 hPa where the uncertainty in the a priori profiles
increases (as reflected in the prescribed a priori error cova-
riance matrix (Figure 4c)). These results indicate that the T
retrieval is rather robust against a priori profile deviations. By
varying the channel set used (not shown) the differences in
the solution can vary by up to 2 K in the middle to upper
stratosphere (e.g., when the midlatitude winter based channel
set is used to retrieve a tropical temperature profile). The
channel sets produced for the different standard states
according to section 2.3 differ since shape and magnitude
of the weighting functions for individual channels are a
function of water vapor amount and, to a lesser degree, of
temperature. For the q retrievals, the a priori profile plays a
much more prominent role and initial profiles too far apart
(best indicated by the results for the much too dry winter
profiles) destroy convergence. In our example, it can be seen
(Figure 6d) that the a priori profile needs to be about as good
as the subarctic summer humidity profile in order to achieve
an accuracy within 25% of the tropical profile.

4. Summary and Conclusions

[36] In this paper we have presented an algorithm to
retrieve temperature and humidity from measurements made
by the Infrared Atmospheric Sounding Interferometer
(IASI), scheduled for launch aboard the METOP-1 satellite
in 2005. The algorithm is also applicable for retrievals from
other similar high-resolution spectra. Main features are a
sensible channel reduction procedure followed by an iter-
ative optimal estimation. A four-step procedure was intro-
duced for down-selecting channels, which includes:
removal of channels <4 mm potentially contaminated by
solar radiation, ‘‘foreign’’ gas elimination, information
content based channel reduction, and channel clustering.
This procedure results in (1) reducing the total channel
number (>8000 in case of IASI) by about 90–95% thus
increasing computational efficiency of the retrieval process
without appreciably compromising accuracy, (2) effectively
removing redundant information (e.g., due to multiple
absorption bands all supplying sensitivity for similar heights
or in atmospheric windows), (3) preserving channels whose
weighting function peaks smoothly span almost all retrieval
levels, and (4) reduce retrieval uncertainties by removing
channels where significant emissions by nonretrieved and
nonuniformly mixed gases (e.g., O3) are present.
[37] An iterative linearized optimal estimation retrieval

algorithm for moderately nonlinear problems was employed
for deriving temperature and humidity profiles from the
selected subset of simulated measurements. U.S. standard
climatological profiles were used to supply background a
priori profiles as well as a ‘‘true’’ profile (a standard tropical
profile) for demonstrating the retrieval performance of the
algorithm including various sensitivity tests. The retrieval of
temperature performs quite well (less than 1 K difference
from ‘‘true’’) throughout most of the troposphere and mid
stratosphere if the prescribed humidity profile is well known
(within 10%). Humidity retrievals are within 10% of the

‘‘true’’ humidity profile throughout most of the troposphere
up to 200 hPa if the prescribed temperature profile is well
known (within 1 K). Convergence is typically reached
within 1–3 iterations for temperature and 2–4 iterations
for humidity.
[38] Temperature retrievals appear to be quite robust

against uncertainties in prescribed humidity (up to about
20–40% uncertainty). Humidity retrievals are significantly
more sensitive, and prescribed temperature uncertainties
should stay within 2 K. Varying the a priori temperature
profile (while keeping humidity fixed) led to temperature
retrievals, which agreed with one another within 1 K at most
heights between 700 and 30 hPa. Varying the a priori
humidity profile (while keeping temperature fixed) in
humidity retrievals led to differences of the order of 30–
50% from the ‘‘true’’ profile when using inappropriate a
priori profiles (e.g., dry winter profiles). This indicates that
for supplying a fair a priori state, one should best use a
suitable profile from a comprehensive library of profiles or a
short-term model. Typically the a priori errors would then
be smaller than what was adopted here.
[39] The results of this baseline study provide clear

guidance for further advancements. Our current and planned
future work includes: (1) Improving the channel reduction
procedure, especially toward using a simplified information
content measure enabling more efficient selection, (2)
Improving the retrieval algorithm to fully realistic condi-
tions either via a ‘‘joint retrieval mode’’ (stacking both
temperature and humidity profiles into one state vector) or a
‘‘sequential mode’’ (based on a chain of subsequent temper-
ature and humidity retrievals), (3) a thorough analysis of the
retrieval process based on a Bayesian error analysis and
characterization formalism, (4) application of the algorithm
under realistic IASI sounding geometry to high resolution
weather analyses in order to test retrieval performance on
realistic mesoscale variability, and (5) modifications and
optimizations focused on high-quality retrieval of upper
tropospheric humidity and sea surface temperature. The
results obtained so far strongly indicate that the high
spectral resolution measurements from IASI indeed have
high potential to significantly outperform current opera-
tional sensors in temperature and humidity profiling and
that they may become a future key database for the much
needed monitoring of climatic changes in the thermal
structure of the atmosphere and especially the moisture
distribution of the middle and upper troposphere.
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