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Abstract. The performance of the Global Navigation Satellite System (GNSS) based radio
occultation method for providing retrievals of atmospheric profiles up to the mesosphere was
investigated by a rigorous Bayesian error analysis and characterization formalism. Starting
with excess phase profile errors modeled as white Gaussian measurement noise, covariance
matrices for the retrieved bending angle, refractivity/density, pressure, and temperature
profiles were derived in order to quantify the accuracy of the method and to elucidate the
propagation of statistical errors through subsequent steps of the retrieval process. We assumed
unbiased phase errors (the occultation method is essentially self-calibrating), spherical
symmetry in the occultation tangent point region (reasonable for most atmospheric locations),
and dry air (disregarding humidity being of relevance below 10 km in the troposphere only) in

this baseline analysis. Because of the low signal-to-noise ratio of occultation data at
mesospheric heights, which causes instabilities in case of direct inversion from excess phase
profiles to atmospheric profiles, a Bayesian approach was employed, objectively combining
measured data with a priori data. For characterization of the retrievals we provide, in addition
to covariance estimates for the retrieved profiles, quantification of the relationship between
the measured data, the retrieved state, the a priori data, and the true state, respectively.
Averaging kernel functions, indicating the sensitivity of the retrieval to the true state,
contribution functions, indicating the sensitivity of the retrieval to the measurement, and the
ratio of retrieval errors to a priori errors are shown. Two different sensor scenarios are
discussed, respectively, an advanced receiver (AR) scenario with 2 mm and a standard
receiver (SR) scenario with 5 mm unbiased RMS error on excess phase data at 10 Hz
sampling rate. The corresponding bending angle, refractivity, pressure, and temperature
retrieval properties are shown. Temperature, the final data product, is found to be accurate to
better than 1 K below ~40 km (AR)/~35 km (SR) at ~2 km height resolution and to be
dominated by a priori knowledge above ~55 km (AR)/~47 km (SR), respectively. For all data
products the use of a Bayesian framework allowed for a more complete and consistent
quantification of properties of profiles retrieved from GNSS occultation data than previous

work.

1. Introduction

The radio occultation technique exploits Global Navigation
Satellite System (GNSS) signals, which propagated through
the Earth’s atmosphere in limb sounding geometry (the GNSS
presently comprises the U.S. Global Positioning System, GPS,
and its Russian pendant called GLONASS; a European system
called GALILEO is under development). The principal
observable is the excess phase path (phase path in excess to
phase path in vacuum) of GNSS-transmitted radio waves
accrued by refraction during their passage through the
atmosphere to a receiver in low Earth orbit. Using the excess
phase data, profiles of atmospheric bending angle,
refractivity, density, pressure, and temperature can be
retriecved, which range from surface to mesosphere. In
addition, humidity information can be extracted in the lower
and middle troposphere. The technique has been described in
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detail in various papers (e.g., see review by Kursinski et al.
[1997]) and has been successfully demonstrated with the GPS
meteorology (GPS/MET) “proof-of-concept” experiment
[Ware et al., 1996; Kursinski et al., 1996]. The GLONASS
system has not yet been utilized for an actual experiment.

A variety of data analysis studies based on either simulated
data or GPS/MET data or both, which employed
forward/inverse simulations as well as validation of
GPS/MET data with independent data sets, have confirmed a
very good quality of retrieved profiles up to ~30-35 km, such
as temperature accuracy <1 K (we disregard pending
humidity-related problems in tropospheric processing in this
study) [e.g., Rocken et al., 1997; Gorbunov and Gurvich,
1998; Steiner et al., 1999; Syndergaard, 1999; Palmer et al.,
2000]1. However, they also showed that the low signal-to-
noise ratio above the stratopause constitutes a basic limitation
of the accuracy of retrieval products above about 35 km. For
this reason the measured data have been supported in one way
or another by additional model information in those regions,
generally by “statistical optimization” combining measured
bending angle data with model bending angle data, a concept
introduced by Sokolovskiy and Hunt [1996].
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Regarding error analyses, only the recent works by
Syndergaard [1999] and Palmer et al. [2000] have stepped
beyond a standard analysis of RMS errors in retrieval
products and also considered covariances. Syndergaard
[1999] performed a theoretical step-by-step covariance
propagation- analysis from excess phase profiles via
intermediate data products such as bending angle and
refractivity down to temperature profiles. Palmer et al. [2000]
performed a theoretical error analysis for a Bayesian optimal
estimation inversion of bending angle profiles into
temperature profiles, humidity profiles, and surface pressure.

This study complements and extends the work of
Syndergaard [1999] and Palmer et al. [2000] with an error
analysis and characterization of atmospheric profiles retrieved
from excess phase data utilizing the rigorous Bayesian data
analysis framework introduced by Rodgers [1976, 1990,
2000]. This concept copes both with the task of optimally
supporting the retrieval by measurement-independent model
(a priori) data as well as with the task of quantifying expected
errors and the relationships between measured data, a priori
data, retrieved state, and true state. Such an error analysis and
characterization is highly valuable for assessing the reliability
of retrieval products and for a solid understanding of retrieval
product properties.

This study is organized as follows. In section 2 a critical
inspection of the experimental setup, the signal-to-noise ratio,
and inversion techniques utilized so far motivate the use of
Bayesian data analysis. Section 3 summarizes the Bayesian
approach to underdetermined inversion problems and the
subsequently employed methodology for error analysis and
characterization of a retrieval process. In section 4 the error
covariance and characterization matrices quantifying the
performance properties of data products are discussed on the
basis of two reasonable scenarios of excess phase
measurement errors (“advanced,” reflecting the performance
of a modern receiver, and “standard,” reflecting the
performance of the GPS/MET proof-of-concept receiver).
After describing the formulation of required input quantities
in section 4.1, the properties of retrieved bending angle,
refractivity/density, pressure, and temperature profiles are
assessed successively in sections 4.2 to 4.5. For each retrieval
product the covariance structure is analyzed, and RMS errors
and error correlation functions are shown and discussed. In
addition, the structure of the averaging kernel matrix, the data
contribution (or gain) matrix, and the retrieved/a priori error
ratio vector are illustrated and discussed for each retrieved
profile. Section 5, finally, provides a concise summary and the
main conclusions of the study.

2. Measurements and Need for Bayesian
Data Analysis

Briefly summarized, GNSS occultation measurements are
collected as follows. The transmitting satellite coriesponds to
an electromagnetic point source of well-defined L band
signals, the atmosphere acts like a weak inhomogeneous lens,
and the receiving satellite acquires, from the point of view of
geometric optics that we adopt here, a Fresnel diffraction-
limited signal. The natural vertical resolution thus achieved is
<1.5 km in the stratosphere and <0.5 km in the lower
troposphere. The horizontal resolution is ~300 km along a ray
path and ~1.5 km perpendicular to it. The local bending of
occultation rays can be understood by Snell’s law linking
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gradients in the refractivity field of the atmosphere to changes
in ray direction. The cumulative effect of the atmosphere
along the path of propagation can be characterized by the
excess phase / at a given measurement time ¢ and, after a
conversion based on the excess Doppler d = (dl/df), by the
total bending angle  associated with an impact parameter a.
The phase [/ is (up to a constant in practice) the total phase
path increase (in length units) due to signal retardation and
ray bending caused by the atmospheric refractivity field.
Assuming local spherical symmetry near ray perigee, a is the
perpendicular distance between the center of the local
curvature at ray perigee (in the plane transmitter-receiver-
Earth center) and the ray asymptote at transmitter or receiver.
The parameter « is the (small) opening angle between the
transmitter and receiver asymptotes. Detailed descriptions of
the measurement principle have been given, for example, by
Melbourne et al. [1994], Hoeg et al. [1995], and Kursinski et
al. [1997].

A GNSS occultation sensor system as a whole comprises,
in terms of total error in “measured” neutral atmospheric
excess phase profiles 1, a variety of individual error
components including as major ones satellite velocity and
position errors, residual clock errors, local multipath errors,
thermal noise, and residual ionospheric errors. The relative
importance of these error components in the total error and
the magnitude and statistical characteristics of the total error
depend most importantly on technical properties and
performance of the sensor system but also on observation
geometry and atmospheric and ionospheric conditions. The
total excess phase error thus has to be individually estimated
for any given specific sensor system in form of an aggregate
result of a thorough error budget analysis. A generic analysis
of this type, including some proxy error component estimates,
has been discussed in the open literature most
comprehensively by Kursinski et al. [1997].

In this study we do not perform any error budget analysis
but rather take two representative scenarios (“advanced
receiver,” AR, and “standard receiver,” SR) of total error in
neutral atmospheric excess phase profiles 1 as the starting
point of an error analysis and characterization formalism,
which is targeted at quantifying the errors and properties of
retrieved atmospheric profiles given an éxcess phase profile
with errors as specified. Using I as starting point intrinsically
assumes it to be obtained from the original phase
measurements at GNSS frequencies L1 and L2 via ionosphere
correction by linear combination of phases, while linear
combination of bending angles is a superior ionosphere
correction method [Vorob'ev and Krasil'nikova, 1994;
Ladreiter and Kirchengast, 1996; Hocke et al, 1997;
Kursinski et al., 1997] more frequently used in practice. Our
analysis dealing with unbiased statistical errors also applies to
the latter method, however, since its superiority essentially
lies in improved bias mitigation and since otherwise both the
linear combination coefficients and the processing algorithm
from phase to bending angle are the same for the two
methods. The excess phase errors are introduced in the
generic form of a measurement error covariance matrix, S..
The two scenarios discussed in this study can thus be
complemented without change to the formalism by any other
desired scenario with a different specification of S,.

In previous studies, the problem of low signal-to-noise
ratio (SNR) of GNSS occultation data at heights above the
stratopause was generally addressed at the level of bending



RIEDER AND KIRCHENGAST: ERROR ANALYSIS FOR GNSS OCCULTATION

T T T T T 77T

T T TTTT,

K Nl\u:\;l T
N\ Y

Height (km)

2 a
i Lt D e

‘I‘I |’(||I/' IR

o 1 IIH|II: 1 IIIIIII: 1 IlIlIII: 1 Illllm
107" 10° 10 102 10° 10t 10°
Signal to Noise Ratio ()
Figure 1. Diagonal of the SNR matrix S."”K-S,,'"”

representing the SNR height profile. Bending angle (dashed-
dotted), refractivity (solid), pressure (dotted; closely following
the refractivity SNR profile), and temperature (dashed) SNR
profiles are shown for both the AR scenario (heavy lines) and
the SR scenario (light lines), respectively.

angle data by invoking model data in order to damp
instabilities in subsequent retrieval steps, which otherwise
would arise due to the low SNR. The stabilization and
smoothing have usually been performed in an approximate
manner, without fully exploiting the error covariance
information of the contributing data sources [Kursinski et al.,
1996; Sokolovskiy and Hunt, 1996; Hocke, 1997; Rocken et
al., 1997, Steiner et al., 1999; Syndergaard, 1999]. This study
avoids potential weaknesses of approximate methods in that
we strictly base the whole analysis on the rigorous Bayesian
inversion methodology described by Rodgers [1976, 1990,
2000], which allows combining measurement data and a
priori model data in a statistically optimal manner. Utilizing
this methodology we retrieve, given an excess phase profile 1
with error covariance S, as measurement, properties of
atmospheric profiles at all levels (bending angle, refractivity,
pressure, and temperature) by using a single generic algorithm
described as needed for our purpose in section 3. Briefly, the
basic ingredient is that the relationship between the desired
atmospheric profile x and the measured profile 1, called the
forward model, is prepared in an algebraic form, where a
forward operator matrix K maps x into 1. The optimal
estimation inversion, the retrieval of x given 1, can then be
considered as a combination of information on x in the
measurements 1 and in a prescribed a priori profile x,,, the
contributions optimally weighted by the measurement error
covariance S, and the a priori error covariance S,, in the sense
of best linear unbiased estimation.

Expecting low SNR in the mesosphere it is apt, before
performing the Bayesian analysis, to inquire the effective
number of independent measurement values and, in particular,
to quantitatively estimate the SNR profile associated with
each desired profile x. We thus compared the measurement
errors specified by S, with the natural variability as reflected
by the a priori knowledge on x specified by S,. Any
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component of x whose variability, after mapped into
measurement space by the forward operator K, is smaller than
the measurement error is in effect not measurable. The
number of independent measurement values, detectable to
better than measurement error given natural variability, is the
number of singular values of matrix Ss'm. K-Sapm, which are
greater than about unity and its diagonal is an estimate of the
SNR profile [Rodgers, 2000]. Figure 1 depicts the diagonal of
SE'm-K-Sap”2 for each of the retrieval products bending angle,
refractivity, pressure, and temperature for the two scenarios
adopted (the matrices involved and the scenarios are detailed
in section 4). The SNR falls back to below unity in the
mesosphere for all profiles. The AR scenario maintains a
given SNR about one scale height higher up than the SR
scenario. The SNR degrades in course of the retrieval process,
that is, the bending angle profile exhibits highest SNR, the
temperature profile lowest. These aspects of SNR behavior
are in line with qualitative expectations and strongly confirm
the potential utility of Bayesian optimal estimation for GNSS
occultation data analysis.

3. Optimal Estimation Retrieval, Error
Analysis, and Characterization

When retrieving an atmospheric profile of interest from
sounding  measurements, an  error  analysis and
characterization of the retrieved profile is as important as a
proper estimate of the profile itself, since the former provides
quantitative measures on quality properties of retrieved
profiles such as accuracy and resolution and thus indicates
their utility for potential applications. Profile retrieval without
such estimates is of limited value only. The Bayesian optimal
estimation framework rigorously provides estimates of this
type in addition to a best estimate of the profile itself and
furnishes instructive insights into the mechanisms of the
retrieval process.

Applying this framework following Rodgers [1976, 1990,
2000], a priori data x,, on a state X to be estimated are fused
with measurement data y in a way to obtain a joint estimate X
of the state making optimal use of the information provided
by y and x,, given their uncertainties S, and S,,. In our
context the state x is either of the desired atmospheric
profiles, bending angle profile x,, refractivity profile xy,
pressure profile x,, or temperature profile xr, respectively, the
measurement y corresponds to the excess phase profile L
Regarding error specifications S, and S, the formulation we
adopt assumes that all errors involved are unbiased and obey
Gaussian statistics, which is reasonably applicable for the case
of interest here. Note that by ansatz this does not allow
analysis of biases, however, a matter which will be addressed
within a complementary ensemble-based empirical error
analysis in a forthcoming paper.

The processing steps in the occultation data retrieval chain
can be well formulated in a linear way (see section 4; only the
step from xy to X7 needs linearization), that is, by constant
forward operator matrices K, so that the forward model reads,

y=Kr'xr+87 (1)

where the subscript r denotes either of o, N, p, T, (e.g., 1 = @
implies that the state x,, is mapped by the linear operator K, to
the measurement space) and € denotes measurement noise
statistically described by covariance matrix S.. Matrix K,
formulated in section 4 for the four retrieval products
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considered, expresses the physical mechanism of how the
measurement y originates from the state x, in the atmosphere
(rows of K; can be seen as “weighting functions” quantifying
the sensitivity of measured values to the state x;). In addition
to (1) describing the measurement process, the second
ingredient required within the adopted framework is a priori
knowledge on x; and its uncertainty in the form of x,,, and
S.pr» Where the subscript r indicates, as above, the four
retrieval products of interest. In this study we supply this prior
information  invoking the CIRA86aQ_UoG model
[Kirchengast et al., 1999], an enhanced version of the well
known CIRA-86 climatological model [Fleming et al., 1988]
(see further details in section 4).

Utilizing the introduced quantities, the optimal estimation
solution of the inverse problem can be written as

R o= X + (KTST K+ S DTSy - KX, ()

S.=(K'S, 'K, + S, )", ®3)

where X, is the (linear unbiased) optimal estimate of profile
X, re€ {a N, p, T} and S, is the associated optimal error
covariance estimate. This solution is frequently termed
maximum a posteriori (MAP) solution as it is theoretically
derived based on maximizing the posterior probability density
function (pdf) arising from use of Bayes’ theorem given a
prior pdf P(xr) o< eXp[_l/Z(Xr - xap,r)T Sap,r-1 (xr - xap,r)] and a
likelihood pdf P(y[x,) = exp[-Y2(y — Kx) S¢' (y — Kx)l,
respectively [Rodgers, 2000]. A relevant “asymptotic”
property of (2) is that since it yields an unbiased state estimate
X ., measurements of the a priori state (i.e., y = Kix,,,) will
lead to getting in turn the a priori state retrieved (i.e., X, =
Xapr)- A relevant property of (3) is its independence of any
state x, which allows to perform the error analysis in a generic
manner solely based on the errors specifications S, S, and
on the mapping K. This is exactly the way we work out the
analysis in section 4.

Profile characterization provides further information on the
retrievals including on resolution and on the sensitivity of the
retrieved state X, to the true state, the measurements, and the
a priori state. As seen from (2), the retrieved state X, is a
combination of the true state x, and the a priori state Xgp,,
whereby the true state is known indirectly and only
approximately, in a form mapped to measurement space and
perturbed, i.e., as a noisy measurement profile y + €. In order
to study the resolution of X, and its sensitivities, the
following diagnostic expressions are useful (see, e.g., Rodgers
[2000] for details). The so-called averaging kernel matrix A is
defined by
_dx,

A,
dx,

4)

and expresses the sensitivity of the retrieved state X, to the
true state X,. The rows of A, the averaging kernel functions,
generally peak at the diagonal value, and the width at half
maximum of this peak is a measure of the spatial resolution at
the height level of the peak. Furthermore, if the sum over an
averaging kernel function, sometimes termed its area, is
essentially unity, then virtually all information comes from the
measurements, and lower values indicate significant
information coming also from the a priori data. The so-called
contribution matrix D (alternatively also termed gain matrix G
[Rodgers, 2000]) is defined by
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_ &
dy

and expresses the sensitivity of X, to the measurement profile
y. The columns of D, the contribution functions, also
generally peak near the diagonal value, and they quantify how
a measurement y; (at height level z; if measurements and state
share the same grid) contributes to X ,. Both matrices can be
viewed, besides as sensitivities according to (4) and (5), as

D, %)

operators producing the retrieved state by a linear
combination of the form
X=X + A (X, — X)) + D, €. (6)

Comparing (2) and (3) with (6) reveals that within the
optimal estimation scheme, both A, and D, can be written as
explicit algebraic expressions in the form

A=S.K'S'K,, D,=S,K'S,! (ie, A =D,K)

In section 4 we evaluate A, and D, employing (7). The
sensitivity of X, to the a priori state Xx,,, can be stated
analogously to (4) and (5) in the form d X ,/dx,,,, which leads
to a matrix (I — A,), identity matrix minus A,, expressing this
sensitivity. As (I — A,) is readily inferred from A,, we do not
separately discuss it in addition to A, in section 4.

For indicating the influence of the a priori data on the
retrieval we rather utilize another measure, a height profile q,
expressing the ratio of the retrieval error to the a priori error,

g, = 100 x y/diag(S,) /,[diag(S,,,) (8)

where the factor 100 normalizes q, to units percent. The
height profile g, can be regarded to indicate the percentage of
the retrieval error stemming from the a priori error. Roughly
speaking, if the percentage is <10%, almost all information is
provided by the measurements; if it is >50%, the majority of
information comes from the a priori data. Although ignoring
the covariances for convenience, the g, profile is instructive in
that it roughly indicates, for each retrieval product, at which
heights a priori data contribute significant information.

4. Application to GNSS Occultation
Data Processing

In applying the error analysis and characterization
formalism of section 3 for deriving the properties S. A, D,
and g, for all profiles x,, r € {&, N, p, T}, two representative
scenarios of measurement quality were selected: An advanced
receiver (AR) scenario, where we adopted an unbiased
uncorrelated Gaussian error in the excess phase profile 1 with
a standard deviation of 2 mm at 10 Hz receiver sampling rate,
and a standard receiver (SR) scenario, where we changed the
standard deviation to 5 mm, respectively. The AR scenario
reflects a data quality possible with modern receivers such as
the European GNSS Receiver for Atmospheric Sounding
(GRAS), foreseen to be flown on the future series of polar-
orbiting meteorological operational satellites METOP (first
launch scheduled 2005) [ESA/EUMETSAT, 1998], while the
SR scenario reflects a quality available from the proof-of-
concept mission GPS/MET, which delivered highly valuable
data within the 1995 to 1997 time frame [Ware et al., 1996;
Rocken et al., 1997]. Putting this error into perspective
relative to the signal, the latter amounts to only ~1 mm at
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mesopause level (~85 km), increasing via ~20 cm at
stratopause level (~50 km) and ~20 m at tropopause level
(~15 km) to ~1-2 km at the surface. The low mesospheric
SNR of retrieval products X as visible in Figure 1 is thus not
surprising.

The above error specification for 1 determines the
measurement error covariance matrix at 10 Hz sampling rate,
Seion.- The squared standard deviations form the diagonal
elements (variances) and the off-diagonal elements
(covariances) are zero as the errors are assumed uncorrelated.
The variances are assumed the same at all heights; that is, we
disregard SNR decreases in the troposphere (occurring mainly
due to signal defocusing) as these low heights are of
secondary interest in this baseline study. While uncorrelated
errors in I are a reasonable approximation, it requires further
investigation to what extend correlations might be introduced
by clock errors, which may be dominated by correlated
flicker-frequency noise due to an underlying random walk or
first-order autoregressive process.

We performed the entire analysis on a fixed height-level
grid spanning O to 120 km, which roughly reflects the Fresnel
diffraction limited resolution of the method (increasing with
decreasing height; see section 2) and typical smoothing
imposed (increasingly more smoothing at greater heights for
better noise suppression [e.g., Steiner et al., 1999]). The grid
was adopted to be spaced 0.5 km within O to 20 km, 2 km
within 70 to 120 km, and with spacing linearly increasing
from 0.5 to 2 km within 20 to 70 km (slightly adjusted above
60 km to smoothly approach the 70-km level), respectively.
While the range of practical interest is below the stratopause,
the grid extend up to 120 km is required for methodological
reasons, most notably for accurate evaluation of Abelian and
hydrostatic integrations [e.g., Syndergaard, 1999; Steiner et
al., 1999]. This retrieval grid leads to vectors and matrices
with dimensions of ~100, which can be processed very
efficiently and robustly within the baselined optimal
estimation framework.

4.1. Formulation of Input Quantities for the Optimal
Estimation Analysis

All required ingredients, S, X, Sy and K, are
formulated on the fixed retrieval grid. Their formulation is
described in this section as a prerequisite to discussing the
analysis results for each profile x,, r € {a, N, p, T}, in
sections 4.2 — 4.6.

The phase measurement error covariance matrix S, was
deduced from S, jo, introduced above in two steps: First, the
0.1-s time grid of S jom,, %, Was converted to a height grid, z,
via the “ray perigee velocity” formula [e.g., Melbourne et al.,
1994]

Yo -
1— DLEO dalz(ti)J (9)
dz

z=z(t) =25 —

where z = z(#,=0) is the height of occultation start (set to 120
km), v, is the “sinking velocity” of the ray purely by geometry
(set to 2.5 kms™), Digo is the ray perigee distance from
receiver (set to 3200 km), and do/dz is the vertical bending
angle derivative (computed using profile X,,, described
below) with Z(t|i> 1) =z, — (. — z.); 2(8)) = 2o — Volu
estimated by invoking previous levels. Second, for each
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height level of S, all variance values in S; iy, falling into the
corresponding height layer were averaged, and the result was
divided by the number of values in order to account for the
suppression of statistical noise by the averaging (care was
taken of fractions of samples crossing layer bounds). The
resulting phase error profile is illustrated in Figure 2a for both
the AR and the SR scenarios. Since the conversion to the
retrieval grid corresponds to significant smoothing (the
original 10 Hz rate corresponds to a rather dense height
sampling of ~200 m), the phase noise is found suppressed to
~1 mm/~2 mm (AR/SR scenario) at this grid. Given the
height-varying spacing of the grid and the nonlinearity of (9)
the variance is also no longer constant in S,.

The a priori profiles X,,; and a priori error covariance
matrices S,,; (r € {&, N, p, T}) were formulated based on
representative T and p profiles extracted from the
CIRA86aQ_UoG atmosphere climatology model
[Kirchengast et al, 1999] and on typical uncertainty
estimates, respectively. The March, 40°N, profiles were used,
the values of which are identical to the original CIRA-86
tabular model [Fleming et al, 1988] at the tabulated
locations; x,t = T and x,,, = p were directly used as
extracted at the retrieval grid from CIRA86aQ_UoG. x,,y and
X4p,q Were obtained subsequently via K n'Xypp and Ky Xgpn,
respectively, where the operators K. transform profile X, to
profile X,,. (these are described in more detail below).
Regarding matrices S,,,, these were prescribed in form of
squared RMS uncertainties, Ozap‘i, for the diagonal (variance)
values, complemented by off-diagonal (covariance) values of
the form o wpi = Oupi Oupj €Xpl—zi — zj)z/(Zng)], which
represent Gaussian drop-off correlation with correlation
length L, Lo= 3 km was used for all matrices S,,,, reflecting
that the background profiles are generally smooth and void of
significant variability at scales much smaller than a scale
height. However, for highlighting the role of background
correlations in the retrieval process, we illustrate below also
correlation function results for L, = 0.5 km (with all other
settings identical). The RMS uncertainty profiles ©,, were
modeled as follows. For X,,r an uncertainty of 2 K was
assumed from O to 20 km, and a linear uncertainty increase
from 2 K to 22 K within 20 to 120 km. The uncertainties of
the other profiles were specified in relative terms (i.e., as
100 x G4/x,, [%]), all in form of linearly increasing
uncertainty from O to 120 km: For X, and x,n the
uncertainty was assumed to increase from 2% to 18% in this
range, while for X, it was assumed to increase from 4% to
22%.

Figures 2b — 2e illustrate all a priori uncertainties together
with the corresponding a priori profile x,,,; for temperature
the uncertainty is depicted for better visualization as interval
about the mean profile x,r. These “experience-
based/educated  guess”  uncertainties roughly reflect
atmospheric model forecast uncertainties (6 to 12 hour
forecasts) at  troposphere/stratosphere  heights  and
climatological model (e.g., CIRA-86 model) uncertainties at
mesospheric heights. In the uncertainties on X, X, and
Xapo als0 some room is given for forward modeling errors
[e.g., Palmer et al., 2000; Rodgers, 2000], which increase the
more indirect the dependence on the fundamental profile X,
is. Sensitivity tests showed that enlarging/reducing the a priori
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uncertainties ~ within  reasonable  limits  moderately
increases/decreases retrieval errors at high altitudes as well as
raises/lowers the height level above which a priori errors
dominate. The effect on correlation functions, averaging
kernels, and contribution functions is fairly small. These test
findings confirm that the scenario results shown below are
rather representative.

The forward operators K, expressing the dependence of
the measured excess phase profile 1 on the desired profile x,,
are implemented by exploiting the knowledge that all profiles
involved are associated with each other in a chain-like manner
by well established physical relations [e.g., Kursinski et al.,
1997]. These relations can be utilized to explicitly formulate
operators K, in matrix form as products of linear sub
operators K, where the latter perform a specific forward
modeling step, from profile x; to profile x,,, within the chain
to profile I. Forr, 1’ € {, N, p, T} the operators K, read

Ky =Ky Ky =Ky Ky, (10)
K, =Ky KN, Ky =Ky Kooy,

which involves in total four suboperators K. in the chains.
For this study we utilize in K, the sinking velocity of the ray
impact height to map « to excess Doppler d and Doppler
integration to map d to excess phase /, in Ky, the forward
Abel transform to map N to ¢, in K,y the hydrostatic equation
to map p to N, and in Ky the equation of state and the
hydrostatic integral to map (linearized) T to N, respectively.
The specific implementation of each of the four suboperators
is discussed in the context of sections 4.2 to 4.5.

Ingredients S, X,,, Sapr» and K, can all be prescribed in a
different way than here without any change to the error
analysis and characterization formalism given by (3) to (8) in
section 3. For example, one could use more sophisticated a
priori matrices S, (based on formulations existing in analysis

systems operated by meteorological service centers) and/or
improved forward operators. For the latter it is also readily
possible, if desired, to account for nonlinearities in
suboperators K...: In the case when K.(x,) replaces K;x; in
(1), the problem is linearized, (2) takes an iterative form while
(3) to (8) are unchanged, and K..- becomes a Jacobian of form
K. = JK..(x)/0x; (see Rodgers [2000] for details). Such
linearized formulation is, for example, useful if in a moist
atmosphere Kr.n is generalized to a nonlinear operator
K 4p0:n jointly mapping temperature, humidity, and surface
pressure to refractivity [Healy and Eyre, 2000; Palmer et al.,
2000] (the linearized K.y in our dry air case is still an explicit
analytical quantity; section 4.5). Despite such potential for
enhancements we believe that our relatively simple
formulation is well selected for demonstrating the approach
and for providing a sensible baseline analysis.

4.2. Analysis and Results for Bending Angle Profiles

The step from excess phase profile 1 to bending angle
profile x,, the first step in the retrieval chain according to
(10), is usually performed sample by sample by first
computing the time derivative of excess phase / to obtain
excess Doppler d and then using precise knowledge of
positions and velocities of transmitter and receiver satellites
(obtained from precise orbit determination, POD) and Snell’s
law under spherical symmetry to compute bending angle ¢ as
a function of impact parameter a [e.g., Kursinski et al., 1997].
This can be implemented in different slightly varying ways
[e.g., Fjeldbo et al., 1971; Vorob 'ev and Krasil 'nikova, 1994,
Melbourne et al., 1994; Hoeg et al., 1995; Gorbunov et al.,
1996] either in an iterative or in a linearized form.
Furthermore, the resulting profile ¢i(ay) is generally improved
and smoothed at high altitudes by merging it with a model
profile Oea(a) (statistical optimization; see sections 1 and
2).
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For this study we do not need the inverse but rather the
forward process, which is generally easier to formulate as it
follows the “cause-to-effect” direction, i.e., is aligned with
how the physical mechanisms work. In formulating the
required mapping (see Equations (10)),

1=K, x4 =KgXq, (11)
we exploit that the relation of ¢ and d is well approximated,
for the purpose of error analysis and characterization on
which we focus here, by the linear form [Syndergaard, 1999]

d@) = —ﬂa’(a) , (12)

dt

expressing that the time derivative of a, in other words the
sinking velocity of the ray impact height (a with Earth’s
radius Ry subtracted), maps «a to d. Note that for estimation of
the mean rather than of covariance and characterization
properties, i.e., when utilizing (2), da/dt in (12) should be
replaced by v, the sinking velocity of the ray purely by
geometry (see Equation (9)) [Melbourne et al, 1994,
Syndergaard, 1999].

In order to apply (12) to our fixed-height retrieval grid, #(z;)
and a;(z;) are needed. We utilized a rearranged Equation (9) to
obtain f(z) and invoked profile x,, to obtain aj(z) = (Rg + z;)
(1+10'6N(zi)), where Rg was set to 6371.0 km. Finally, in order
to map d(f) to /, a simple time integration over d(#) from ¢, to
t(z) was applied, which yields /(z;). Regarding practical
implementation of K, a standard three-point finite difference
scheme was used for da/dt and a standard trapezoidal rule for
the integration over d(f), respectively (both for varying grid
spacing).

Inserting K, together with S, and S,,, formulated in
section 4.1 into (3), (7), and (8), we computed covariance
matrix §a, characterization matrices A, and D,, and vector q,,
respectively. For both the AR and SR scenarios, Figure 3
illustrates these quantities in terms of absolute and relative

RMS error profiles (diagonal Jsa,“ and 100 x ,/Sa,ii /ia’i )
and mean profile (X 4 = X,, o) (Figure 3a), selected correlation

functions (rows S, ; / Jsavﬂ -S4,ji ) (Figures 3b, 3c; correlation

length L, = 0.5 km for Figure 3c), selected averaging kernel
functions (rows A,y (Figure 3d), selected contribution
functions (columns D) (Figure 3e), and retrieval-to-a priori
error ratio profiles (q,) (Figure 3f).

The RMS error profiles (Figure 3a) indicate the magnitude
of bending angle errors, which are found to be smaller than
1% below ~43 km/~37 km in the AR/SR scenario (dotted
horizontal lines) and at absolute values of ~0.6 prad/1.4 prad.
These error levels are consistent with what the two scenarios
intend to reflect [ESA/EUMETSAT, 1998; Rocken et al., 1997]
and confirm their utility as advanced and standard sensor
baselines. The errors below 10 km, though showing a not
unreasonable increase, should be interpreted with caution as
the present formulation disregards major error sources due to
significantly enhanced vertical and horizontal variability in
atmospheric  parameters (especially moisture) in the
troposphere [e.g., Gorbunov et al., 1996; Gorbunov and
Gurvich, 1998].

The correlation functions, averaging kernel functions, and
contribution functions (Figures 3b to 3e) are rather
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independent of scenario from the stratopause downward,
since the a priori uncertainty exerts rather small influence
there (Figure 3f) and because S, differs between the two
scenarios from our definition of Sy, only by a scalar
constant (factor 2.5). Thus only the AR scenario results are
displayed in Figures 3b to 3e. This finding, directly from
inspecting (3) and (7), implies that the overall magnitude of
measurement errors only marginally affects the correlation
structure and the sensitivity quantities below the stratopause.
This applies to subsequent retrieval products as well.

On the other hand, comparing Figure 3b (L, = 3 km) with
Figure 3¢ (L, = 0.5 km) indicates the significance of the
correlation structure of the a priori errors for the correlation
structure of the retrieval errors. The L, = 0.5 km case is
instructive in that it nicely reflects the differential relation of /
and d via the anticorrelation of errors at adjacent levels
(below the stratopause, where the level spacing is sufficiently
small). At least at heights above ~30 km, where it is always
advisable to fuse in a priori data, this is of minor practical
relevance, however, since retrieval algorithms usually use
rather smooth a priori profiles with a correlation structure
more reasonably reflected by the baseline case with L,= 3 km
(e.g., from the CIRA [Fleming et al., 1988; Kirchengast et al.,
1999] or MSIS [Hedin, 1991] models). As a general rule, the
correlation narrows with decreasing height along with the
decreasing magnitude of the sinking velocity da/dt in K, and
the decreasing a priori influence, respectively. The L, = 3 km
result is similar to the corresponding bending angle
correlation results of Syndergaard [1999], though the major
cause of correlation spread in the latter work was excess
phase filtering (i.e., a different mapping operator) rather than
a priori correlations. This indicates the important dependence
of error correlations on the specific implementation of

operators K. (or K;',, in case of a classical inversion chain

such as used in the latter work). In other words, though the
scenario results worked out here are representative and give a
good baseline idea, a specific error analysis should be
performed for each specific processing setup. The generic
framework proposed here is one excellent candidate for this
purpose; a complementary one is ensemble-based empirical
error analysis which will be dealt with in a forthcoming paper.

The averaging kernel functions (Figure 3d) indicate, within
the formulation used, a resolution for X, of ~4 km at
stratopause heights and of ~2 km at tropopause heights,
respectively. The magnitude of the peaks found below unity
(~0.3 to 0.5) indicates a moderate oversampling (i.e., more
samples than independent pieces of information in the
retrieved profile). This is expected in our case where the
measurement grid of profile 1 is for convenience identical to
the retrieval grid. Thus any mapping involving neighborhood
values (such as differentiation) somewhat blurs the resolution.
More optimized setups would sample the measurements
roughly at twice the vertical Fresnel zone diameter (see
Section 2), which would allow somewhat improved resolution
but with somewhat degraded accuracy, given an otherwise
identical processing setup. For example, if the resolution were
optimized toward 1 km for the AR scenario, the errors VS,
would in turn go up toward 1 prad.

The contribution (or gain) functions (Figure 3e) show that
because of the differential relation between I and X 4, a phase
measurement at any given level contributes most to X ,, right



31,762 RIEDER AND KIRCHENGAST: ERROR ANALYSIS FOR GNSS OCCULTATION
Relative Error of Bending Angle Retrieval (%)
0 4 8 12 16 20
BO'If‘T‘rl'|'|'/l'|'|' 80 T T 80 T M T T
. P Y
s <
.7 (a) (b) (c)
60} y {1 6of ‘<> 41 6o E .
o
S ol b
/ R—— Iiiizzzzaaess
- — —_ b4
G | I ORI E L. B 3
= aokl/ . 1 2 sof 4 = aof b -
= 40 , = 40 ‘i = 40 3
T e ° =
‘o 17 7] g ] :
T T T
o 4f>' }
l .<_§ I i Pyep—
| 1 L c:.__\ ] \ |
20 20 s zor ]
—E“ 1
- ;_k‘_.f_-_-
0 L [ B o] N B S S [o] R T SR S
1078 107 1072 1o° 102 -10 -05 00 05 10 -10 -05 00 0.5 1.0
Mean and Standard Deviation Correlation Functions diag(S.,) Correlation Functions
of Bending Angle Retrieval (mrad) of Bending Angle Retrieval () of Bending Angle Retrieval ()
g0 — 80T ———— 80
(d) (e)
60 & E 60 4} J 60
c <>' - <:> A
Z 4ot 1? { % 4of 'ﬁg' 1%
By ey >
(5] ] ‘é (]
T ¢ T b’ T
'%I::»
Q._
20 i’ b 20 q 20 1
¢b -~
P —~—
d’ <P
ol v v P SR ol 1 . 1 <._|J;l+ [o) IS BRI RTTIN SRR S
-0.5 0.0 0.5 1.0 -0.3 -0.2 -0.1 0.1 0.2 03 (¢} 20 40 60 80 100

Averaging Kernel Functions
of Bending Angle Retrieval ()

Contribuhon Functions
of Bending Angle Retrieval (mrad/m)

Ratio of Retrieval Error
to A Priori Error (%)

Figure 3. Bending angle retrieval results for AR scenario (heavy lines) and SR scenario (light lines, Figures
3a and 3f) given L, = 3 km (except Figure 3c, L; = 0.5 km). (a) Absolute (solid) and relative (dashed)
unbiased RMS error; mean (=a priori) profile (dotted); 1% accuracy heights (dotted horizontal). (b) L, =3 km
and (¢) Ls = 0.5 km (hinted by “diag(S,;)”) correlation functions for three representative heights (levels ~10
km, ~25 km, ~50 km; ranges ~10+10 km, ~25£15 km, ~50420 km; retrieval grid levels: small diamond
symbols within heavy-line “core region” of functions). (d) Averaging kernel functions and (e) contribution
functions for three representative heights (same format as Figures 3b and 3c). (f) Retrieval-to-a priori error

ratio; heights where ratio is 10% (dotted horizontal).

above and below. The magnitude of the peaks of ~0.2-0.25
urad mm' indicates that a change (or error) of 2 mm in phase
at some level will contribute ~0.5 pirad bending angle change
(or error) between adjacent levels above and below. This
magnitude is consistent with the absolute RMS error of ~0.6
urad seen in Figure 3a for the AR scenario.

The retrieval-to-a priori error ratio profiles (Figure 3f)
instructively illustrate that almost all information in X , is
coming from the measurements (q,; < 10%) at heights below
~47 km/~40 km for the AR/SR scenario (dotted horizontal
lines), while a priori information starts to dominate (qe; >

50%) in the mesosphere for both scenarios. Note, though, that
the influence of the a priori correlation spread reaches
significantly further down than the “variance-only” quantity

« signifies, especially since S, contains no correlation so that
S; (Equation (3)) still “feels” the covariance function wings in
Sap even when its variances are already small. Figure 3f also
indicates the excellent capability of (2) to intrinsically
perform statistical optimization in a rigorous manner in the
sense of unbiased optimal fusion of the measurements with a
priori knowledge (Xup,a Sipo); an aspect worth noting given

~the prominent role played by statistical optimization of
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bending angle profiles, in one or another approximation, in
most current retrieval algorithms (see section 2). Moreover,
other than the usual fusion of bending angle data and model at
retrieval product level, (2) requires specification of data
covariances at the more raw measurement level only (S,),
where it is more simple to quantify.

4.3. Analysis and Results for Refractivity
(and Density) Profiles

The processing of excess phase profile 1 to refractivity
profile xy requires a forward operation from refractivity to
bending angle, Ky.o, in addition to mapping K, used from x,
to 1 (Equation (11)). The complete mapping reads (see
Equations (10))

1=Ky Xy =Ky - Kyg Xy 13)
In formulating Ky.,, we exploit the classical integral relation
of bending angle o and refractivity N, a forward Abel
transform [e.g., Fjeldbo et al., 1971; Kursinski et al., 1997]
valid under the reasonable assumption of spherical symmetry
of the atmosphere over a few hundred kilometers near
occultation ray perigee locations. The Abel transform (or its
inverse counterpart) is used to implement Ky, (or Ky, ), in

one way or another, in all current retrieval algorithms that we
are aware of, because it can be expanded upon only by
additional prior information on horizontal variability. Using
the convenient approximation 10%dN(a)/da = d Inn(a)/da

(refractive index n=1 + 10'6N), we write the transform as

Ofi (ai ) =-2X 10—6 a; dN(a) —ﬂ—— N
da (a2 _ az)
1

(14)

a=a

where the integration over the refractivity gradient profile
dN(a)/da theoretically runs over the full upward half-space
above the height level of interest zia;); practically, we can
comfortably use 120 km as upper integral bound [Hocke et
al.,, 1997]. In order to utilize (14) on the fixed-height grid,
again ay(z) = (Rg + z) (1+10'6N(zg) is invoked (see section
4.2). The actual implementation of Ky, invoked a matrix
formulation of (14) by Steiner et al. [1999]. A three-point
finite difference scheme of type y(lny;,; — Iny;,)/(2dx) (for
varying grid spacing) was used to represent dN(a)/da and the

matrix operator “ 4 ” of Steiner et al. [1999] (times the factor
2x10%a;) to represent the integration, respectively. Left-
multiplying Ky by Kg according to (13) then yields the
complete mapping Ky.

Inserting Ky together with S, and S,,n formulated in
section 4.1 into (3), (7), and (8), we computed covariance
matrix §N, characterization matrices Ay and Dy, and vector
qn, respectively. For both the AR and SR scenarios, Figure 4
illustrates these quantities for the refractivity retrieval in the
same format as Figure 3 did for the bending angle retrieval.

The RMS error profiles (Figure 4a) are found to be smaller
than 1% below ~49 km/~43 km in the AR/SR scenario (dotted
horizontal lines) and at absolute values of about 0.003/0.007
(N units). This (unbiased) error level is conmsistent with
previous findings, as was noted above for bending angles,

which is to be expected as operation Ky., (or Ky, ) generally

31,763

utilizes an Abel transform. The tropospheric error estimates,
and also to some extent the lower stratospheric ones, are
certainly overly optimistic, however, since we disregarded
tropospheric complexities, especially the “forward modeling
errors” due to the assumption of spherical symmetry, which
simply means ignoring horizontal variability [e.g., Eyre, 1994;
Kursinski et al., 1997; Ahmad and Tyler, 1999; Pailmer et al.,
2000].

Comparing the correlation functions of Figure 4b (L, = 3
km) and Figure 4c (L, = 0.5 km) shows the important role of
the correlation structure of the a priori errors also for the
refractivity retrieval: The L, = 0.5 km case (Figure 4c)
maintains the small correlation spread seen for the bending
angle error correlation (Figure 3c) and the L, = 3 km case
again shows the dominance of the a priori error correlation
structure (the change in correlation structure between Figures
3b and 4b is relatively small, the negative correlation peaks
are slightly reduced). This finding indicates that in order to
keep correlation structure simple and spread small, it is
advisable to fuse in a priori data only down to heights where
they indeed benefit the processing (>30 km is sufficient from
our experience).

The averaging kernel functions (Figure 4d) exhibit no
appreciable change from Figure 3d, i.e., adding Ky., does not
significantly affect the resolution. Because of Ky, the
contribution functions (Figure 4e) undergo a small change
(see Figures 3e and 4e) somewhat akin to the correlation
structure change (see Figures 3b and 4b); regarding the
relation between 1 and X y, a phase measurement at any given
level contributes most to X y at this level plus slightly above
and leads to some compensatory (negative) contribution
especially over a few levels below. This is consistent with the
results of the impulse response approach of Kursinski et al.
[1997] (note at this point that the columns of A, in fact,
contain the impulse responses of X, to unit perturbations in
values x;; [Rodgers, 2000]). The magnitude of the dominating
positive peaks of ~1.5 N units m" (or 0.0015 mm™") indicate
that a change (or error) of 2 mm in phase at some level will
contribute ~0.003 N units refractivity change (or error) at this
level. This magnitude is perfectly consistent with the absolute
RMS error of ~0.003 N units seen in Figure 4a for the AR
scenario. The retrieval-to-a priori error ratio profiles (Figure
4f) exhibit no significant change from Figure 3f, ie.,
performing the optimal estimation at refractivity rather than
bending angle level does not affect the overall manner in
which a priori information contributes to the state estimate
X

The refractivity results apply to density as well. As mass
density p is proportional to refractivity N in dry air via the
constant factor ky, = M/(qR) = 4.489x10° kg m> (M=
28.964 kg kmol™ is the mean molar mass of air, ¢, = 77.60 K
mbar’ is the dry air refractivity constant, and R = 8314.5 T K!
kmol™ is the universal gas constant), the results shown for N
are readily rescaled to p by observing that X,,, = kn.gXapn
Sapp = k%l:p Sepn and K, = Kn.o / knpr Tespectively. This

simply implies, as seen via (3), (7), and (8), that the absolute
RMS error profiles and the contribution functions for p are
ko times the ones for N, while the relative errors, the
correlation functions, the averaging kernel functions, and the
retrieval-to-a priori error ratio profile remain the same.
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Figure 4. Refractivity retrieval results for AR scenario (heavy lines) and SR scenario (light lines, Figures 4a
and 4f) given L; = 3 km (except Figure 4c, L, = 0.5 km). Same format as Figure 3; see Figure 3 caption for

description.

4.4. Analysis and Results for Pressure Profiles

The conversion of excess phase profile I to pressure profile

X, requires, in addition to mapping Ky used from xy to 1
(Equation (13)), a further forward operation from pressure to
refractivity, K.y. The full mapping reads (see Equations (10))
1= Kp “Xp = Ko1Ky 'Kp:N “Xp - (15)

We use the hydrostatic law in differential form to formulate
K,,n, which is the standard relation for this operation as the
atmosphere is very close to hydrostatic equilibrium [e.g.,
Salby, 1996] (more precisely, classical inversion chains
requiring K;N use the law in integral form; e.g., Kursinski et

al. [1997]). It reads for our purpose

L @,
o) & g(z) & "
N(z) = 1 dp(z)

kN:p g(z) dz

where the dry-air proportionality p(z) = ky.»N(z), with ky., =
4.489x10° kg m” as defined above, was invoked and where
g(z) is the acceleration of gravity, which we utilized in the
same latitudinal mean form g(z) = 9.807 m s> Rg/(Rg + z)° as
used by Steiner et al. [1999]. In implementing K.~ based on
(16), the same type of three-point finite difference scheme
was used to represent dp(z)/dz as was used in (14) to represent
dN(a)/da. Left-multiplying K,y by Ky = K, Ky.q then yields
the complete mapping K, (see Equations (13) and (15)).
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Figure 5. Pressure retrieval results for AR scenario (heavy lines) and SR scenario (light lines, Figures 5a and
5f) given Ly = 3 km (except Figure 5S¢, L, = 0.5 km). Different from Figure 3, the correlation functions

(Figures 5b and 5c¢) are depicted over the full height

range, and the contribution functions (Figure 5e) are

depicted down to the surface. Otherwise same format as Figure 3; see Figure 3 caption for description.

Inserting K together with S, and S, , formulated in section
4.1 intoA Equations (3), (7), and (8), we computed covariance
matrix S, characterization matrices A, and D,, and vector qp,
respectively. For both the AR and SR scenarios, Figure 5
illustrates these quantities for the pressure retrieval in the
same format as used for Figures 3 (bending angle) and 4
(refractivity) above. The RMS error profiles (Figure 5a) are
found to be smaller than 1% below ~56 km/~49 km in the
AR/SR scenario (dotted horizontal lines) and at absolute
values of ~0.004/0.009 mbar. This pressure error magnitude
due to (unbiased) phase measurement noise as prescribed is
again reasonable down into the lower stratosphere, where it
starts to be increasingly too optimistic, since quasi-random
forward modeling errors not subsumed into S, become

increasingly dominant as noted from other perspectives
already in earlier sections.

A comparison of the correlation functions, Figure 5b (L, =
3 km) and Figure 5c¢ (L, = 0.5 km), with those of Figure 4
indicates as most characteristic feature the correlation spread
introduced by the integral relation of N to p, the degree of
which is heavily driven by the a priori error correlation spread
in S, (in Figure 5c, and slightly also in Figure 5b, the “jitter”
in correlation function wings appears since operator K,
(Equation (15)) drives the numerical estimation of §;
(Equation (3)) to gradually approach numerical instability
while L, approaches zero; except for the jitter, also the results
for L, = 0.5 km are still robust, however). Furthermore,
background correlation levels in Sp are found to significantly
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increase with decreasing height in the practically relevant case
of some spread in S,,, (represented by L, = 3 km, Figure 5b).
With classical step-by-step inversion and when involving no a
priori information, Syndergaard [1999] even found very
extreme background correlation estimates for S, (mostly
>0.99!) though the correlation structure estimate for Sy was
comparable to ours (but with different cause as noted earlier);
for tests involving “heuristic statistical optimization” [Hocke,
1997; Steiner et al., 1999], reduced background correlation
was reported.

A clear understanding of these partly surprising estimates
of the structure of S, can be gained on the basis of an explicit
analytical expression given by Rieder and Kirchengast [2001,
equation (20)] for the dependence of ép,ij on ép when the

discretized hydrostatic integral is used as operator K;p. The

expression reveals that each covariance element §p,ij is closely
proportional (exactly proportional if g(z) and grid spacing
Az(z) are assumed constant) to the sum over all elements in
the submatrix of §p down to element §p,ij (in other words, the
sum over the upper partition matrix lower-right bounded by
§p,ij). This implies that the covariance elements §N,(ij|i¢j> play a
crucial role both in suppressing the variances S ; compared to
a misleadingly pessimistic variance-only sum (by the negative
correlation peaks near the main peak) and in significantly
blurring the correlation structure in §p (as a full upper
partition of Sy is aggregated in each §p‘ij), respectively. The
extreme correlations found by Syndergaard [1999] in absence
of a priori constraints resulted since the absolute variances
§N‘ﬁ were constant rather than decreasing (Figure 5a) above
the stratopause in that case, which largely diminishes the
otherwise dominating role of elements at and close to the
height of interest. Utilization of prior information at high
altitudes is thus vital to mitigate correlation spread in pressure
and in the subsequent product temperature. The characteristic
that the correlation functions depict a sharp drop-off near the
peaks and then a slower drop-off over the wings is also a
direct effect of the summation: For the diagonal elements épj,
and to a height-dependent extent also for the adjacent side-
diagonal ones, the negative covariances in éN,(ijli#j) can provide
only weak compensation for the high values at and very close
to the height of interest; for the off-diagonal elements,
however, the covariance aggregation does act as an efficient
smoother.

The averaging kernel functions (Figure 5d, compare with
Figure 4d) indicate that the “sharp drop-off” characteristic
introduced by Ky not only leads to pronounced peaks in Sp
but apparently also leads to somewhat improving the
resolution in X , relative to the one in earlier products. While
it sounds surprising at first glance that a subsequent retrieval
product should exhibit better resolution than its predecessors,
it may happen in indirect measurements that a mapping K, =
K.-K. performs a somewhat different trade-off between
resolution (rows of A;) and accuracy (rows of ﬁr) than its
submapping K,. Note also, however, that the width of the
main peak of the averaging kernel functions is only a rough
scalar measure of resolution; inspecting the full functions
shows that while the peaks in A, are sharper than in Ay, the
wings exhibit stronger oscillations.

The contribution functions (Figure 5e) show, as expected
after hydrostatic integration, that a phase change at a given
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level contributes most at this level and adjacent levels but
(with decreased strength) also to all levels further below. The
magnitude of the dominating positive peaks of ~1-3 mbar m
(or 0.001-0.003 mbar mm'l) indicates that a change (or error)
of 2 mm in phase at some level will contribute ~0.004 mbar
pressure change (or error) at this level. This magnitude is
again consistent with the absolute RMS error of ~0.004 mbar
seen in Figure 5a for the AR scenario. The retrieval-to-a priori
error ratio profiles (Figure 5f) indicate that the estimate X , is
associated with more fractional improvement than X y (both
were constrained by the same relative a priori errors; see
section 4.1), in line with the effective suppression of RMS
errors in X, by the hydrostatic integration, as addressed
above.

4.5. Analysis and Results for Temperature Profiles

The process from excess phase profile 1 to temperature
profile xr can be formulated, for a tangent-linear state xsr of
xt obtained via a linearization Xt = Xo1 + Xgr, in the same way
as the process for x,: A forward operation from (linearized)
temperature to refractivity, Kr.y, is added to the mapping Ky
used from xy to I (Equation (13). The complete mapping from
Xgr to a corresponding phase profile change 8l reads (see
Equations (10))

A=Kr x5 =Kg Ko Ky Xgr - amn
Nonlinearity of the relation of 7 to N (see Equation (18))
necessitates linearization at this step. The choice of reference
state Xor does not matter as long as it ensures linearity; that is,
values in X s shall be a factor of 10 or more smaller than those
in xr (the obvious choice is Xor = X1, Which certainly
ensures Xgr; < 0.1x1;). Since the linearization well applies, the
use of the approximate mapping Krn-Xsr, instead of a
rigorous nonlinear mapping Kr.n(X71), in no way compromises
the validity of the present error analysis and characterization.

In formulating K.y it was found convenient to use the
inverse operator Ky.r as basic expression and then to obtain

Krx = Kyp by inversion. We utilized the equation of state

(ideal gas law), the standard relation for temperature retrieval
in dry air [e.g., Kursinski et al., 1997], in the form

£ = iT(z) =
p(z) M
o (18)
1) =e 22O [ v

NG N@)
where again 0(z) = ky.,N(z) was invoked (introduced in
section 4.3 together with the constants R, A, and c;), and
where Equation (16), rearranged to hydrostatic integral form,
was inserted. The actual implementation of Ky.r was based on
the operator “C” introduced by Rieder and Kirchengast
[2001, equation (24)] in the context of absorptive occultations
for an equation equivalent to (18). A discretization of the
hydrostatic integral into layers of varying width is intrinsic in
that formulation. A similar formulation was used for the step
from N to T by Syndergaard [1999]. Matrix inversion then led

to the required forward operator Ky = Ky, which maps

temperature change to refractivity change consistent with both
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Figure 6. Temperature retrieval results for AR scenario (heavy lines) and SR scenario (light lines, Figures 6a
and 6f) given L, = 3 km (except Figure 6¢, Ly = 0.5 km). Different from Figure 3, 1 K (rather than 1%)
accuracy heights are shown in Figure 6a (dotted horizontal) and the upper two contribution functions in
Figure 6e are downscaled by a factor of 100 (the one for ~50 km) and 10 (the one for ~25 km), respectively.
Otherwise same format as Figure 3; see Figure 3 caption for description.

the hydrostatic and the ideal gas law. Left-multiplying Kr.x by
Ky = KoKy finally yields the complete mapping Kr (see
(13) and (17)).

Inserting Ky together with S, and S,,r formulated in
section 4.1 into (3), (7), and (8), we computed covariance
matrix §T, characterization matrices At and Dy, and vector qr,
respectively. For both the AR and SR scenarios, Figure 6
illustrates these quantities for the temperature retrieval in the
same format as used for Figures 3 to 5 (except that now in
Figure 6a the dotted horizontal lines indicate 1 K threshold
instead of 1% threshold).

The RMS errors (Figure 6a) are found to be smaller than 1
K below ~40 km/~35 km in the AR/SR scenario (dotted
horizontal lines) and to approach a priori values in the

mesosphere. These RMS errors due to unbiased phase errors
of the magnitude prescribed are fairly reasonable down into
the lower stratosphere [e.g., cf., Kursinski et al., 1997].
According to recent results of an ensemble-based empirical
error analysis under very realistic conditions (A.K. Steiner and
G. Kirchengast, unpublished material, 2001), which involved
also bias errors changing from profile to profile (e.g., residual
precise orbit determination (POD) errors, ionosphere residual
errors), the latter contribute appreciably to the total RMS error
above ~25 km. This implies that the total RMS temperature
errors of AR-type sensors may be better represented by the SR
scenario results at these heights, though the AR scenario well
represents the unbiased error component. The recent results
also show, in line with the simplified scenario simulations of
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Kursinski et al. [1997], that the RMS error level saturates at a
minimum level of ~0.2-0.4 K within ~10-20 km and then
significantly increases downward because of the presence of
moisture. The absence of this behavior at lower stratospheric
and tropospheric heights in Figure 6a again points to the role
of forward modeling error sources not subsumed into S, for
this baseline analysis. As there is no problem to apply the
formalism to any different S, we plan to run further scenarios
with more sophisticated matrices S, after empirical analyses
have better quantified their structure.

The correlation functions and averaging kernel functions
(Figures 6b—6d) are found to behave rather similar to their
respective refractivity counterparts (Figures 4b—4d); that is,
the pronounced pressure error correlations play a small role
only in shaping the temperature error correlation structure.
This may be surprising at first glance but is not unexpected
noting that the operation Ky.r derives 7 directly from N. It can
be more rigorously understood by inspecting the structure of
Ky.1, as discussed in some detail by Rieder and Kirchengast
[2001] on the basis of an explicit expression for Ky.t.

The contribution functions (Figure 6e) also roughly reflect
in shape the contribution functions of refractivity (Figure 4e)
but with opposite sign. The reason is that, via (18),
temperature is inversely proportional to refractivity, a
proportionality only modestly modulated by the hydrostatic
integral in the numerator, since the latter contains refractivity
in a distinctly nonlocal manner only. The magnitude of the
dominating peak of about 2.5/0.1/0.01 K per 2 mm for the
function of level ~50/~25/~10 km again agrees well with the
unbiased RMS error level (Figure 6a) for the AR scenario
(note the rescaling of the upper two functions; see Figure 6
caption). The magnitude is strongly height-dependent, since
temperature changes are inversely proportional to mean
refractivity, which exponentially decreases with height [see
Rieder and Kirchengast, 2001, equation (24)]. The retrieval-
to-a priori error ratio profiles (Figure 6f) indicate an enhanced
role of a priori information for temperature retrievals,
compared to previous data products. Ratios <10% are reached
at ~34 km/~28 km for the AR/SR scenario, some 10 to 20 km
lower than for the other products. This is mainly caused by the
comparatively low fractional uncertainty specified in S, 1 (see
section 4.1).

5. Summary and Conclusions

A rigorous error analysis and characterization methodology
[Rodgers, 1976, 1990, 2000] has been applied to investigate
performance properties of atmospheric profiles retrieved from
GNSS radio occultation data. Using excess phase
measurements as starting point, the processing chain to
bending angle, refractivity/density, pressure, and temperature,
respectively, was studied in a baseline analysis assuming
unbiased measurement errors, spherical symmetry in the
occultation tangent point region, and dry air. Low signal-to-
noise ratio (SNR) of the measurements at mesospheric
altitudes prompted the adoption of a Bayesian approach,
which allows one to objectively combine measured data with
a priori data and explicitly provides, in the sense of optimal
linear unbiased estimation, error covariance matrices for all
retrieval products of interest as well as various sensitivity
matrices characterizing the retrieval process, including the
sensitivity of a retrieved profile to the true profile, the
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measurements, and the a priori profile. The required inputs are
measurement error and a priori error covariance matrices, a
priori profiles, and forward operators expressing the physical
relations in the retrieval chain, respectively.

After generically summarizing the formalism for the
intended purpose, it was applied to GNSS occultation data
processing with the required inputs formulated in a reasonable
manner. Error analysis and characterization results for the
retrieval products bending angle, refractivity/density, pressure,
and temperature, respectively, have then been discussed on
the basis of two different sensor error scenarios, an advanced
receiver (AR) scenario (white Gaussian excess phase noise
with 2 mm RMS error at 10 Hz sampling rate) and a standard
receiver (SR) scenario (5 mm instead of 2 mm). For each
product the discussion utilized the output of the formalism in
terms of unbiased RMS error profiles and associated error
correlation functions (inspected with and without significant a
priori error correlations), averaging kernel functions
indicating the sensitivity of retrieved values to the true profile,
contribution (or gain) functions indicating the sensitivity of
the retrieved profile to the measurements, and retrieval-to-a
priori error ratios roughly indicating the influence of the a
priori data on the retrieval, respectively. The following main
conclusions can be drawn.

1. Below the stratopause down into the lower stratosphere,
where the SNR is high, the Bayesian optimal estimation
analysis led to RMS error results consistent with previous
results based on classical inversion techniques [e.g., Kursinski
et al., 1997; Syndergaard, 1999], confirming its nominal
property to subsum classical approaches in scope.

2. At mesospheric heights, where the SNR is low, the RMS
error results of this analysis are significantly more reasonable
than previous ones, due to the sensible way of including a
priori data.

3. Over the full height range, for both high and low SNR, a
robust quantification of the error correlation structure in all
retrieval products was obtained, which classical covariance
propagation analyses by concept fail to provide under low
SNR conditions.

4. At lower stratosphere/troposphere heights the unbiased
error level estimates of the scenarios discussed are overly
optimistic, since besides bias errors, forward modeling errors
[e.g., Palmer et al., 2000] were deliberately not subsumed
into the measurement error covariance matrix (S;) for this
baseline analysis. As there is no problem to applying the
formalism to any different S, it is planned to run further
scenarios with more sophisticated matrices S after empirical
analyses have better quantified their structure.

5. Beyond any results from previous retrieval chain
analyses, quantitative step-by-step insight into the retrieval
process was achieved via characterization by sensitivity
functions (averaging kernel functions, contribution functions)
and retrieval-to-a priori error ratio profiles, representing
significant progress toward understanding the chain in full
depth. Findings included that the overall magnitude of
measurement errors (RMS error level of excess phase
profiles) only marginally affects the correlation structure and
the sensitivity functions of the retrieval products below the
stratopause.

6. The a priori correlation structure importantly influences
the correlation structure of the retrieval errors. Similarly, the
specific implementation of forward/inverse operators, which
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map profiles from one product to the next according to
physical relations, significantly influences these correlations.
Thus, though the discussed results furnish a good baseline
idea, a dedicated error analysis should be performed for each
specific processing chain. The formalism proposed here is one
excellent candidate for this purpose; a complementary one is
ensemble-based empirical error analysis dealt with in a
forthcoming paper.

7. According to the retrieval-to-a priori error ratio profiles,
a priori information plays a minor role from the upper
stratosphere downward (the most appreciable role for
temperature), while it starts to dominate in the mesosphere.
The influence of the a priori correlation spread reaches
significantly further down than the above ratio (a variance-
only quantity) indicates, however, since the correlation spread
in the data is usually small compared to the one associated
with the a priori profile. For keeping correlation structure
simple and spread small, it is thus advisable to fuse in a priori
data only down to heights where they benefit the processing
(>30 km is sufficient from our experience).

8. The formalism intrinsically performs statistical
optimization in a rigorous manner by unbiased optimal fusion
of measurements with a priori data; a noteworthy aspect given
the prominent role played by (approximate) statistical
optimization of bending angle profiles in most current
retrieval algorithms. Moreover, the correlation structure for
the data need not be supplied at retrieval product level but at
measurement level only, which is usually more simple.

9. This study, together with a related study by Rieder and
Kirchengast [2001] on absorptive occultations, introduced
convenient (matrix) formulations for relevant forward/inverse
operators as well as formulae providing insight into the error
propagation process, which will be of significant utility for
applications beyond these studies.

In summary, Bayesian optimal estimation was
demonstrated to enable a more complete and consistent
quantification of properties of profiles retrieved from GNSS
occultation data than previous approaches applied. Looking
beyond error analysis and characterization, it allows optimal
fusion, or “assimilation,” of GNSS occultation data not only
with single a priori profiles but rather with data from any
other suitable (spaceborne) instruments and with atmospheric
fields from (dynamical) models.
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