Motivation

GRUAN

Instrument change managemen

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

The GCOS Reference Upper-Air Network (GRUAN) and its Relevance to the Radio Occultation Community

 $\frac{\text{Jordis Tradowsky}^{1,2,3,4}, \text{ Greg Bodeker}^1, \text{ Peter Thorne}^5,}{\text{Ruud Dirksen}^6}$ 

<sup>1</sup>Bodeker Scientific, New Zealand
<sup>2</sup>National Institute of Water and Atmospheric Research, New Zealand
<sup>3</sup>Freie Universität Berlin, Germany
<sup>4</sup>ROM SAF
<sup>5</sup>Maynooth University, Ireland
<sup>6</sup>Deutscher Wetterdienst, Germany

OPAC-IROWG, 13th September 2016

## Overview



GCOS Reference Upper-Air Network

- **Motivation**
- 2 GRUAN
- Instrument change management
- GRUAN and the RO community
- 5 GRUAN RO comparison
- 6 Site Atmospheric State Best Estimates
  - Summary

## Motivation



GCOS Reference Upper-Air Network

#### Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

- Cooperation between the RO and GRUAN community valuable for both communities
- 3G workshop in Geneva GRUAN-GSICS-GNSS-RO [WMO, 2014], goals:
  - better connect GRUAN with satellite community
  - compare methods for uncertainty estimation, cal/val
  - discuss how to better serve climate/meteorological application
  - discuss future observing system design
- RO measurements, as well as GRUAN data products, are known to be of reference quality
- Comparison of entirely independent measurement techniques can reveal biases and uncertainties in measurements/retrieval





Motivation

#### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

GRUAN - Global Climate Observing System (GCOS) Reference Upper-Air Network

GRUAN was established to fill the need for long-term measurements suitable to detect changes in the climate system

- International ground-based reference observing network
- Provides high-quality ground-based measurements of ECVs<sup>1</sup> in upper-air
- While satellite measurements of ECVs are very valuable, many instruments need to be calibrated
  → Operational ground-based networks often do not offer

suitable quality and homogeneity for validation

<sup>1</sup>Essential Climate Variables

## The GRUAN Network





Currently 24 stations, intended to be 30-40!

## Focus of GRUAN



#### GCOS Reference Upper-Air Network

#### Motivation

### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

- $\bullet$  Provide long-term stable measurements  $\rightarrow$  managing change in instruments
- Measurements traceable to SI unit or internationally accepted standard
- Redundant measurements with various instruments essential for validation of the measurement and its uncertainty

GRUAN aims to provide data products suitable to detect climate change!

## Reference quality within GRUAN



GCOS Reference Upper-Air Network

Motivation

### GRUAN

Instrument change management

GRUAN an the RO community

GRUAN RO comparison

SASBEs

Summary

[Immler et al., 2010]

"Reference within GRUAN means that, at a minimum,

- the observed profiles are tied to a traceable standard at one point (e.g., by an extended, manufacturer-independent ground check of a radiosonde),
- that the uncertainty of the measurement (including corrections) is determined, and
- that the entire measurement procedure and set of processing algorithms are properly documented and accessible."

## How to reach the goals of GRUAN



GCOS Reference Upper-Air Network

Motivation

#### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

- Collect a rich set of meta data, which, if needed, allows the reprocessing of measurements
- Perform high-quality measurements over long time scales
- Tests in laboratory to estimate biases
- Eliminate causes of bias where possible
- Estimation and propagation of uncertainty
- ... hard work

## **GRUAN** stations

GRUAN

GCOS Reference Upper-Air Network

Motivation

#### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

- GRUAN stations are well equipped research facilities
   → Measurements of the same ECV<sup>2</sup> available from
   different instruments
- Redundant measurements are useful for detection of biases and estimation/validation of uncertainties

Typical instrumentation:

- Radiosonde, ozonesonde, frost point hygrometer
- GNSS precipitable water vapour
- Lidar
- Microwave radiometer
- Automatic weather station

<sup>&</sup>lt;sup>2</sup>essential climate variable

## Sonde in Lauder



GCOS Reference Upper-Air Network

#### Motivation

#### GRUAN

Instrument change managemen

GRUAN an the RO community

GRUAN RO comparison

SASBEs



## **GRUAN** Data Products

GRUAN

GCOS Reference Upper-Air Network

Motivation

#### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

- GRUAN data products must include an estimation of the uncertainty on each datum
- Metadata are included in the GRUAN data product
- Documented in the peer-reviewed literature

Atmos. Meas. Tech., 7, 4463–4490, 2014 www.atmos-meas-tech.net/7/4463/2014/ doi:10.5194/amt-7-4463-2014 © Author(s) 2014. CC Attribution 3.0 License.



Atmospheric Measurement Atmospheric Provide At



## Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde

R. J. Dirksen<sup>1</sup>, M. Sommer<sup>1</sup>, F. J. Immler<sup>1,\*</sup>, D. F. Hurst<sup>2,3</sup>, R. Kivi<sup>4</sup>, and H. Vömel<sup>1</sup>

# Availability of GRUAN data products **Free of charge!**



GCOS Reference Upper-Air Network

Motivation

### GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

Currently available GDPs<sup>3</sup>:

- RS92 version 002 [Dirksen et al., 2014]
- Beta version of Meisei RS11-G

GDPs in development:

- Radiosondes: RS92 v003, RS41, Modem M10, MeteoLabor
- GNSS precipitable water vapour
- Microwave radiometer
- Lidar
- Ozonesonde
- (Cryogenic) frost point hygrometer

<sup>3</sup>GRUAN Data Products

# Example: Radiosonde change management



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

Currently many GRUAN stations change from the Vaisala RS92 radiosonde to the Vaisala RS41

- A small bias between instruments might exist
- Most GRUAN site (and some non-GRUAN sites) do parallel launches
  - $\rightarrow$  Lauder uses parallel launches for one year
- A coordinated program to analyse the results from parallel launches is planned
- Analysis will also include laboratory based measurements
- Investigating potential of using interlaced measurements

## GRUAN and RO community



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

RO and GRUAN data can complement each other!

- RO best in upper troposphere/lower stratosphere, GRUAN very valuable also in lower levels
- Comparing GRUAN and RO enables us to study the quality of RO retrievals and GRUAN bias corrections
- In a perfect world the measurements made with different techniques agree within their uncertainties
- RO technique offers the possibility to be SI traceable. A traceable uncertainty estimate on each datum is desirable!

Example: Comparing the GRUAN RS92 product with RO profiles



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

As part of the ROM SAF Visiting Scientist Project 31 we intend to:

• Compare RS92 GDP departures with bending angle departures propagated into dry temperature space as described in [Tradowsky, 2015]

 $\rightarrow$  see Chris Burrows presentation later today!

• Use the GRUAN data to estimate how low in the atmosphere we can use the RS<sup>4</sup> bias corrections calculated in [Tradowsky, 2015]

<sup>4</sup>Radiosonde

# Example: Comparing the GRUAN RS92 product with RO profiles



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

- [Ladstädter et al., 2015] found a warm bias in RS92 GDP at the highest pressure levels
- Estimate the warm bias in RS92 GDP from profiles available in 2014/2015  $\rightarrow$  8003 temperature profiles
- The results of this study will become available as ROM SAF Visiting Scientist Report 31 at:

http://www.romsaf.org/visiting\_scientist.php

## Available RS92 profiles 2014/15



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change managemen

GRUAN an the RO community

GRUAN RO comparison

SASBEs

| Station          | Station ID      | Profiles |
|------------------|-----------------|----------|
| Barrow (BAR)     | 70027           | 931      |
| Beltsville (BEL) |                 | 4        |
| Boulder (BOU)    | 72471           | 60       |
| Cabauw (CAB)     | 06260 (De Bilt) | 494      |
| Lauder (LAU)     | 93817           | 78       |
| Lindenberg (LIN) | 10393           | 2726     |
| Manus (MAN)      |                 | 40       |
| Ny Alesund       | 01004           | 745      |
| Payerne (PAY)    | 06610           | 48       |
| Potenza (POT)    |                 | 49       |
| La Reunion (REU) |                 | 19       |
| Lamont (SGP)     | 74646           | 1862     |
| Sodankyla (SOD)  | 02836           | 837      |
| Tateno (TAT)     | 47646           | 110      |

## Site Atmospheric State Best Estimates<sup>6</sup>



GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

- Use all available measurements of an ECV<sup>5</sup> to best estimate the state of the ECV above the site
- Better temporal and vertical resolution than with individual instruments
- Uncertainty estimate included on each datum
- Currently I am working on a temperature SASBE for the GRUAN site in Lauder including
  - Radiosondes launched in Lauder
  - Radiosondes launched in Invercargill
  - Automatic weather station
- Possibly RO profiles can be included in a later data product
- SASBEs can be used for satellite/model validation

<sup>6</sup>This project is funded by the German Academic Exchange Service

<sup>&</sup>lt;sup>5</sup>Essential Climate Variable





Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

- GRUAN is providing a growing amount of measurements/data products
- Ongoing exchange between GRUAN and RO community valuable
- Do not hesitate to contact the GRUAN Lead Centre, the co-chairs or myself if you got any question!

## References



#### GCOS Reference Upper-Air Network

Motivation

GRUAN

Instrument change managemen

GRUAN and the RO community

GRUAN RC comparison

SASBEs

Summary

 Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H. (2014). Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. *Atmos. Meas. Tech.*, 7:4463–4490.
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H. (2010). Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products. *Atmos. Meas. Tech.*, 3:1217–1231.
Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G. (2015).

Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002-2013. Atmos. Meas. Tech., 8:1819–1834.



Tradowsky, J. S. (2015).

Characterisation of radiosonde temperature biases and errors using radio occultation measurements. ROM SAF Visiting Scientist report 26, Radio Occultation Meteorology Satellite Application Facility. available at http://www.romsaf.org/visiting\_scientist.php#y2015.

#### WMO (2014).

WMO INTEGRATED GLOBAL OBSERVING SYSTEM (WIGOS); GRUAN-GSICS-GNSSRO WIGOS Workshop on Upper-Air Observing System Integration and Application.





Motivation

GRUAN

Instrument change management

GRUAN and the RO community

GRUAN RO comparison

SASBEs

Summary

Interactive SASBE available at:

http://sasbe.bodekerscientific.com/

GRUAN video available at:

https://www.youtube.com/watch?v=3y113Zz3y4U

You can reach me at:

jordis@bodekerscientific.com

Motivation

GRUAN

Instrument change managemen

GRUAN and the RO community

Summary

## Thank you for your attention!

111111100