Future nanosatellite constellation for radio occultation measurements: preliminary design studies

Dominique Raspaud Météo-France/Cnrm and co-authors CNES, Météo-France/Cnrm, IPSL/Latmos, IPGP OPAC-IROWG Seggau, september 14, 2016
Foreword

A study performed by CNES with some collaborations

Thanks to the co-authors:

- C. Fallet, CNES, *Toulouse, France*
- J.F. Mahfouf, MÉTÉO-FRANCE/CNRM, CNRS, *Toulouse, France*
- A. Hauchecorne, CNRS/IPSL/LATMOS, *Paris, France*
- P. Coisson, IPGP, *Paris, France*
- R. Mathieu, CNES, *Toulouse, France*
- T. Martin, CNES, *Toulouse, France*
- N. Capet, CNES, *Toulouse, France*

CNES : French national centre for space research
MÉTÉO-FRANCE/CNRM : French national meteorological research centre
IPSL/LATMOS : Atmosphere and Spatial Observation Lab
IPGP : Earth physics institute
Outline

1. Motivation for the mission
2. Objectives of the mission
3. Mission requirements
4. Main technical specifications
5. Conclusion and prospect
Outline

1 Motivation for the mission
2 Objectives of the mission
3 Mission requirements
4 Main technical specifications
5 Conclusion and prospect
Motivation for the mission

Impact of GNSS-RO data on NWP at Météo-France

Percentage of observation types assimilated in Météo-France global model ARPEGE (January 2015) together with the corresponding FSO impact.
Motivation for the mission

Stagnation to decrease of the number of available occultations

Current GNSS-RO measurements available for NWP

- Currently 3000 occultations per day
- Tendency to decrease of the number of available occultations (ending COSMIC-1)

Evolution of the number of GNSS-RO observations in the Météo-France database
Outline

1 Motivation for the mission

2 Objectives of the mission

3 Mission requirements

4 Main technical specifications

5 Conclusion and prospect
Objective: increase the volume of GNSS-RO

Targeted number of occultations

- Refering to Harnisch et al (2013), no saturation effect in the impact of the number of occultations per day assimilated by numerical weather prediction models.
- Objective of the mission: **10,000 occultations** per day beyond 2025 in addition to the planned operational programs (EPS-SG (METOP-SG), post COSMIC-2).
 - A total of **16,000 occultations** per day beyond 2020-2025.
Objective: increase the volume of GNSS-RO

Targeted number of occultations

- Refering to *Harnisch et al (2013)*, no saturation effect in the impact of the number of occultations per day assimilated by numerical weather prediction models.

- Objective of the mission: **10,000 occultations** per day beyond 2025 in addition to the planned operational programs (EPS-SG (METOP-SG), post COSMIC-2).

 - a total of **16,000 occultations** per day beyond 2020-2025.
Outline

1 Motivation for the mission
2 Objectives of the mission
3 Mission requirements
4 Main technical specifications
5 Conclusion and prospect
Scientific interest in GNSS-RO

RO measurements to observe the atmosphere

Interests for numerical weather prediction, climatic trends, space weather

RO measurements provide:
- tropospheric and stratospheric temperature up to 50-60 km
- water vapor content
- surface pressure
- Total Electron Content (TEC) and electron density over the ionosphere
- phase and amplitude of ionospheric scintillations
Mission requirements

Analysis of the end user needs

Requirements for NWP, climate and space weather

- The requirements have to cope with the end user needs while remaining in a low cost framework.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Community NWP</th>
<th>Community Climate</th>
<th>Community Space Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical resolution</td>
<td>1 km</td>
<td>500 m</td>
<td>layer E : 1km above layer F2 : 10 km</td>
</tr>
<tr>
<td>50 to 80 km</td>
<td>1 km</td>
<td></td>
<td>above layer F2 : 10 km</td>
</tr>
<tr>
<td>25 to 50 km</td>
<td>500 m</td>
<td>1 km</td>
<td>above layer F2 : 10 km</td>
</tr>
<tr>
<td>0 to 25 km</td>
<td>200 m</td>
<td></td>
<td>above layer F2 : 10 km</td>
</tr>
<tr>
<td>Horizontal resolution</td>
<td>100 to 200 km</td>
<td>100 to 200 km</td>
<td>100 to 200 km</td>
</tr>
<tr>
<td>Bending angle precision</td>
<td>3 µrad</td>
<td>3 µrad</td>
<td>Accuracy < 3TECU</td>
</tr>
<tr>
<td>35 to 80 km</td>
<td>0.8%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>10 to 35 km</td>
<td>0.8 to 5%</td>
<td>0.8 to 5%</td>
<td></td>
</tr>
<tr>
<td>0 to 10 km</td>
<td>0.8 to 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data latency</td>
<td>1 to 3 hours</td>
<td>~ 1 month</td>
<td>10 to 60 min</td>
</tr>
</tbody>
</table>
A nanosatellite constellation

Small size, low energy, low cost satellites

- analysis of the existing preliminary studies based on small satellites (*MicroGEM*, *PlanetiQ*, *Spire*, *GeoOptics*)
- targets for sizing: use of small GNSS-RO receivers, mass of the instrument 1.5 kg using a minimalist instrumentation
- consumption of 24 Watts
Number of satellites for a worldwide and uniform coverage

- Depends on the altitude of the LEO, number and coverage of antennas, number of constellations used

- 2 options to cope with the 10,000 per day required occultations:
 - Using only GPS constellation and 2 antennas, need for 12 LEO satellites spread over 3 plans, altitude 600 km, antenna coverage 50 degrees
 - Using GPS+Galileo constellations and 2 antennas, need for 8 LEO satellites spread over 2 plans, altitude 600 km, antenna coverage 50 degrees
Number of satellites for a worldwide and uniform coverage

- Depends on the altitude of the LEO, number and coverage of antennas, number of constellations used

![Graph showing theoretical number of rising occultations per day vs LEO altitude](image)

- 2 options to cope with the 10,000 per day required occultations:
 - Using only GPS constellation and 2 antennas, need for 12 LEO satellites spread over 3 plans, altitude 600 km, antenna coverage 50 degrees
 - Using GPS+Galileo constellations and 2 antennas, need for 8 LEO satellites spread over 2 plans, altitude 600 km, antenna coverage 50 degrees
Ground station network

- Maximum data latency with 1 (Northern hemisphere) and 2 polar stations (Northern and Southern hemisphere):

 - Maximum time (minutes)
 - 1 ground station
 - 2 ground stations

- Data latency compatible with the requirements for NWP and space weather (mean latency of 20 min for the tropical band) with 2 ground stations.
Adjustment of the receiver parameters

- Study of 55 occultation profiles for different atmospheric conditions (EUMETSAT/ECMWF)
- Analysis of C/N_O during a particular descending occultation
Choice of the GNSS frequencies

- Impact of the different GNSS frequencies on the instrumental performances:
 - The more tracking availability and the lowest tracking loss (not shown) for L5
 - The more precise phase measurement for E1
 - Main option: receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS and Galileo)
Choice of the GNSS frequencies

- Impact of the different GNSS frequencies on the instrumental performances:
 - The more tracking availability and the lowest tracking loss (not shown) for L5
 - The more precise phase measurement for E1

- Main option: receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS and Galileo)
Choice of the GNSS frequencies

- Impact of the different GNSS frequencies on the instrumental performances:

 - The more tracking availability and the lowest tracking loss (not shown) for L5
 - The more precise phase measurement for E1

 ▶ Main option: receiver **bi-frequencies** (E1 and L5) and **bi-GNSS constellation** (GPS and Galileo)
Antenna

Main technical specifications

- 2 directive antennas: on the side of satellite velocity vector and the anti-speed side
- Array antenna (favorite option): patch antenna (good RF performance, low mass)
- Small-size antenna: for 3 unit elements, 390 mm by 130 mm
- Antenna coverage: +/- 50 degrees around the speed and anti-speed vectors.
- Gain of antenna: at least 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
Antenna

Main technical specifications

- 2 directive antennas: on the side of satellite velocity vector and the anti-speed side
- Array antenna (favorite option): patch antenna (good RF performance, low mass)
- Small-size antenna: for 3 unit elements, 390 mm by 130 mm
- Antenna coverage: +/- 50 degrees around the speed and anti-speed vectors.
- Gain of antenna: at least 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
Antenna

Main technical specifications

- 2 directive antennas: on the side of satellite velocity vector and the anti-speed side
- Array antenna (favorite option): patch antenna (good RF performance, low mass)
- Small-size antenna: for 3 unit elements, 390 mm by 130 mm
- Antenna coverage: +/- 50 degrees around the speed and anti-speed vectors.
- Gain of antenna: at least 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
Antenna

Main technical specifications

- 2 directive antennas: on the side of satellite velocity vector and the anti-speed side
- Array antenna (favorite option): patch antenna (good RF performance, low mass)
- Small-size antenna: for 3 unit elements, 390 mm by 130 mm
- Antenna coverage: +/- 50 degrees around the speed and anti-speed vectors.
- Gain of antenna: at least 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
Antenna

Main technical specifications

- 2 directive antennas: on the side of satellite velocity vector and the anti-speed side
- Array antenna (favorite option): patch antenna (good RF performance, low mass)
- Small-size antenna: for 3 unit elements, 390 mm by 130 mm
- Antenna coverage: +/- 50 degrees around the speed and anti-speed vectors.
- Gain of antenna: at least 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
The choice of the sampling frequency of the measurements linked to the vertical resolution targeted performances

- Frequency of **50 Hz** to satisfy the requirements of vertical resolution (200 m)
Conclusion and prospect

Progress of the mission

CNES has performed the preliminary design studies of a mission for a future nanosatellite constellation of GNSS-RO receivers:

- Targeted number of occultations: 10,000 per day
- Main identified technical specifications to meet the end user requirements and comply with the low cost constraint:
 - Small size and small mass (< 50 kg) with a minimalist instrumentation to remain a low cost system
 - Main planned option for the constellation: 8 LEO satellites, altitude of 600 km
 - Receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS+Galileo)
 - 2 polar ground stations
 - Array antenna with at least 8 dB gain, 50 degree coverage

- Further underway studies for the different technical options, for open loop, adaptative loop . . .
- Ending of these preliminary design studies by the end of the year.
Conclusion and prospect

Progress of the mission

CNES has performed the preliminary design studies of a mission for a future nanosatellite constellation of GNSS-RO receivers:

- targeted number of occultations: 10,000 per day
- main identified technical specifications to meet the end user requirements and comply with the low cost constraint:
 - small size and small mass (< 50 kg) with a minimalist instrumentation to remain a low cost system
 - main planned option for the constellation: 8 LEO satellites, altitude of 600 km
 - receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS+Galileo)
 - 2 polar ground stations
 - array antenna with at least 8 dB gain, 50 degree coverage

- further underway studies for the different technical options, for open loop, adaptative loop . . .
- ending of these preliminary design studies by the end of the year.
Conclusion and prospect

Progress of the mission

CNES has performed the preliminary design studies of a mission for a future nanosatellite constellation of GNSS-RO receivers:

- targeted number of occultations: 10,000 per day
- main identified technical specifications to meet the end user requirements and comply with the low cost constraint:
 - small size and small mass (< 50 kg) with a minimalist instrumentation to remain a low cost system
 - main planned option for the constellation: 8 LEO satellites, altitude of 600 km
 - receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS+Galileo)
 - 2 polar ground stations
 - array antenna with at least 8 dB gain, 50 degree coverage

- further underway studies for the different technical options, for open loop, adaptative loop . . .
- ending of these preliminary design studies by the end of the year.
Conclusion and prospect

Progress of the mission

CNES has performed the preliminary design studies of a mission for a future nanosatellite constellation of GNSS-RO receivers:

- targeted number of occultations: 10,000 per day
- main identified technical specifications to meet the end user requirements and comply with the low cost constraint:
 - small size and small mass (< 50 kg) with a minimalist instrumentation to remain a low cost system
 - main planned option for the constellation: 8 LEO satellites, altitude of 600 km
 - receiver bi-frequencies (E1 and L5) and bi-GNSS constellation (GPS+Galileo)
 - 2 polar ground stations
 - array antenna with at least 8 dB gain, 50 degree coverage

- further underway studies for the different technical options, for open loop, adaptative loop...
- ending of these preliminary design studies by the end of the year.
Thank you for your attention!

Any questions?

Contact: dominique.raspaud@meteo.fr