OPAC 4 September 6-10, 2010 Graz Austria

Impact Of The Ionosphere On GNSS Radio Occultation Retrievals

A. J. Mannucci
Chi O. Ao
Xiaoqing Pi
Byron A. Iijima
Jet Propulsion Laboratory
California Institute of Technology

Outline

1. Characterization

 Where I suggest that standard ionospheric correction algorithm is inadequate

2. Mitigation

- Where I review techniques that go beyond the standard
- 3. Analysis
- 4. Summary and Future Work

Characterization

Magnitude Of The Error

Method: ray-trace signal through a model ionosphere

From the solar maximum simulation of Kursinski et al. JGR, 1997

Below 10 km, iono errors remain negligible

Error is too large by factor of 2-3

Magnitude Of The Error

Establishing a climate benchmark for CLARREO

"...2 a : a point of reference from which measurements may be made by something that serves as a standard by which others may be measured or judged ..."

- Documented absolute accuracy
 - Methods for establishing accuracy must be documented and widely accepted
- Accuracy standard based on SI-traceability
 - Systematic errors assessed by comparison to independent observations
- Error analysis
 - There will not be an independent measurement of exactly the same quantity
- Ionospheric biases will break SI-traceability unless ionosphere mitigation approaches have sufficient margin such that residual biases are well below requirements
 - "Unknown unknowns" are likely

Why Is More Work Needed?

- lonosphere is highly variable with solar cycle, with local time, and with geomagnetic activity
- Residual biases in temperature and refractivity at ~20 km exceed our objectives (e.g. CLARREO)
 - Daytime solar maximum, and possibly terminator
- Recent "technology developments" is an opportunity
 - Assimilative space weather models
 - Global ionospheric monitoring networks (ground and space based)
 - "Improved" Abel retrievals
 - Theoretical developments (Syndergaard, 2000 ...)

Results (2007) Using International Reference Ionosphere

Error Vs. Electron Density

Assimilative Model Case (GAIM)

Conclusions – Characterization

- New simulation results are consistent with past work using "climatological" models of ionospheric refraction
- Realistic electron density fields (spherical asymmetry) predict significant daytime errors using 3D ray tracing
 - Up to ~0.5 K near solar maximum daytime at 25 km for quiet conditions
- For climate monitoring, improvements over standard bending angle correction should be implemented
 - Different centers should implement different methods

3D Ray Tracing: Detailed Results

Reference

Satellite track is in daytime, over mid-latitude North America

Electron Density Along Raypath

IRI Oct 30, 2003

400 km altitude (CHAMP)

September 9, 2010

Bending Angle

Residual Bending Angle

GAIM: Oct 30, 2003 "Superstorm"

Residual Bending Angle "Superstorm"

LEO Altitude Of 730 km

Residual Bending Angle – 730 km LEO

Characterization Summary

- Extending past results suggests need for additional mitigation
- Major factors affecting ionospheric residual are spherical asymmetry and orbit altitude

Mitigation

Bending Angle Correction

Rx Partial correction for raypath separation Rx

See discussion in:

Vorob'ev, V. V., and T. G. Krasil'nikova, Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Phys. Atmos. Ocean, 29, 602-609, 1994.

Bending Angle Correction

- Assumes linear relation between bending angle and refractive index
 - Refractive index ~1/f²
- Residual error due to non-linearity

$$\alpha_c(a) = \left[\frac{f_1^2}{f_1^2 - f_2^2}\right] \alpha_1(a) - \left[\frac{f_2^2}{f_1^2 - f_2^2}\right] \alpha_2(a)$$

$$\Delta\alpha(a) = \frac{C^2}{f_1^2 f_2^2} a \frac{d^2}{da^2} \int_a^{\infty} \frac{x N_e^2 dx}{\sqrt{x^2 - a^2}}$$

$$\Delta N = \frac{10^6}{\pi} \int_a^\infty \frac{\Delta \alpha(x) dx}{\sqrt{x^2 - a^2}}$$

See Syndergaard, Radio Science, 2000

Calculation Of Residual BA Error

Residual bending angle error at 50 km in micro-rad (based on typical conditions from the Chiu ionospheric model), from Eq. (2)

	solar max	solar min
daytime	0.15	0.043
nighttime	0.0016	0.0008

Electron Density Profile Retrievals

Bending angle residual error from cosmic iono occultation data

Notes:

- (1) Increased error during daytime
- (2) Daytime errors are small relative to the Chiu model solar min. Why?

September 9, 2010

28

Bending angle residual error from IOX iono occultation data

Notes:

- (1) Daytime errors have larger scatters compared to cosmic in 2006, but...
- (2) Large number of occultations have very small residual errors.

Bending angle residual error distribution

IOX

UCAR: COSMIC Residual Bending

individual occultation; 100 occultations; 1000 occultations;

10000 occultations; 100000 occultations

Approaches 0.1 µrad, larger than our estimates based on equation (2)

C. Rocken et al., CLARREO Requirements Workshop, 2010

Computed Residual Error Versus Altitude

CHIU Model vs SAC-C

Analysis

- Correction term appears too small assuming retrieved electron density estimates, compared to ray-trace estimates
- Hypothesis: spherical symmetry assumption, upon which correction model is based, is insufficient (ionosphere is not so symmetric)
 - Note sensitivity of correction term to detailed structure, as revealed in altitude dependence
- Models produce more realistic correction term estimates compared to retrieved electron density profiles

Tools

$$\alpha_c(a) = \left[\frac{f_1^2}{f_1^2 - f_2^2}\right] \alpha_1(a) - \left[\frac{f_2^2}{f_1^2 - f_2^2}\right] \alpha_2(a)$$

- Estimate bending due to ionosphere using an assumed electron density profile
 - Gorbunov et al., 1996 spherical symmetry assumed
- Use the Global Assimilative Ionosphere Model to compute bending angle correction
- Use Global Ionospheric Maps (TEC) to infer horizontal gradients

Storm Day: Oct 29, 2003, NGAIM And Truth Storm Features at NLIB

"Improved Abel" Retrieval

September 9, 2010

Using a Gradient-Aided Inversion Technique," Adv. Spc. Res., in press

OPAC-4, Sept 2010, Graz Austria

Summary

- Past work suggests need to apply additional correction approaches to meet stringent climate requirements
 - Gorbunov et al., Syndergaard, Kursinski et al., Rocken et al.
- Spherical symmetry in the ionosphere may be a limiting assumption in mitigation
- Solutions would then consist of estimated 3D electron density distributions
 - GAIM
 - Assisted Abel (global ionospheric TEC maps + RO)
- Impact of LEO altitude and climate studies
 - Note that bending angle correction may be a common mode error for a given "constellation"

Future Work

- Assess impact of spherical asymmetry in additional cases
 - Other sources of error also? Syndergaard et al.,
 2000 did not see a large effect from asymmetry
- Recommendation: implement different approaches at the different centers
 - Let's understand structural uncertainties due to large scale ionosphere error
- Assess statistical impact of small-scale errors
 - Mean zero or not?

Updated 2010 Sep 7

NOAA/SWPC Boulder,CO USA